Learning about a Categorical Latent Variable under Prior Near-Ignorance

Alberto Piatti, IDSIA (CH) <u>Marco Zaffalon</u>, IDSIA (CH) Fabio Trojani, U.St.Gallen (CH) Marcus Hutter, ANU (AU)

(Me here)

About IDSIA and myself

Lugano

Scuola universitaria professionale della Svizzera italiana

IDSIA Istituto Dalle Molle di studi sull'intelligenza artificiale

IDSIA

- Research Institute for AI
- Established in Lugano since 1988
- Since 2000 part of USI and SUPSI
- About 30 people
 - Directors, Seniors, PostDocs, PhDs, ...

- MSc in Computer Science ('91), PhD in Applied Maths ('97)
- At IDSIA ever since

- MSc in Computer Science ('91), PhD in Applied Maths ('97)
- At IDSIA ever since
- My interests:

- MSc in Computer Science ('91), PhD in Applied Maths ('97)
- At IDSIA ever since
- My interests:

The imprecise probability group at IDSIA

🗱 Alessandro Antonucci, PhD

- MSc in physics ('02), PhD in computer science ('08)
- Alg. and theory for credal nets, environmental/military applications

🎒 Giorgio Corani, PhD

- MSc in environmental eng. ('99), PhD in information eng. ('05)
- Data mining, credal classification, dementia application

🌌 Alberto Piatti, PhD

- MSc in maths ('01), PhD in finance ('06)
- Statistics, credal net modeling, military applications
- And 3 new people: two postdocs (Alessio Benavoli, Cassio Polpo de Campos), one PhD student (Yi Sun)
 - Credal nets, data mining, bioinformatics

Background and motivation for this paper

• Focus on:

- Focus on:
 - Personal (or subjective) probability
 - A variable X with values in a finite set $\mathcal{X} = \{x_1, \dots, x_k\}$
 - An IID process and a predictive setup

- Focus on:
 - Personal (or subjective) probability
 - A variable X with values in a finite set $\mathcal{X} = \{x_1, \dots, x_k\}$
 - An IID process and a predictive setup
- Question:

- Focus on:
 - Personal (or subjective) probability
 - A variable X with values in a finite set $\mathcal{X} = \{x_1, \dots, x_k\}$
 - An IID process and a predictive setup
- Question:

Can we learn about X from data under prior (*near*-)ignorance?

• Modeling prior ignorance: a long-standing issue in statistics

- Modeling prior ignorance: a long-standing issue in statistics
- The Bayesian viewpoint

- Modeling prior ignorance: a long-standing issue in statistics
- The Bayesian viewpoint
 - Choose a single prior distribution satisfying some principles

- Modeling prior ignorance: a long-standing issue in statistics
- The Bayesian viewpoint
 - Choose a single prior distribution satisfying some principles
 - E.g., symmetry principle+precision \Rightarrow uniform prior

- Modeling prior ignorance: a long-standing issue in statistics
- The Bayesian viewpoint
 - Choose a single prior distribution satisfying some principles
 - E.g., symmetry principle+precision \Rightarrow uniform prior
- Criticism: this appears to model indifference rather than ignorance

- Modeling prior ignorance: a long-standing issue in statistics
- The Bayesian viewpoint
 - Choose a single prior distribution satisfying some principles
 - E.g., symmetry principle+precision ⇒ uniform prior
- Criticism: this appears to model indifference rather than ignorance
- More generally speaking:
 - Walley (1991) questions the idea that ignorance can be modeled by a single distribution

• What does Walley (1991, 1996) say then?

- What does Walley (1991, 1996) say then?
 - At least the symmetry and the embedding principles

- What does Walley (1991, 1996) say then?
 - At least the symmetry and the embedding principles
 - Symmetry+embedding \Rightarrow vacuous probability model for X

- What does Walley (1991, 1996) say then?
 - At least the symmetry and the embedding principles
 - Symmetry+embedding \Rightarrow vacuous probability model for X
 - $\underline{P}(A) = 0, \overline{P}(A) = 1$ for every non-trivial $A \subseteq \mathcal{X}$

- What does Walley (1991, 1996) say then?
 - At least the symmetry and the embedding principles
 - Symmetry+embedding \Rightarrow vacuous probability model for X
 - $\underline{P}(A) = 0, \overline{P}(A) = 1$ for every non-trivial $A \subseteq \mathcal{X}$
 - Note we need imprecise probabilities

- What does Walley (1991, 1996) say then?
 - At least the symmetry and the embedding principles
 - Symmetry+embedding \Rightarrow vacuous probability model for X
 - $\underline{P}(A) = 0, \overline{P}(A) = 1$ for every non-trivial $A \subseteq \mathcal{X}$
 - Note we need imprecise probabilities
- Problem

- What does Walley (1991, 1996) say then?
 - At least the symmetry and the embedding principles
 - Symmetry+embedding \Rightarrow vacuous probability model for X
 - $\underline{P}(A) = 0, \overline{P}(A) = 1$ for every non-trivial $A \subseteq \mathcal{X}$
 - Note we need imprecise probabilities
- Problem
 - Vacuous probability model \Rightarrow vacuous prior beliefs

- What does Walley (1991, 1996) say then?
 - At least the symmetry and the embedding principles
 - Symmetry+embedding \Rightarrow vacuous probability model for X
 - $\underline{P}(A) = 0, \overline{P}(A) = 1$ for every non-trivial $A \subseteq \mathcal{X}$
 - Note we need imprecise probabilities
- Problem
 - Vacuous probability model \Rightarrow vacuous prior beliefs
 - Vacuous prior beliefs \Rightarrow vacuous posterior beliefs (Walley, 1991)

- What does Walley (1991, 1996) say then?
 - At least the symmetry and the embedding principles
 - Symmetry+embedding \Rightarrow vacuous probability model for X
 - $\underline{P}(A) = 0, \overline{P}(A) = 1$ for every non-trivial $A \subseteq \mathcal{X}$
 - Note we need imprecise probabilities
- Problem
 - Vacuous probability model \Rightarrow vacuous prior beliefs
 - Vacuous prior beliefs \Rightarrow vacuous posterior beliefs (Walley, 1991)

 \Rightarrow Learning is not possible under prior ignorance!

Near-ignorance

• A brilliant idea

Near-ignorance

- A brilliant idea
- Consider the (unknown) *chances* of X

Near-ignorance

- A brilliant idea
- Consider the (unknown) chances of X
 - $\theta_i = physical probability that X = x_i$
- A brilliant idea
- Consider the (unknown) chances of X
 - $\theta_i = physical probability that X = x_i$
 - I.e., proportion of individuals in the population with feature x_i

- A brilliant idea
- Consider the (unknown) *chances* of X
 - $\theta_i = physical probability that X = x_i$
 - I.e., proportion of individuals in the population with feature x_i
 - $\theta = (\theta_1, \theta_2, \dots, \theta_k)$

- A brilliant idea
- Consider the (unknown) *chances* of X
 - $\theta_i = physical probability that X = x_i$
 - I.e., proportion of individuals in the population with feature x_i
 - $\theta = (\theta_1, \theta_2, \dots, \theta_k)$
- Choose a non-vacuous prior for θ such that:
 - $\underline{E}(\theta_A) = 0, \overline{E}(\theta_A) = 1$ for every non-trivial $A \subseteq \mathcal{X}$

- A brilliant idea
- Consider the (unknown) *chances* of X
 - $\theta_i = physical probability that X = x_i$
 - I.e., proportion of individuals in the population with feature x_i
 - $\theta = (\theta_1, \theta_2, \dots, \theta_k)$
- Choose a non-vacuous prior for θ such that:
 - $\underline{E}(\theta_A) = 0, \overline{E}(\theta_A) = 1$ for every non-trivial $A \subseteq \mathcal{X}$
 - But $\underline{E}(\theta_A) = \underline{P}(A)$ and $\overline{E}(\theta_A) = \overline{P}(A)$

- A brilliant idea
- Consider the (unknown) *chances* of X
 - $\theta_i = physical probability that X = x_i$
 - I.e., proportion of individuals in the population with feature x_i
 - $\theta = (\theta_1, \theta_2, \dots, \theta_k)$
- Choose a non-vacuous prior for θ such that:
 - $\underline{E}(\theta_A) = 0, \overline{E}(\theta_A) = 1$ for every non-trivial $A \subseteq \mathcal{X}$
 - But $\underline{E}(\theta_A) = \underline{P}(A)$ and $\overline{E}(\theta_A) = \overline{P}(A) \Rightarrow$ Vacuous prior probabilities for X without a vacuous prior for θ

- A brilliant idea
- Consider the (unknown) *chances* of X
 - $\theta_i = physical probability that X = x_i$
 - I.e., proportion of individuals in the population with feature x_i
 - $\theta = (\theta_1, \theta_2, \dots, \theta_k)$
- Choose a non-vacuous prior for θ such that:
 - $\underline{E}(\theta_A) = 0, \overline{E}(\theta_A) = 1$ for every non-trivial $A \subseteq \mathcal{X}$
 - But $\underline{E}(\theta_A) = \underline{P}(A)$ and $\overline{E}(\theta_A) = \overline{P}(A) \Rightarrow$ Vacuous prior probabilities for X without a vacuous prior for θ
 - \Rightarrow This enables us to have symmetry+embedding AND to learn!

