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Motivation

e Focus on:

e Personal (or subjective) probability
e A variable X with values in a finite set X = {z1,...,zx}
e An |ID process and a predictive setup

e Question:

Can we learn about X from data under prior (near-)ignorance?
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A bit of background

Modeling prior ignorance: a long-standing issue in statistics
The Bayesian viewpoint
e Choose a single prior distribution satisfying some principles
e E.g., symmetry principle4precision = uniform prior
Criticism: this appears to model indifference rather than ignorance
More generally speaking:

e Walley (1991) questions the idea that ignorance can be modeled by a
single distribution
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A bit of background

e What does Walley (1991, 1996) say then?

o At least the symmetry and the embedding principles
e Symmetry+embedding = vacuous probability model for X

e P(A)=0,P(A) =1 for every non-trivial A C X
e Note we need imprecise probabilities
e Problem
e Vacuous probability model =- vacuous prior beliefs
e Vacuous prior beliefs = vacuous posterior beliefs (Walley, 1991)

= Learning is not possible under prior ignorance!
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Near-ignorance

o A brilliant idea
o Consider the (unknown) chances of X
e @; = physical probability that X = x;
e |.e., proportion of individuals in the population with feature z;
o 0= (91,02,...,9k)
e Choose a non-vacuous prior for 6 such that:
o E(04)=0,E(04) =1 for every non-trivial A C X
e But E(64) = P(A) and E(64) = P(A) = Vacuous prior
probabilities for X without a vacuous prior for 6
= This enables us to have symmetry+embedding AND to learn!

= Near-ignorance is a key approach to the problem
(Or at least this is the reason why it is so to some people)
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The imprecise Dirichlet model (IDM)

e Walley (1996) has proposed an important model to learn under prior
near-ignorance called imprecise Dirichlet model

e Imprecise Beta model proposed also by Bernard (1996)
e The IDM generalizes Bayesian learning from multinomial data
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IDM: theoretical setting

Infinite population of individuals in k categories: X = {1, ...

Chance 6;: proportion of units of type x; in the population
Vector of chances 8 = (0y,...,60;) € © unknown

Random sample X = x from the population

Posterior prediction: P(X = ;| X = x)?
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In a binomial case

People who can be healthy or diseased

X ={h,d}

0,: proportion of healthy people in the population
05: proportion of diseased people in the population
No prior knowledge about the proportions

Random sample X = x of people

Posterior prediction: P(X = d|X = x)?
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IDM: definition of the model

e Prior beliefs about 6 represented by a set of densities (a credal set):
Mg = {dir(s,t) [t €T},

where .
. F(S) -1
d t)=— 2|06
l?“(57 ) F(Stl)"'F(Stk)il;[l i
is the Dirichlet density, with parameters s and t = (¢1,...,tx), and

k
T={(t1,....tx) : 0<t; <Lji=1,....k Y t;=1}

i=1

e Is My a model of prior near-ignorance?
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IDM: prior near-ignorance

Remember that P(X = ;) = E(6;)
For Dirichlet densities it holds that E(6;) = ¢;

E(X = .’L'Z) = infMO E(Gz) = inT ti = 0,
PX=um)= sup, E(0;) = supr t; =1,

= Vacuous predictive probabilities a priori
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IDM: a posteriori

Let X = x be a sample with counts a = (aF,...,a})
Posterior inference: each prior updated by Bayes rule

Posterior credal set:

My = {dir(N + 5,t%)

aX + st;
tX=-"21——tecT
’ N +s }

P(X =z |x) = infar, B(0;|x) = infy 40 = 2
= Xhsti _ o+
P(X = x;|x) = sup,, E(0; | x) = supr aNJrSS = ?VJF;':

How much ignorance left a posteriori?
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e Degree of imprecision:

AX =i ]x) = P(X = 2| x) — P(X = 2; | x) = Nis

e Implications:
o A(X = x; | x) decreases with increasing N:
Learning under prior near-ignorance is possible!

Large values of s = decreases slowly

Small values of s = decreases fast
s: caution of inference

o [nference cautious enough to encompass several precise models
e Support for 1 < s <2

e For a discussion see Bernard (2005) or Walley (1996)

o N — oo then A(X =z |x) — 0, P(X = z; |x) — %
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o With s =2:
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IDM: example

e Sample x contains 33 healthy and 4 diseased people
o With s =2:

P(X = h|x) = 373_?; 5 =085

P(X = h|x) = ;ﬁi; ~ 0.90
e Analogously,

P(X=d|x) = 3;12 ~ (.10

P(X = d|x) = 2 > 15

T 37T+2
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Latent and manifest variables

As before, X denotes whether a person is healthy or diseased, i.e.,
X ={h,d}

Something that we might have overlooked before:

Will we actually observe X?