- A brilliant idea
- Consider the (unknown) *chances* of X
 - $\theta_i = physical probability that X = x_i$
 - I.e., proportion of individuals in the population with feature x_i
 - $\theta = (\theta_1, \theta_2, \dots, \theta_k)$
- Choose a non-vacuous prior for θ such that:
 - $\underline{E}(\theta_A) = 0, \overline{E}(\theta_A) = 1$ for every non-trivial $A \subseteq \mathcal{X}$
 - But $\underline{E}(\theta_A) = \underline{P}(A)$ and $\overline{E}(\theta_A) = \overline{P}(A) \Rightarrow$ Vacuous prior probabilities for X without a vacuous prior for θ
 - \Rightarrow This enables us to have symmetry+embedding AND to learn!

 \Rightarrow Near-ignorance is a key approach to the problem (Or at least this is the reason why it is so to some people)

An example: the *imprecise Dirichlet model*

The imprecise Dirichlet model (IDM)

The imprecise Dirichlet model (IDM)

- Walley (1996) has proposed an important model to learn under prior near-ignorance called *imprecise Dirichlet model*
 - Imprecise Beta model proposed also by Bernard (1996)

The imprecise Dirichlet model (IDM)

- Walley (1996) has proposed an important model to learn under prior near-ignorance called *imprecise Dirichlet model*
 - Imprecise Beta model proposed also by Bernard (1996)
- The IDM generalizes Bayesian learning from multinomial data

• Infinite population of individuals in k categories: $\mathcal{X} = \{x_1, \dots, x_k\}$

- Infinite population of individuals in k categories: $\mathcal{X} = \{x_1, \dots, x_k\}$
- Chance θ_i : proportion of units of type x_i in the population

- Infinite population of individuals in k categories: $\mathcal{X} = \{x_1, \dots, x_k\}$
- Chance θ_i : proportion of units of type x_i in the population
- Vector of chances $\theta = (\theta_1, \dots, \theta_k) \in \Theta$ unknown

- Infinite population of individuals in k categories: $\mathcal{X} = \{x_1, \dots, x_k\}$
- Chance θ_i : proportion of units of type x_i in the population
- Vector of chances $\theta = (\theta_1, \dots, \theta_k) \in \Theta$ unknown
- Random sample $\mathbf{X} = \mathbf{x}$ from the population

- Infinite population of individuals in k categories: $\mathcal{X} = \{x_1, \dots, x_k\}$
- Chance θ_i : proportion of units of type x_i in the population
- Vector of chances $heta = (heta_1, \dots, heta_k) \in \Theta$ unknown
- Random sample $\mathbf{X}=\mathbf{x}$ from the population
- Posterior prediction: $P(X = x_i | X = x)$?

• People who can be healthy or diseased

- People who can be healthy or diseased
- $\mathcal{X} = \{h, d\}$

- People who can be healthy or diseased
- $\mathcal{X} = \{h, d\}$
- θ_1 : proportion of *healthy* people in the population

- People who can be healthy or diseased
- $\mathcal{X} = \{h, d\}$
- θ_1 : proportion of *healthy* people in the population
- θ_2 : proportion of *diseased* people in the population

- People who can be healthy or diseased
- $\mathcal{X} = \{h, d\}$
- θ_1 : proportion of *healthy* people in the population
- θ_2 : proportion of *diseased* people in the population
- No prior knowledge about the proportions

- People who can be healthy or diseased
- $\mathcal{X} = \{h, d\}$
- θ_1 : proportion of *healthy* people in the population
- θ_2 : proportion of *diseased* people in the population
- No prior knowledge about the proportions
- Random sample $\mathbf{X} = \mathbf{x}$ of people

- People who can be healthy or diseased
- $\mathcal{X} = \{h, d\}$
- θ_1 : proportion of *healthy* people in the population
- θ_2 : proportion of *diseased* people in the population
- No prior knowledge about the proportions
- Random sample $\mathbf{X} = \mathbf{x}$ of people
- Posterior prediction: P(X = d | X = x)?

• Prior beliefs about θ represented by a set of densities (a credal set):

• Prior beliefs about θ represented by a set of densities (a credal set):

$$\mathcal{M}_0 = \left\{ dir(s, \mathbf{t}) \mid \mathbf{t} \in \mathcal{T} \right\},\$$

• Prior beliefs about θ represented by a set of densities (a credal set):

$$\mathcal{M}_0 = \left\{ dir(s, \mathbf{t}) \mid \mathbf{t} \in \mathcal{T} \right\},\$$

where

• Prior beliefs about θ represented by a set of densities (a credal set):

$$\mathcal{M}_0 = \left\{ dir(s, \mathbf{t}) \mid \mathbf{t} \in \mathcal{T} \right\},\$$

where

$$dir(s, \mathbf{t}) = \frac{\Gamma(s)}{\Gamma(st_1)\cdots\Gamma(st_k)} \prod_{i=1}^k \theta_i^{st_i-1}$$

is the Dirichlet density, with parameters s and $\mathbf{t} = (t_1, \ldots, t_k)$, and

• Prior beliefs about θ represented by a set of densities (a credal set):

$$\mathcal{M}_0 = \left\{ dir(s, \mathbf{t}) \mid \mathbf{t} \in \mathcal{T} \right\},\$$

where

$$dir(s, \mathbf{t}) = \frac{\Gamma(s)}{\Gamma(st_1)\cdots\Gamma(st_k)} \prod_{i=1}^k \theta_i^{st_i-1}$$

is the Dirichlet density, with parameters s and $\mathbf{t} = (t_1, \dots, t_k)$, and

$$\mathcal{T} = \{(t_1, \dots, t_k) : 0 < t_i < 1, i = 1, \dots, k, \sum_{i=1}^k t_i = 1\}$$

• Prior beliefs about θ represented by a set of densities (a credal set):

$$\mathcal{M}_0 = \left\{ dir(s, \mathbf{t}) \mid \mathbf{t} \in \mathcal{T} \right\},\$$

where

$$dir(s, \mathbf{t}) = \frac{\Gamma(s)}{\Gamma(st_1)\cdots\Gamma(st_k)} \prod_{i=1}^k \theta_i^{st_i-1}$$

is the Dirichlet density, with parameters s and $\mathbf{t} = (t_1, \ldots, t_k)$, and

$$\mathcal{T} = \{(t_1, \dots, t_k) : 0 < t_i < 1, i = 1, \dots, k, \sum_{i=1}^k t_i = 1\}$$

• Is \mathcal{M}_0 a model of prior near-ignorance?

• Remember that $P(X = x_i) = E(\theta_i)$

- Remember that $P(X = x_i) = E(\theta_i)$
- For Dirichlet densities it holds that $E(\theta_i) = t_i$

- Remember that $P(X = x_i) = E(\theta_i)$
- For Dirichlet densities it holds that $E(\theta_i) = t_i$

•
$$\underline{P}(\mathbf{X} = x_i)$$
- Remember that $P(X = x_i) = E(\theta_i)$
- For Dirichlet densities it holds that $E(\theta_i) = t_i$

•
$$\underline{P}(\mathbf{X} = x_i) = \inf_{\mathcal{M}_0} E(\theta_i)$$

- Remember that $P(X = x_i) = E(\theta_i)$
- For Dirichlet densities it holds that $E(\theta_i) = t_i$

•
$$\underline{P}(\mathbf{X} = x_i) = \inf_{\mathcal{M}_0} E(\theta_i) = \inf_{\mathcal{T}} t_i$$

- Remember that $P(X = x_i) = E(\theta_i)$
- For Dirichlet densities it holds that $E(\theta_i) = t_i$

•
$$\underline{P}(\mathbf{X} = x_i) = \inf_{\mathcal{M}_0} E(\theta_i) = \inf_{\mathcal{T}} t_i = 0,$$

- Remember that $P(X = x_i) = E(\theta_i)$
- For Dirichlet densities it holds that $E(\theta_i) = t_i$
- $\underline{P}(\mathbf{X} = x_i) = \inf_{\mathcal{M}_0} E(\theta_i) = \inf_{\mathcal{T}} t_i = 0,$
- $\overline{P}(\mathbf{X} = x_i)$

- Remember that $P(X = x_i) = E(\theta_i)$
- For Dirichlet densities it holds that $E(\theta_i) = t_i$
- $\underline{P}(\mathbf{X} = x_i) = \inf_{\mathcal{M}_0} E(\theta_i) = \inf_{\mathcal{T}} t_i = 0,$
- $\overline{P}(\mathbf{X} = x_i) = \sup_{\mathcal{M}_0} E(\theta_i)$

- Remember that $P(X = x_i) = E(\theta_i)$
- For Dirichlet densities it holds that $E(\theta_i) = t_i$
- $\underline{P}(\mathbf{X} = x_i) = \inf_{\mathcal{M}_0} E(\theta_i) = \inf_{\mathcal{T}} t_i = 0,$

•
$$\overline{P}(\mathbf{X} = x_i) = \sup_{\mathcal{M}_0} E(\theta_i) = \sup_{\mathcal{T}} t_i$$

- Remember that $P(X = x_i) = E(\theta_i)$
- For Dirichlet densities it holds that $E(\theta_i) = t_i$

•
$$\underline{P}(\mathbf{X} = x_i) = \inf_{\mathcal{M}_0} E(\theta_i) = \inf_{\mathcal{T}} t_i = 0,$$

•
$$\overline{P}(\mathbf{X} = x_i) = \sup_{\mathcal{M}_0} E(\theta_i) = \sup_{\mathcal{T}} t_i = 1,$$

- Remember that $P(X = x_i) = E(\theta_i)$
- For Dirichlet densities it holds that $E(\theta_i) = t_i$

•
$$\underline{P}(\mathbf{X} = x_i) = \inf_{\mathcal{M}_0} E(\theta_i) = \inf_{\mathcal{T}} t_i = 0,$$

•
$$\overline{P}(\mathbf{X} = x_i) = \sup_{\mathcal{M}_0} E(\theta_i) = \sup_{\mathcal{T}} t_i = 1,$$

- Remember that $P(X = x_i) = E(\theta_i)$
- For Dirichlet densities it holds that $E(\theta_i) = t_i$
- $\underline{P}(\mathbf{X} = x_i) = \inf_{\mathcal{M}_0} E(\theta_i) = \inf_{\mathcal{T}} t_i = 0,$
- $\overline{P}(\mathbf{X} = x_i) = \sup_{\mathcal{M}_0} E(\theta_i) = \sup_{\mathcal{T}} t_i = 1,$

 \Rightarrow Vacuous predictive probabilities a priori

• Let $\mathbf{X} = \mathbf{x}$ be a sample with counts $\mathbf{a} = (a_1^{\mathbf{x}}, \dots, a_k^{\mathbf{x}})$

- Let $\mathbf{X} = \mathbf{x}$ be a sample with counts $\mathbf{a} = (a_1^{\mathbf{x}}, \dots, a_k^{\mathbf{x}})$
- Posterior inference: each prior updated by Bayes rule

- Let $\mathbf{X} = \mathbf{x}$ be a sample with counts $\mathbf{a} = (a_1^{\mathbf{x}}, \dots, a_k^{\mathbf{x}})$
- Posterior inference: each prior updated by Bayes rule
- Posterior credal set:

- Let $\mathbf{X} = \mathbf{x}$ be a sample with counts $\mathbf{a} = (a_1^{\mathbf{x}}, \dots, a_k^{\mathbf{x}})$
- Posterior inference: each prior updated by Bayes rule
- Posterior credal set:

$$\mathcal{M}_N = \left\{ dir(N+s, \mathbf{t}^{\mathbf{x}}) \mid t_i^{\mathbf{x}} = \frac{a_i^{\mathbf{x}} + st_i}{N+s}, \, \mathbf{t} \in \mathcal{T} \right\}$$

- Let $\mathbf{X} = \mathbf{x}$ be a sample with counts $\mathbf{a} = (a_1^{\mathbf{x}}, \dots, a_k^{\mathbf{x}})$
- Posterior inference: each prior updated by Bayes rule
- Posterior credal set:

$$\mathcal{M}_N = \left\{ dir(N+s, \mathbf{t}^{\mathbf{x}}) \middle| t_i^{\mathbf{x}} = \frac{a_i^{\mathbf{x}} + st_i}{N+s}, \mathbf{t} \in \mathcal{T} \right\}$$

• $\underline{P}(\mathbf{X} = x_i \,|\, \mathbf{x})$

- Let $\mathbf{X} = \mathbf{x}$ be a sample with counts $\mathbf{a} = (a_1^{\mathbf{x}}, \dots, a_k^{\mathbf{x}})$
- Posterior inference: each prior updated by Bayes rule
- Posterior credal set:

$$\mathcal{M}_N = \left\{ dir(N+s, \mathbf{t}^{\mathbf{x}}) \mid t_i^{\mathbf{x}} = \frac{a_i^{\mathbf{x}} + st_i}{N+s}, \, \mathbf{t} \in \mathcal{T} \right\}$$

•
$$\underline{P}(\mathbf{X} = x_i \,|\, \mathbf{x}) = \inf_{\mathcal{M}_N} E(\theta_i \,|\, \mathbf{x})$$

- Let $\mathbf{X} = \mathbf{x}$ be a sample with counts $\mathbf{a} = (a_1^{\mathbf{x}}, \dots, a_k^{\mathbf{x}})$
- Posterior inference: each prior updated by Bayes rule
- Posterior credal set:

$$\mathcal{M}_N = \left\{ dir(N+s, \mathbf{t}^{\mathbf{x}}) \middle| t_i^{\mathbf{x}} = \frac{a_i^{\mathbf{x}} + st_i}{N+s}, \, \mathbf{t} \in \mathcal{T} \right\}$$

•
$$\underline{P}(\mathbf{X} = x_i \,|\, \mathbf{x}) = \inf_{\mathcal{M}_N} E(\theta_i \,|\, \mathbf{x}) = \inf_{\mathcal{T}} \frac{a_i^{\mathbf{x}} + st_i}{N+s}$$

- Let $\mathbf{X} = \mathbf{x}$ be a sample with counts $\mathbf{a} = (a_1^{\mathbf{x}}, \dots, a_k^{\mathbf{x}})$
- Posterior inference: each prior updated by Bayes rule
- Posterior credal set:

$$\mathcal{M}_N = \left\{ dir(N+s, \mathbf{t}^{\mathbf{x}}) \middle| t_i^{\mathbf{x}} = \frac{a_i^{\mathbf{x}} + st_i}{N+s}, \, \mathbf{t} \in \mathcal{T} \right\}$$

•
$$\underline{P}(\mathbf{X} = x_i \,|\, \mathbf{x}) = \inf_{\mathcal{M}_N} E(\theta_i \,|\, \mathbf{x}) = \inf_{\mathcal{T}} \frac{a_i^{\mathbf{x}} + st_i}{N+s} = \frac{a_i^{\mathbf{x}}}{N+s}$$

- Let $\mathbf{X} = \mathbf{x}$ be a sample with counts $\mathbf{a} = (a_1^{\mathbf{x}}, \dots, a_k^{\mathbf{x}})$
- Posterior inference: each prior updated by Bayes rule
- Posterior credal set:

$$\mathcal{M}_N = \left\{ dir(N+s, \mathbf{t}^{\mathbf{x}}) \middle| t_i^{\mathbf{x}} = \frac{a_i^{\mathbf{x}} + st_i}{N+s}, \, \mathbf{t} \in \mathcal{T} \right\}$$

•
$$\underline{P}(\mathbf{X} = x_i | \mathbf{x}) = \inf_{\mathcal{M}_N} E(\theta_i | \mathbf{x}) = \inf_{\mathcal{T}} \frac{a_i^{\mathbf{x}} + st_i}{N+s} = \frac{a_i^{\mathbf{x}}}{N+s}$$

• $\overline{P}(\mathbf{X} = x_i | \mathbf{x})$

- Let $\mathbf{X} = \mathbf{x}$ be a sample with counts $\mathbf{a} = (a_1^{\mathbf{x}}, \dots, a_k^{\mathbf{x}})$
- Posterior inference: each prior updated by Bayes rule
- Posterior credal set:

$$\mathcal{M}_N = \left\{ dir(N+s, \mathbf{t}^{\mathbf{x}}) \middle| t_i^{\mathbf{x}} = \frac{a_i^{\mathbf{x}} + st_i}{N+s}, \mathbf{t} \in \mathcal{T} \right\}$$