Perhaps not very realistic

What will we be likely to observe instead?

e E.g., the outcome of a medical test related to X
e Call it S (for signal), another random variable

X is said to be a latent variable
S is said to be manifest

The process that takes X in input and outputs S is said to be the
observational process (or measurement process)

@-©
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e Now let X denote the outcome of tossing a coin, i.e., X = {h,t}

o Will we actually (be certain to) observe X7
Perhaps not very realistic either ...
e To observe something we must employ a “mechanism”
e Even only our eyes
e Every mechanism appears to be imperfect in practice
® |l.e., once in a while we might confuse h with ¢
o [mperfection may well be tiny
e Strictly speaking, the observation of X is another variable, say .S

e S takes values in § = X = {h, t}
e X latent, S manifest

= Latent variables appear to arise as soon as we make observations
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e The overall process of data generation:

e Note we are assuming that 6 is not relevant to S once we know X
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Say that
e Your probability for X = x; is vacuous a priori
® |.e., you use an arbitrary set of priors Mg to model near-ignorance
e Your data are collected in a vector s = (s1,...,sn) of signals

e Either discrete or continuous
e Related in whatever (but known) way to N realizations of X

If

e The likelihood P(s|) is continuous and positive
Then

e Your probability for X = x; is vacuous a posteriori!

= Learning is not possible under prior near-ignorance!

Analogous result if we wish to predict the next N’ units
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Some insight: core result about deterministic chances

e Denote with e; the i-th vector of deterministic chances:
e=1(0,...,0, 1 ,0,...,0).
i-th place
e P(S =s|0) continuous in 6
o If P(S=s]|e;) >0, then
PX=ux;|S=s)=1

and consequently,
B(X:JZ]'|S=S)=O

forall j # i
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Are our results pointing to “pathological” situations?

Much probably not
The condition on the likelihood seems to be very frequently satisfied

Medical example again

e X is the health status, in X = {h,d}
e S is the outcome of a medical test, in § = {—,+}
e Say that the test may be wrong once in a while:

o P(—|d)=¢, P(+|h) =€": €', >0
® The opposite is not very realistic

e Then the likelihood is continuous and everywhere positive
e Learning is not possible
e Note that €, €” can be arbitrarily small (yet positive)

= We cannot neglect the observational process,
however tiny the imperfection!
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A simple setup based on the IDM

X and S taking values from X

Random sample s

Imperfect observational mechanism modeled by emission matrix A:
e \ij = P(S = ;| X = x;) known for all 4, j

If A;; > 0 for all 4, j then we cannot learn from s
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Intuitive explanation

Consider an investigator with precise beliefs t; — 1
(Similar arguments can be used when t; — 0)

Belief a priori: population completely of individuals of type x;
The investigator observes S = x; and knows that A;; > 0
Then he thinks that an error has occurred
This degenerate behavior is impossible only if A;; =0
= to learn at least partial perfection is needed
The IDM encompasses the case t; — 1, from which the problem
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Degeneracy on the border

o Consider the following example:

e IDM in the binomial case (with caution parameter s=2)
e Counts for heads and tails (variable S): (12,23)
o Probability of confusing heads with tails and vice versa equal to 0.2
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P(heads|s) as function of t; Again, but 0.99999 < ¢; <1
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Extreme priors: how to “solve” the problem
(and yet losing near-ignorance)

e The previous discussion suggests a possible solution of the problem
e Vacuous probabilities arise because of the presence, in M, of
extreme priors, arbitrarily close to the degenerate ones

e Given a small probability of errors, a slight restriction of M avoids
the problem

e E.g., in the IDM set € < t; <1 — € for all ¢ and small positive €
e Yet, we lose near-ignorance

e Moreover: how can we justify the choice of a certain value €?
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So far we have focused on predicting latent values
e le., X rather than S
One might say that focusing on manifest values is more reasonable
e Looks reasonable especially when the imperfection is tiny
Two approaches
A “clean” approach:
e We admit that there is a latent and a manifest level
e Yet, we want both to learn and make predictions on the manifest
level only
e Then
e We are obliged to apply a modified IDM
® The learning problem pops up again, this time in predicting S
A “dirty” approach:
e We pretend that there is no latent level
e |.e., that observations are perfect even if we know they are not
(This is what all the people who use the IDM in practice do)
e Then
e We can apply the usual IDM
® |earning is possible
e Empirically works very well, yet theoretically is unexplored

This is a strange paradox still to be solved
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o Or (perhaps easier) show that our results are wrong!
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