•
$$\underline{P}(\mathbf{X} = x_i \,|\, \mathbf{x}) = \inf_{\mathcal{M}_N} E(\theta_i \,|\, \mathbf{x}) = \inf_{\mathcal{T}} \frac{a_i^{\mathbf{x}} + st_i}{N+s} = \frac{a_i^{\mathbf{x}}}{N+s}$$

•
$$\overline{P}(\mathbf{X} = x_i \,|\, \mathbf{x}) = \sup_{\mathcal{M}_N} E(\theta_i \,|\, \mathbf{x})$$

- Let $\mathbf{X} = \mathbf{x}$ be a sample with counts $\mathbf{a} = (a_1^{\mathbf{x}}, \dots, a_k^{\mathbf{x}})$
- Posterior inference: each prior updated by Bayes rule
- Posterior credal set:

$$\mathcal{M}_N = \left\{ dir(N+s, \mathbf{t}^{\mathbf{x}}) \middle| t_i^{\mathbf{x}} = \frac{a_i^{\mathbf{x}} + st_i}{N+s}, \, \mathbf{t} \in \mathcal{T} \right\}$$

•
$$\underline{P}(\mathbf{X} = x_i | \mathbf{x}) = \inf_{\mathcal{M}_N} E(\theta_i | \mathbf{x}) = \inf_{\mathcal{T}} \frac{a_i^{\mathbf{x}} + st_i}{N+s} = \frac{a_i^{\mathbf{x}}}{N+s}$$

• $\overline{P}(\mathbf{X} = x_i | \mathbf{x}) = \sup_{\mathcal{M}_N} E(\theta_i | \mathbf{x}) = \sup_{\mathcal{T}} \frac{a_i^* + st_i}{N + s}$

- Let $\mathbf{X} = \mathbf{x}$ be a sample with counts $\mathbf{a} = (a_1^{\mathbf{x}}, \dots, a_k^{\mathbf{x}})$
- Posterior inference: each prior updated by Bayes rule
- Posterior credal set:

$$\mathcal{M}_N = \left\{ dir(N+s, \mathbf{t}^{\mathbf{x}}) \middle| t_i^{\mathbf{x}} = \frac{a_i^{\mathbf{x}} + st_i}{N+s}, \, \mathbf{t} \in \mathcal{T} \right\}$$

•
$$\underline{P}(\mathbf{X} = x_i \,|\, \mathbf{x}) = \inf_{\mathcal{M}_N} E(\theta_i \,|\, \mathbf{x}) = \inf_{\mathcal{T}} \frac{a_i^{\mathbf{x}} + st_i}{N+s} = \frac{a_i^{\mathbf{x}}}{N+s}$$

•
$$\overline{P}(\mathbf{X} = x_i \,|\, \mathbf{x}) = \sup_{\mathcal{M}_N} E(\theta_i \,|\, \mathbf{x}) = \sup_{\mathcal{T}} \frac{a_i^{\mathbf{x}} + st_i}{N+s} = \frac{a_i^{\mathbf{x}} + s}{N+s}$$

- Let $\mathbf{X} = \mathbf{x}$ be a sample with counts $\mathbf{a} = (a_1^{\mathbf{x}}, \dots, a_k^{\mathbf{x}})$
- Posterior inference: each prior updated by Bayes rule
- Posterior credal set:

$$\mathcal{M}_N = \left\{ dir(N+s, \mathbf{t}^{\mathbf{x}}) \middle| t_i^{\mathbf{x}} = \frac{a_i^{\mathbf{x}} + st_i}{N+s}, \mathbf{t} \in \mathcal{T} \right\}$$

•
$$\underline{P}(\mathbf{X} = x_i \,|\, \mathbf{x}) = \inf_{\mathcal{M}_N} E(\theta_i \,|\, \mathbf{x}) = \inf_{\mathcal{T}} \frac{a_i^* + st_i}{N + s} = \frac{a_i^*}{N + s}$$

- $\overline{P}(\mathbf{X} = x_i \,|\, \mathbf{x}) = \sup_{\mathcal{M}_N} E(\theta_i \,|\, \mathbf{x}) = \sup_{\mathcal{T}} \frac{a_i^{\mathbf{x}} + st_i}{N+s} = \frac{a_i^{\mathbf{x}} + s}{N+s}$
- How much ignorance left a posteriori?

$$\Delta(\mathbf{X} = x_i \,|\, \mathbf{x}) = \overline{P}(\mathbf{X} = x_i \,|\, \mathbf{x}) - \underline{P}(\mathbf{X} = x_i \,|\, \mathbf{x})$$

$$\Delta(\mathbf{X} = x_i \,|\, \mathbf{x}) = \overline{P}(\mathbf{X} = x_i \,|\, \mathbf{x}) - \underline{P}(\mathbf{X} = x_i \,|\, \mathbf{x}) = \frac{s}{N+s}$$

• Degree of imprecision:

$$\Delta(\mathbf{X} = x_i \,|\, \mathbf{x}) = \overline{P}(\mathbf{X} = x_i \,|\, \mathbf{x}) - \underline{P}(\mathbf{X} = x_i \,|\, \mathbf{x}) = \frac{s}{N+s}$$

• Implications:

• Degree of imprecision:

$$\Delta(\mathbf{X} = x_i \,|\, \mathbf{x}) = \overline{P}(\mathbf{X} = x_i \,|\, \mathbf{x}) - \underline{P}(\mathbf{X} = x_i \,|\, \mathbf{x}) = \frac{s}{N+s}$$

• Implications:

•
$$\Delta(X = x_i | \mathbf{x})$$
 decreases with increasing N:

• Degree of imprecision:

$$\Delta(\mathbf{X} = x_i \,|\, \mathbf{x}) = \overline{P}(\mathbf{X} = x_i \,|\, \mathbf{x}) - \underline{P}(\mathbf{X} = x_i \,|\, \mathbf{x}) = \frac{s}{N+s}$$

• Implications:

•
$$\Delta(X = x_i | \mathbf{x})$$
 decreases with increasing N:
Learning under prior near-ignorance is possible!

$$\Delta(\mathbf{X} = x_i \,|\, \mathbf{x}) = \overline{P}(\mathbf{X} = x_i \,|\, \mathbf{x}) - \underline{P}(\mathbf{X} = x_i \,|\, \mathbf{x}) = \frac{s}{N+s}$$

- Implications:
 - $\Delta(X = x_i | \mathbf{x})$ decreases with increasing N: Learning under prior near-ignorance is possible!
 - Large values of $s \Rightarrow$ decreases slowly

$$\Delta(\mathbf{X} = x_i \,|\, \mathbf{x}) = \overline{P}(\mathbf{X} = x_i \,|\, \mathbf{x}) - \underline{P}(\mathbf{X} = x_i \,|\, \mathbf{x}) = \frac{s}{N+s}$$

- Implications:
 - $\Delta(X = x_i | \mathbf{x})$ decreases with increasing N: Learning under prior near-ignorance is possible!
 - Large values of $s \Rightarrow$ decreases slowly
 - Small values of $s \Rightarrow$ decreases fast

$$\Delta(\mathbf{X} = x_i \,|\, \mathbf{x}) = \overline{P}(\mathbf{X} = x_i \,|\, \mathbf{x}) - \underline{P}(\mathbf{X} = x_i \,|\, \mathbf{x}) = \frac{s}{N+s}$$

- Implications:
 - $\Delta(X = x_i | \mathbf{x})$ decreases with increasing N: Learning under prior near-ignorance is possible!
 - Large values of $s \Rightarrow$ decreases slowly
 - Small values of $s \Rightarrow$ decreases fast
 - s: caution of inference

$$\Delta(\mathbf{X} = x_i \,|\, \mathbf{x}) = \overline{P}(\mathbf{X} = x_i \,|\, \mathbf{x}) - \underline{P}(\mathbf{X} = x_i \,|\, \mathbf{x}) = \frac{s}{N+s}$$

- Implications:
 - $\Delta(X = x_i | \mathbf{x})$ decreases with increasing N: Learning under prior near-ignorance is possible!
 - Large values of $s \Rightarrow$ decreases slowly
 - Small values of $s \Rightarrow$ decreases fast
 - s: caution of inference
 - · Inference cautious enough to encompass several precise models

$$\Delta(\mathbf{X} = x_i \,|\, \mathbf{x}) = \overline{P}(\mathbf{X} = x_i \,|\, \mathbf{x}) - \underline{P}(\mathbf{X} = x_i \,|\, \mathbf{x}) = \frac{s}{N+s}$$

- Implications:
 - $\Delta(X = x_i | \mathbf{x})$ decreases with increasing N: Learning under prior near-ignorance is possible!
 - Large values of $s \Rightarrow$ decreases slowly
 - Small values of $s \Rightarrow$ decreases fast
 - s: caution of inference
 - Inference cautious enough to encompass several precise models
 - Support for $1 \le s \le 2$

$$\Delta(\mathbf{X} = x_i \,|\, \mathbf{x}) = \overline{P}(\mathbf{X} = x_i \,|\, \mathbf{x}) - \underline{P}(\mathbf{X} = x_i \,|\, \mathbf{x}) = \frac{s}{N+s}$$

- Implications:
 - $\Delta(\mathbf{X} = x_i | \mathbf{x})$ decreases with increasing N:
 - Learning under prior near-ignorance is possible!
 - Large values of $s \Rightarrow$ decreases slowly
 - Small values of s ⇒ decreases fast
 - s: caution of inference
 - Inference cautious enough to encompass several precise models
 - Support for $1 \leq s \leq 2$
 - For a discussion see Bernard (2005) or Walley (1996)
IDM: degree of imprecision

• Degree of imprecision:

$$\Delta(\mathbf{X} = x_i \,|\, \mathbf{x}) = \overline{P}(\mathbf{X} = x_i \,|\, \mathbf{x}) - \underline{P}(\mathbf{X} = x_i \,|\, \mathbf{x}) = \frac{s}{N+s}$$

- Implications:
 - $\Delta(\mathbf{X} = x_i | \mathbf{x})$ decreases with increasing N:
 - Learning under prior near-ignorance is possible!
 - Large values of $s \Rightarrow$ decreases slowly
 - Small values of s ⇒ decreases fast
 - s: caution of inference
 - Inference cautious enough to encompass several precise models
 - Support for $1 \le s \le 2$
 - For a discussion see Bernard (2005) or Walley (1996)

•
$$N \to \infty$$
 then $\Delta(\mathbf{X} = x_i | \mathbf{x}) \to 0$, $P(\mathbf{X} = x_i | \mathbf{x}) \to \frac{a_i^x}{N}$

• Sample \mathbf{x} contains 33 *healthy* and 4 *diseased* people

- Sample x contains 33 *healthy* and 4 *diseased* people
- With s = 2:

- Sample x contains 33 *healthy* and 4 *diseased* people
- With s=2: $\underline{P}(\mathbf{X}=h\,|\,\mathbf{x})=\frac{33}{37+2}\cong 0.85$

- Sample x contains 33 healthy and 4 diseased people
- With s = 2: $\underline{P}(\mathbf{X} = h \,|\, \mathbf{x}) = \frac{33}{37 + 2} \cong 0.85$ $\overline{P}(\mathbf{X} = h \,|\, \mathbf{x}) = \frac{33 + 2}{37 + 2} \cong 0.90$

- Sample x contains 33 *healthy* and 4 *diseased* people
- With s = 2: $\underline{P}(\mathbf{X} = h \,|\, \mathbf{x}) = \frac{33}{37 + 2} \cong 0.85$ $\overline{P}(\mathbf{X} = h \,|\, \mathbf{x}) = \frac{33 + 2}{37 + 2} \cong 0.90$

Analogously,

- Sample x contains 33 *healthy* and 4 *diseased* people
- With s = 2: $\underline{P}(\mathbf{X} = h \,|\, \mathbf{x}) = \frac{33}{37 + 2} \cong 0.85$ $\overline{P}(\mathbf{X} = h \,|\, \mathbf{x}) = \frac{33 + 2}{37 + 2} \cong 0.90$
- Analogously,

$$\underline{P}(\mathbf{X} = d \,|\, \mathbf{x}) = \frac{4}{37 + 2} \cong 0.10$$

- Sample x contains 33 *healthy* and 4 *diseased* people
- With s = 2: $\underline{P}(\mathbf{X} = h \,|\, \mathbf{x}) = \frac{33}{37 + 2} \cong 0.85$ $\overline{P}(\mathbf{X} = h \,|\, \mathbf{x}) = \frac{33 + 2}{37 + 2} \cong 0.90$
- Analogously,

$$\underline{P}(\mathbf{X} = d \,|\, \mathbf{x}) = \frac{4}{37 + 2} \cong 0.10$$
$$\overline{P}(\mathbf{X} = d \,|\, \mathbf{x}) = \frac{4 + 2}{37 + 2} \cong 0.15$$

Back to the general discussion; main result

- As before, X denotes whether a person is healthy or diseased, i.e., $\mathcal{X}=\{h,d\}$

- As before, X denotes whether a person is healthy or diseased, i.e., $\mathcal{X}=\{h,d\}$
- Something that we might have overlooked before: Will we actually observe X?

- As before, X denotes whether a person is healthy or diseased, i.e., $\mathcal{X}=\{h,d\}$
- Something that we might have overlooked before: Will we actually observe X? Perhaps not very realistic

- As before, X denotes whether a person is healthy or diseased, i.e., $\mathcal{X}=\{h,d\}$
- Something that we might have overlooked before: Will we actually observe X? Perhaps not very realistic
- What will we be likely to observe instead?

- As before, X denotes whether a person is healthy or diseased, i.e., $\mathcal{X}=\{h,d\}$
- Something that we might have overlooked before: Will we actually observe X? Perhaps not very realistic
- What will we be likely to observe instead?
 - E.g., the outcome of a medical test related to \boldsymbol{X}

- As before, X denotes whether a person is healthy or diseased, i.e., $\mathcal{X}=\{h,d\}$
- Something that we might have overlooked before: Will we actually observe X? Perhaps not very realistic
- What will we be likely to observe instead?
 - E.g., the outcome of a medical test related to \boldsymbol{X}
 - Call it S (for signal), another random variable

- As before, X denotes whether a person is healthy or diseased, i.e., $\mathcal{X}=\{h,d\}$
- Something that we might have overlooked before: Will we actually observe X? Perhaps not very realistic
- What will we be likely to observe instead?
 - E.g., the outcome of a medical test related to \boldsymbol{X}
 - Call it S (for signal), another random variable
- X is said to be a latent variable

- As before, X denotes whether a person is healthy or diseased, i.e., $\mathcal{X}=\{h,d\}$
- Something that we might have overlooked before: Will we actually observe X? Perhaps not very realistic
- What will we be likely to observe instead?
 - E.g., the outcome of a medical test related to \boldsymbol{X}
 - Call it S (for signal), another random variable
- X is said to be a latent variable
- S is said to be manifest

- As before, X denotes whether a person is healthy or diseased, i.e., $\mathcal{X}=\{h,d\}$
- Something that we might have overlooked before: Will we actually observe X? Perhaps not very realistic
- What will we be likely to observe instead?
 - E.g., the outcome of a medical test related to \boldsymbol{X}
 - Call it S (for signal), another random variable
- X is said to be a latent variable
- S is said to be manifest
- The process that takes X in input and outputs S is said to be the observational process (or measurement process)

• Now let X denote the outcome of tossing a coin, i.e., $\mathcal{X} = \{h, t\}$

- Now let X denote the outcome of tossing a coin, i.e., $\mathcal{X} = \{h,t\}$
- Will we actually (be certain to) observe X?

- Now let X denote the outcome of tossing a coin, i.e., $\mathcal{X} = \{h,t\}$
- Will we actually (be certain to) observe X? Perhaps not very realistic either ...

- Now let X denote the outcome of tossing a coin, i.e., $\mathcal{X} = \{h, t\}$
- Will we actually (be certain to) observe X? Perhaps not very realistic either ...
 - To observe something we must employ a "mechanism"
 - Even only our eyes

- Now let X denote the outcome of tossing a coin, i.e., $\mathcal{X} = \{h, t\}$
- Will we actually (be certain to) observe X? Perhaps not very realistic either ...
 - To observe something we must employ a "mechanism"
 - Even only our eyes
 - Every mechanism appears to be imperfect in practice

- Now let X denote the outcome of tossing a coin, i.e., $\mathcal{X} = \{h, t\}$
- Will we actually (be certain to) observe X? Perhaps not very realistic either ...
 - To observe something we must employ a "mechanism"
 - Even only our eyes
 - Every mechanism appears to be imperfect in practice
 - I.e., once in a while we might confuse h with t

- Now let X denote the outcome of tossing a coin, i.e., $\mathcal{X} = \{h, t\}$
- Will we actually (be certain to) observe X? Perhaps not very realistic either ...
 - To observe something we must employ a "mechanism"
 - Even only our eyes
 - Every mechanism appears to be imperfect in practice
 - I.e., once in a while we might confuse h with t
 - Imperfection may well be tiny

- Now let X denote the outcome of tossing a coin, i.e., $\mathcal{X} = \{h, t\}$
- Will we actually (be certain to) observe X? Perhaps not very realistic either ...
 - To observe something we must employ a "mechanism"
 - Even only our eyes
 - Every mechanism appears to be imperfect in practice
 - I.e., once in a while we might confuse h with t
 - Imperfection may well be tiny
- Strictly speaking, the observation of X is another variable, say S
 - S takes values in $S = \mathcal{X} = \{h, t\}$

- Now let X denote the outcome of tossing a coin, i.e., $\mathcal{X} = \{h, t\}$
- Will we actually (be certain to) observe X? Perhaps not very realistic either ...
 - To observe something we must employ a "mechanism"
 - Even only our eyes
 - Every mechanism appears to be imperfect in practice
 - I.e., once in a while we might confuse h with t
 - Imperfection may well be tiny
- Strictly speaking, the observation of X is another variable, say S
 - S takes values in $\mathcal{S} = \mathcal{X} = \{h, t\}$
 - X latent, S manifest

- Now let X denote the outcome of tossing a coin, i.e., $\mathcal{X} = \{h, t\}$
- Will we actually (be certain to) observe X? Perhaps not very realistic either ...
 - To observe something we must employ a "mechanism"
 - Even only our eyes
 - Every mechanism appears to be imperfect in practice
 - I.e., once in a while we might confuse h with t
 - Imperfection may well be tiny
- Strictly speaking, the observation of X is another variable, say S
 - S takes values in $\mathcal{S} = \mathcal{X} = \{h, t\}$
 - X latent, S manifest

 \Rightarrow Latent variables appear to arise as soon as we make observations

Data generation

• The overall process of data generation:

Data generation

• The overall process of data generation:

Data generation

• The overall process of data generation:

• Note we are assuming that θ is not relevant to S once we know X

Main result
• Say that

- Say that
 - Your probability for $X = x_i$ is vacuous a priori

- Say that
 - Your probability for $X = x_i$ is vacuous a priori
 - I.e., you use an arbitrary set of priors \mathcal{M}_0 to model near-ignorance

- Say that
 - Your probability for $X = x_i$ is vacuous a priori
 - I.e., you use an arbitrary set of priors \mathcal{M}_0 to model near-ignorance
 - Your data are collected in a vector $\mathbf{s} = (s_1, \dots, s_N)$ of signals

- Say that
 - Your probability for $X = x_i$ is vacuous a priori
 - I.e., you use an arbitrary set of priors \mathcal{M}_0 to model near-ignorance
 - Your data are collected in a vector $\mathbf{s} = (s_1, \dots, s_N)$ of signals
 - Either discrete or continuous

- Say that
 - Your probability for $X = x_i$ is vacuous a priori
 - I.e., you use an arbitrary set of priors \mathcal{M}_0 to model near-ignorance
 - Your data are collected in a vector $\mathbf{s} = (s_1, \dots, s_N)$ of signals
 - Either discrete or continuous
 - Related in whatever (but known) way to N realizations of X

- Say that
 - Your probability for $X = x_i$ is vacuous a priori
 - I.e., you use an arbitrary set of priors \mathcal{M}_0 to model near-ignorance
 - Your data are collected in a vector $\mathbf{s} = (s_1, \dots, s_N)$ of signals
 - Either discrete or continuous
 - Related in whatever (but known) way to N realizations of X
- If
- The likelihood $P(\mathbf{s}|\theta)$ is continuous and positive

- Say that
 - Your probability for $X = x_i$ is vacuous a priori
 - I.e., you use an arbitrary set of priors \mathcal{M}_0 to model near-ignorance
 - Your data are collected in a vector $\mathbf{s} = (s_1, \dots, s_N)$ of signals
 - Either discrete or continuous
 - Related in whatever (but known) way to N realizations of X
- If
- The likelihood $P(\mathbf{s}|\boldsymbol{\theta})$ is continuous and positive
- Then
 - Your probability for $X = x_i$ is vacuous a posteriori!

- Say that
 - Your probability for $X = x_i$ is vacuous a priori
 - I.e., you use an arbitrary set of priors \mathcal{M}_0 to model near-ignorance
 - Your data are collected in a vector $\mathbf{s} = (s_1, \dots, s_N)$ of signals
 - Either discrete or continuous
 - Related in whatever (but known) way to N realizations of X
- If
- The likelihood $P(\mathbf{s}|\boldsymbol{\theta})$ is continuous and positive
- Then
 - Your probability for $X = x_i$ is vacuous a posteriori!

 \Rightarrow Learning is not possible under prior near-ignorance!

- Say that
 - Your probability for $X = x_i$ is vacuous a priori
 - I.e., you use an arbitrary set of priors \mathcal{M}_0 to model near-ignorance
 - Your data are collected in a vector $\mathbf{s} = (s_1, \dots, s_N)$ of signals
 - Either discrete or continuous
 - Related in whatever (but known) way to N realizations of ${\rm X}$
- If
- The likelihood $P(\mathbf{s}|\boldsymbol{\theta})$ is continuous and positive
- Then
 - Your probability for $X = x_i$ is vacuous a posteriori!

 \Rightarrow Learning is not possible under prior near-ignorance!

- Analogous result if we wish to predict the next N^\prime units

- Denote with \mathbf{e}_i the i-th vector of deterministic chances:

$$\mathbf{e}_{\mathbf{i}} = (0, \dots, 0, \underbrace{1}_{i \text{-th place}}, 0, \dots, 0).$$

• Denote with $\mathbf{e_i}$ the i-th vector of deterministic chances:

$$\mathbf{e_i} = (0, \dots, 0, \underbrace{1}_{i\text{-th place}}, 0, \dots, 0).$$

• $P(\mathbf{S} = \mathbf{s} \,|\, \theta)$ continuous in θ

- Denote with $\mathbf{e}_{\mathbf{i}}$ the i-th vector of deterministic chances:

$$\mathbf{e_i} = (0, \dots, 0, \underbrace{1}_{i\text{-th place}}, 0, \dots, 0).$$

- $P(\mathbf{S} = \mathbf{s} \,|\, \theta)$ continuous in θ
- If $P(\mathbf{S} = \mathbf{s} \,|\, \mathbf{e_i}) > 0$, then

- Denote with \mathbf{e}_i the i-th vector of deterministic chances:

$$\mathbf{e_i} = (0, \dots, 0, \underbrace{1}_{i\text{-th place}}, 0, \dots, 0).$$

•
$$P(\mathbf{S} = \mathbf{s} \,|\, \theta)$$
 continuous in θ

• If
$$P(\mathbf{S} = \mathbf{s} \,|\, \mathbf{e_i}) > 0$$
, then

$$\overline{P}(\mathbf{X} = x_i \,|\, \mathbf{S} = \mathbf{s}) = 1$$

and consequently,

- Denote with $\mathbf{e}_{\mathbf{i}}$ the i-th vector of deterministic chances:

$$\mathbf{e_i} = (0, \dots, 0, \underbrace{1}_{i\text{-th place}}, 0, \dots, 0).$$

•
$$P(\mathbf{S} = \mathbf{s} \,|\, \theta)$$
 continuous in θ

• If $P(\mathbf{S} = \mathbf{s} \,|\, \mathbf{e_i}) > 0$, then

$$\overline{P}(\mathbf{X} = x_i \,|\, \mathbf{S} = \mathbf{s}) = 1$$

and consequently,

$$\underline{P}(\mathbf{X} = x_j \,|\, \mathbf{S} = \mathbf{s}) = 0$$

for all $j \neq i$

• Much probably not

• The condition on the likelihood seems to be very frequently satisfied

- Much probably not
- The condition on the likelihood seems to be very frequently satisfied
- Medical example again

- Much probably not
- The condition on the likelihood seems to be very frequently satisfied
- Medical example again
 - X is the health status, in $\mathcal{X} = \{h, d\}$
 - S is the outcome of a medical test, in $\mathcal{S} = \{-, +\}$

- Much probably not
- The condition on the likelihood seems to be very frequently satisfied
- Medical example again
 - X is the health status, in $\mathcal{X} = \{h, d\}$
 - S is the outcome of a medical test, in $S = \{-,+\}$
 - Say that the test may be wrong once in a while:
 - $\bullet \ P(-|d)=\epsilon', \ P(+|h)=\epsilon'' \colon \epsilon', \epsilon''>0$

- Much probably not
- The condition on the likelihood seems to be very frequently satisfied
- Medical example again
 - X is the health status, in $\mathcal{X} = \{h, d\}$
 - S is the outcome of a medical test, in $S = \{-, +\}$
 - Say that the test may be wrong once in a while:
 - $P(-|d) = \epsilon'$, $P(+|h) = \epsilon''$: $\epsilon', \epsilon'' > 0$
 - The opposite is not very realistic

- Much probably not
- The condition on the likelihood seems to be very frequently satisfied
- Medical example again
 - X is the health status, in $\mathcal{X} = \{h, d\}$
 - S is the outcome of a medical test, in $S = \{-, +\}$
 - Say that the test may be wrong once in a while:

•
$$P(-|d) = \epsilon'$$
, $P(+|h) = \epsilon''$: $\epsilon', \epsilon'' > 0$

- The opposite is not very realistic
- Then the likelihood is continuous and everywhere positive
 - Learning is not possible

- Much probably not
- The condition on the likelihood seems to be very frequently satisfied
- Medical example again
 - X is the health status, in $\mathcal{X} = \{h, d\}$
 - S is the outcome of a medical test, in $S = \{-, +\}$
 - Say that the test may be wrong once in a while:

•
$$P(-|d) = \epsilon'$$
, $P(+|h) = \epsilon''$: $\epsilon', \epsilon'' > 0$

- The opposite is not very realistic
- Then the likelihood is continuous and everywhere positive
 - Learning is not possible
- Note that ϵ', ϵ'' can be arbitrarily small (yet positive)

- Much probably not
- The condition on the likelihood seems to be very frequently satisfied
- Medical example again
 - X is the health status, in $\mathcal{X} = \{h, d\}$
 - S is the outcome of a medical test, in $S = \{-, +\}$
 - Say that the test may be wrong once in a while:

•
$$P(-|d) = \epsilon'$$
, $P(+|h) = \epsilon''$: $\epsilon', \epsilon'' > 0$

- The opposite is not very realistic
- Then the likelihood is continuous and everywhere positive
 - Learning is not possible
- Note that ϵ',ϵ'' can be arbitrarily small (yet positive)
 - $\Rightarrow \mbox{We cannot neglect the observational process,} \\ \mbox{however tiny the imperfection!}$

Some intuition based on the special case of the IDM

• X and S taking values from $\mathcal X$

- X and S taking values from $\mathcal X$
- Random sample ${f s}$

- X and S taking values from ${\mathcal X}$
- Random sample s
- Imperfect observational mechanism modeled by emission matrix Λ :
 - $\lambda_{ij} = P(S = x_i \,|\, \mathbf{X} = x_j)$ known for all i, j

- X and S taking values from ${\mathcal X}$
- Random sample s
- Imperfect observational mechanism modeled by emission matrix Λ :
 - $\lambda_{ij} = P(S = x_i | \mathbf{X} = x_j)$ known for all i, j
- If $\lambda_{ij} > 0$ for all i, j then we cannot learn from s

• Consider an investigator with precise beliefs $t_i \rightarrow 1$ (Similar arguments can be used when $t_i \rightarrow 0$)

- Consider an investigator with precise beliefs $t_i \rightarrow 1$ (Similar arguments can be used when $t_i \rightarrow 0$)
- Belief a priori: population completely of individuals of type x_i

- Consider an investigator with precise beliefs $t_i \rightarrow 1$ (Similar arguments can be used when $t_i \rightarrow 0$)
- Belief a priori: population completely of individuals of type x_i
- The investigator observes $S = x_j$ and knows that $\lambda_{ji} > 0$

- Consider an investigator with precise beliefs $t_i \rightarrow 1$ (Similar arguments can be used when $t_i \rightarrow 0$)
- Belief a priori: population completely of individuals of type x_i
- The investigator observes $S = x_j$ and knows that $\lambda_{ji} > 0$
- Then he thinks that an error has occurred
Intuitive explanation

- Consider an investigator with precise beliefs $t_i \rightarrow 1$ (Similar arguments can be used when $t_i \rightarrow 0$)
- Belief a priori: population completely of individuals of type x_i
- The investigator observes $S = x_j$ and knows that $\lambda_{ji} > 0$
- Then he thinks that an error has occurred
- This degenerate behavior is impossible only if $\lambda_{ji} = 0$

Intuitive explanation

- Consider an investigator with precise beliefs $t_i \rightarrow 1$ (Similar arguments can be used when $t_i \rightarrow 0$)
- Belief a priori: population completely of individuals of type x_i
- The investigator observes $S = x_j$ and knows that $\lambda_{ji} > 0$
- Then he thinks that an error has occurred
- This degenerate behavior is impossible only if $\lambda_{ji} = 0$

 \Rightarrow to learn at least partial perfection is needed

Intuitive explanation

- Consider an investigator with precise beliefs $t_i \rightarrow 1$ (Similar arguments can be used when $t_i \rightarrow 0$)
- Belief a priori: population completely of individuals of type x_i
- The investigator observes $S = x_j$ and knows that $\lambda_{ji} > 0$
- Then he thinks that an error has occurred
- This degenerate behavior is impossible only if λ_{ji} = 0
 ⇒ to learn at least partial perfection is needed
- The IDM encompasses the case $t_i \rightarrow 1$, from which the problem

• Consider the following example:

- Consider the following example:
 - IDM in the binomial case (with caution parameter s=2)

- Consider the following example:
 - IDM in the binomial case (with caution parameter s=2)
 - Counts for heads and tails (variable S): (12, 23)

- Consider the following example:
 - IDM in the binomial case (with caution parameter s=2)
 - Counts for heads and tails (variable S): (12, 23)
 - Probability of confusing heads with tails and vice versa equal to $0.2\,$

- Consider the following example:
 - IDM in the binomial case (with caution parameter s=2)
 - Counts for heads and tails (variable S): (12, 23)
 - Probability of confusing heads with tails and vice versa equal to $0.2\,$

- Consider the following example:
 - IDM in the binomial case (with caution parameter s=2)
 - Counts for heads and tails (variable S): (12, 23)
 - Probability of confusing heads with tails and vice versa equal to 0.2

• The previous discussion suggests a possible solution of the problem

- The previous discussion suggests a possible solution of the problem
- Vacuous probabilities arise because of the presence, in \mathcal{M}_0 , of extreme priors, arbitrarily close to the degenerate ones

- The previous discussion suggests a possible solution of the problem
- Vacuous probabilities arise because of the presence, in \mathcal{M}_0 , of extreme priors, arbitrarily close to the degenerate ones
- Given a small probability of errors, a slight restriction of \mathcal{M}_0 avoids the problem

- The previous discussion suggests a possible solution of the problem
- Vacuous probabilities arise because of the presence, in \mathcal{M}_0 , of extreme priors, arbitrarily close to the degenerate ones
- Given a small probability of errors, a slight restriction of \mathcal{M}_0 avoids the problem
 - E.g., in the IDM set $\epsilon < t_i < 1 \epsilon$ for all i and small positive ϵ

- The previous discussion suggests a possible solution of the problem
- Vacuous probabilities arise because of the presence, in \mathcal{M}_0 , of extreme priors, arbitrarily close to the degenerate ones
- Given a small probability of errors, a slight restriction of \mathcal{M}_0 avoids the problem
 - E.g., in the IDM set $\epsilon < t_i < 1 \epsilon$ for all *i* and small positive ϵ
 - Yet, we lose near-ignorance

- The previous discussion suggests a possible solution of the problem
- Vacuous probabilities arise because of the presence, in \mathcal{M}_0 , of extreme priors, arbitrarily close to the degenerate ones
- Given a small probability of errors, a slight restriction of \mathcal{M}_0 avoids the problem
 - E.g., in the IDM set $\epsilon < t_i < 1 \epsilon$ for all *i* and small positive ϵ
 - Yet, we lose near-ignorance
 - Moreover: how can we justify the choice of a certain value ϵ ?

• So far we have focused on predicting latent values

- So far we have focused on predicting latent values
 - I.e., \boldsymbol{X} rather than \boldsymbol{S}

- So far we have focused on predicting latent values
 - $\bullet\,$ I.e., X rather than S
- One might say that focusing on manifest values is more reasonable

- So far we have focused on predicting latent values
 - $\bullet\,$ I.e., X rather than S
- One might say that focusing on manifest values is more reasonable
 - Looks reasonable especially when the imperfection is tiny

- So far we have focused on predicting latent values
 - I.e., \boldsymbol{X} rather than \boldsymbol{S}
- One might say that focusing on manifest values is more reasonable
 - Looks reasonable especially when the imperfection is tiny
- Two approaches

- So far we have focused on predicting latent values
 - I.e., \boldsymbol{X} rather than \boldsymbol{S}
- One might say that focusing on manifest values is more reasonable
 - Looks reasonable especially when the imperfection is tiny
- Two approaches
- A "clean" approach:

- So far we have focused on predicting latent values
 - I.e., \boldsymbol{X} rather than \boldsymbol{S}
- One might say that focusing on manifest values is more reasonable
 - Looks reasonable especially when the imperfection is tiny
- Two approaches
- A "clean" approach:
 - We admit that there is a latent and a manifest level

- So far we have focused on predicting latent values
 - I.e., \boldsymbol{X} rather than \boldsymbol{S}
- One might say that focusing on manifest values is more reasonable
 - Looks reasonable especially when the imperfection is tiny
- Two approaches
- A "clean" approach:
 - We admit that there is a latent and a manifest level
 - Yet, we want both to learn and make predictions on the manifest level only

- So far we have focused on predicting latent values
 - I.e., \boldsymbol{X} rather than \boldsymbol{S}
- One might say that focusing on manifest values is more reasonable
 - Looks reasonable especially when the imperfection is tiny
- Two approaches
- A "clean" approach:
 - We admit that there is a latent and a manifest level
 - Yet, we want both to learn and make predictions on the manifest level only
 - Then

- So far we have focused on predicting latent values
 - I.e., \boldsymbol{X} rather than \boldsymbol{S}
- One might say that focusing on manifest values is more reasonable
 - Looks reasonable especially when the imperfection is tiny
- Two approaches
- A "clean" approach:
 - We admit that there is a latent and a manifest level
 - Yet, we want both to learn and make predictions on the manifest level only
 - Then
 - We are obliged to apply a modified IDM

- So far we have focused on predicting latent values
 - I.e., \boldsymbol{X} rather than \boldsymbol{S}
- One might say that focusing on manifest values is more reasonable
 - Looks reasonable especially when the imperfection is tiny
- Two approaches
- A "clean" approach:
 - We admit that there is a latent and a manifest level
 - Yet, we want both to learn and make predictions on the manifest level only
 - Then
 - We are obliged to apply a modified IDM
 - The learning problem pops up again, this time in predicting \boldsymbol{S}

- So far we have focused on predicting latent values
 - I.e., \boldsymbol{X} rather than \boldsymbol{S}
- One might say that focusing on manifest values is more reasonable
 - Looks reasonable especially when the imperfection is tiny
- Two approaches
- A "clean" approach:
 - We admit that there is a latent and a manifest level
 - Yet, we want both to learn and make predictions on the manifest level only
 - Then
 - We are obliged to apply a modified IDM
 - The learning problem pops up again, this time in predicting \boldsymbol{S}
- A "dirty" approach:

- So far we have focused on predicting latent values
 - I.e., \boldsymbol{X} rather than \boldsymbol{S}
- One might say that focusing on manifest values is more reasonable
 - Looks reasonable especially when the imperfection is tiny
- Two approaches
- A "clean" approach:
 - We admit that there is a latent and a manifest level
 - Yet, we want both to learn and make predictions on the manifest level only
 - Then
 - We are obliged to apply a modified IDM
 - The learning problem pops up again, this time in predicting \boldsymbol{S}
- A "dirty" approach:
 - We pretend that there is no latent level

- So far we have focused on predicting latent values
 - $\bullet\,$ I.e., X rather than S
- One might say that focusing on manifest values is more reasonable
 - Looks reasonable especially when the imperfection is tiny
- Two approaches
- A "clean" approach:
 - We admit that there is a latent and a manifest level
 - Yet, we want both to learn and make predictions on the manifest level only
 - Then
 - We are obliged to apply a modified IDM
 - The learning problem pops up again, this time in predicting ${\boldsymbol S}$
- A "dirty" approach:
 - We *pretend* that there is no latent level
 - I.e., that observations are perfect even if we know they are not (This is what all the people who use the IDM in practice do)

- So far we have focused on predicting latent values
 - $\bullet\,$ I.e., X rather than S
- One might say that focusing on manifest values is more reasonable
 - Looks reasonable especially when the imperfection is tiny
- Two approaches
- A "clean" approach:
 - We admit that there is a latent and a manifest level
 - Yet, we want both to learn and make predictions on the manifest level only
 - Then
 - We are obliged to apply a modified IDM
 - The learning problem pops up again, this time in predicting \boldsymbol{S}
- A "dirty" approach:
 - We *pretend* that there is no latent level
 - I.e., that observations are perfect even if we know they are not (This is what all the people who use the IDM in practice do)
 - Then

- So far we have focused on predicting latent values
 - I.e., \boldsymbol{X} rather than \boldsymbol{S}
- One might say that focusing on manifest values is more reasonable
 - Looks reasonable especially when the imperfection is tiny
- Two approaches
- A "clean" approach:
 - We admit that there is a latent and a manifest level
 - Yet, we want both to learn and make predictions on the manifest level only
 - Then
 - We are obliged to apply a modified IDM
 - The learning problem pops up again, this time in predicting \boldsymbol{S}
- A "dirty" approach:
 - We *pretend* that there is no latent level
 - I.e., that observations are perfect even if we know they are not (This is what all the people who use the IDM in practice do)
 - Then
 - We can apply the usual IDM

- So far we have focused on predicting latent values
 - I.e., \boldsymbol{X} rather than \boldsymbol{S}
- One might say that focusing on manifest values is more reasonable
 - Looks reasonable especially when the imperfection is tiny
- Two approaches
- A "clean" approach:
 - We admit that there is a latent and a manifest level
 - Yet, we want both to learn and make predictions on the manifest level only
 - Then
 - We are obliged to apply a modified IDM
 - The learning problem pops up again, this time in predicting \boldsymbol{S}
- A "dirty" approach:
 - We *pretend* that there is no latent level
 - I.e., that observations are perfect even if we know they are not (This is what all the people who use the IDM in practice do)
 - Then
 - We can apply the usual IDM
 - Learning is possible

- So far we have focused on predicting latent values
 - I.e., \boldsymbol{X} rather than \boldsymbol{S}
- One might say that focusing on manifest values is more reasonable
 - Looks reasonable especially when the imperfection is tiny
- Two approaches
- A "clean" approach:
 - We admit that there is a latent and a manifest level
 - Yet, we want both to learn and make predictions on the manifest level only
 - Then
 - We are obliged to apply a modified IDM
 - The learning problem pops up again, this time in predicting ${\boldsymbol S}$
- A "dirty" approach:
 - We *pretend* that there is no latent level
 - I.e., that observations are perfect even if we know they are not (This is what all the people who use the IDM in practice do)
 - Then
 - We can apply the usual IDM
 - Learning is possible
 - Empirically works very well, yet theoretically is unexplored
A note on manifest variables

- So far we have focused on predicting latent values
 - I.e., \boldsymbol{X} rather than \boldsymbol{S}
- One might say that focusing on manifest values is more reasonable
 - Looks reasonable especially when the imperfection is tiny
- Two approaches
- A "clean" approach:
 - We admit that there is a latent and a manifest level
 - Yet, we want both to learn and make predictions on the manifest level only
 - Then
 - We are obliged to apply a modified IDM
 - The learning problem pops up again, this time in predicting ${\boldsymbol S}$
- A "dirty" approach:
 - We *pretend* that there is no latent level
 - I.e., that observations are perfect even if we know they are not (This is what all the people who use the IDM in practice do)
 - Then
 - We can apply the usual IDM
 - Learning is possible
 - Empirically works very well, yet theoretically is unexplored
- This is a strange paradox still to be solved

Initial question

Initial question

Can we learn about X from data under prior near-ignorance? • Our answer (in the current setup):

Initial question

Can we learn about X from data under prior near-ignorance? • Our answer (in the current setup): not very likely when X is latent

Initial question

- Our answer (in the current setup): not very likely when X is latent
 - ... and X appears to be latent most of the times

Initial question

- Our answer (in the current setup): not very likely when X is latent
 - ... and X appears to be latent most of the times
- What to do?

Initial question

Can we learn about X from data under prior near-ignorance?

- Our answer (in the current setup): not very likely when X is latent
 - ... and X appears to be latent most of the times
- What to do?

Optimist Search for ways out that may preserve learning+near-ignorance

Initial question

- Our answer (in the current setup): not very likely when X is latent
 - ... and X appears to be latent most of the times
- What to do?
 - Optimist Search for ways out that may preserve learning+near-ignorance
 - Skeptic Perhaps forget about the possibility of adopting near-ignorance
 - Wonder whether symmetry+embedding can be really met in practice
 - Study forms of weak beliefs that are stronger than near-ignorance

Initial question

- Our answer (in the current setup): not very likely when X is latent
 - ... and X appears to be latent most of the times
- What to do?
 - Optimist Search for ways out that may preserve learning+near-ignorance
 - Skeptic Perhaps forget about the possibility of adopting near-ignorance
 - Wonder whether symmetry+embedding can be really met in practice
 - Study forms of weak beliefs that are stronger than near-ignorance
- Or (perhaps easier) show that our results are wrong!