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• Walley (1991) questions the idea that ignorance can be modeled by a
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• θi = physical probability that X = xi

• I.e., proportion of individuals in the population with feature xi

• θ = (θ1, θ2, . . . , θk)

• Choose a non-vacuous prior for θ such that:
• E(θA) = 0,E(θA) = 1 for every non-trivial A ⊆ X
• But E(θA) = P (A) and E(θA) = P (A) ⇒ Vacuous prior

probabilities for X without a vacuous prior for θ

⇒ This enables us to have symmetry+embedding AND to learn!

⇒ Near-ignorance is a key approach to the problem
(Or at least this is the reason why it is so to some people)
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• X = {h,d}
• θ1: proportion of healthy people in the population

• θ2: proportion of diseased people in the population

• No prior knowledge about the proportions

• Random sample X = x of people

• Posterior prediction: P (X = d |X = x)?
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IDM: definition of the model

• Prior beliefs about θ represented by a set of densities (a credal set):

M0 = {dir(s, t) | t ∈ T } ,

where

dir(s, t) =
Γ(s)

Γ(st1) · · ·Γ(stk)

k∏
i=1

θsti−1
i

is the Dirichlet density, with parameters s and t = (t1, . . . , tk), and

T = {(t1, . . . , tk) : 0 < ti < 1, i = 1, . . . , k,
k∑

i=1

ti = 1}

• Is M0 a model of prior near-ignorance?
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IDM: prior near-ignorance

• Remember that P (X = xi) = E(θi)
• For Dirichlet densities it holds that E(θi) = ti

• P (X = xi) = infM0 E(θi) = infT ti = 0,
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IDM: a posteriori

• Let X = x be a sample with counts a = (ax1 , . . . , a
x
k)

• Posterior inference: each prior updated by Bayes rule

• Posterior credal set:

MN =
{
dir(N + s, tx)

∣∣∣∣ txi =
axi + sti
N + s

, t ∈ T
}

• P (X = xi |x) = infMN
E(θi |x) = infT

ax
i +sti

N+s = ax
i

N+s

• P (X = xi |x) = supMN
E(θi |x) = supT

ax
i +sti

N+s = ax
i +s

N+s

• How much ignorance left a posteriori?
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IDM: degree of imprecision

• Degree of imprecision:

∆(X = xi |x) = P (X = xi |x)− P (X = xi |x) =
s

N + s

• Implications:
• ∆(X = xi |x) decreases with increasing N :

Learning under prior near-ignorance is possible!

• Large values of s ⇒ decreases slowly
• Small values of s ⇒ decreases fast
• s: caution of inference

• Inference cautious enough to encompass several precise models
• Support for 1 ≤ s ≤ 2
• For a discussion see Bernard (2005) or Walley (1996)

• N →∞ then ∆(X = xi |x)→ 0, P (X = xi |x)→ ax
i

N
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IDM: example

• Sample x contains 33 healthy and 4 diseased people

• With s = 2:

P (X = h |x) =
33

37 + 2
∼= 0.85

P (X = h |x) =
33 + 2
37 + 2

∼= 0.90

• Analogously,

P (X = d |x) =
4

37 + 2
∼= 0.10

P (X = d |x) =
4 + 2
37 + 2

∼= 0.15
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Latent and manifest variables

• As before, X denotes whether a person is healthy or diseased, i.e.,
X = {h, d}

• Something that we might have overlooked before:
Will we actually observe X?
Perhaps not very realistic

• What will we be likely to observe instead?
• E.g., the outcome of a medical test related to X
• Call it S (for signal), another random variable

• X is said to be a latent variable

• S is said to be manifest

• The process that takes X in input and outputs S is said to be the
observational process (or measurement process)
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Ubiquity of latent variables

• Now let X denote the outcome of tossing a coin, i.e., X = {h, t}
• Will we actually (be certain to) observe X?

Perhaps not very realistic either . . .
• To observe something we must employ a “mechanism”

• Even only our eyes

• Every mechanism appears to be imperfect in practice
• I.e., once in a while we might confuse h with t
• Imperfection may well be tiny

• Strictly speaking, the observation of X is another variable, say S
• S takes values in S = X = {h, t}
• X latent, S manifest

⇒ Latent variables appear to arise as soon as we make observations
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Main result

• Say that
• Your probability for X = xi is vacuous a priori

• I.e., you use an arbitrary set of priors M0 to model near-ignorance

• Your data are collected in a vector s = (s1, . . . , sN ) of signals
• Either discrete or continuous
• Related in whatever (but known) way to N realizations of X

• If
• The likelihood P (s|θ) is continuous and positive

• Then
• Your probability for X = xi is vacuous a posteriori!

⇒ Learning is not possible under prior near-ignorance!

• Analogous result if we wish to predict the next N ′ units
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Some insight: core result about deterministic chances

• Denote with ei the i-th vector of deterministic chances:

ei = (0, . . . , 0, 1︸︷︷︸
i-th place

, 0, . . . , 0).

• P (S = s | θ) continuous in θ

• If P (S = s | ei) > 0, then

P (X = xi |S = s) = 1

and consequently,
P (X = xj |S = s) = 0

for all j 6= i
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Are our results pointing to “pathological” situations?

• Much probably not

• The condition on the likelihood seems to be very frequently satisfied

• Medical example again
• X is the health status, in X = {h, d}
• S is the outcome of a medical test, in S = {−,+}
• Say that the test may be wrong once in a while:

• P (−|d) = ε′, P (+|h) = ε′′: ε′, ε′′ > 0
• The opposite is not very realistic

• Then the likelihood is continuous and everywhere positive
• Learning is not possible

• Note that ε′, ε′′ can be arbitrarily small (yet positive)

⇒ We cannot neglect the observational process,
however tiny the imperfection!
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⇒ We cannot neglect the observational process,
however tiny the imperfection!



Some intuition based on the special case of the IDM



A simple setup based on the IDM

• X and S taking values from X
• Random sample s
• Imperfect observational mechanism modeled by emission matrix Λ:

• λij = P (S = xi |X = xj) known for all i, j

• If λij > 0 for all i, j then we cannot learn from s
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Intuitive explanation

• Consider an investigator with precise beliefs ti → 1
(Similar arguments can be used when ti → 0)

• Belief a priori: population completely of individuals of type xi

• The investigator observes S = xj and knows that λji > 0
• Then he thinks that an error has occurred

• This degenerate behavior is impossible only if λji = 0
⇒ to learn at least partial perfection is needed

• The IDM encompasses the case ti → 1, from which the problem
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Degeneracy on the border

• Consider the following example:
• IDM in the binomial case (with caution parameter s=2)
• Counts for heads and tails (variable S): (12, 23)
• Probability of confusing heads with tails and vice versa equal to 0.2
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Extreme priors: how to “solve” the problem
(and yet losing near-ignorance)

• The previous discussion suggests a possible solution of the problem

• Vacuous probabilities arise because of the presence, in M0, of
extreme priors, arbitrarily close to the degenerate ones

• Given a small probability of errors, a slight restriction of M0 avoids
the problem
• E.g., in the IDM set ε < ti < 1− ε for all i and small positive ε
• Yet, we lose near-ignorance
• Moreover: how can we justify the choice of a certain value ε?
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A note on manifest variables

• So far we have focused on predicting latent values
• I.e., X rather than S

• One might say that focusing on manifest values is more reasonable
• Looks reasonable especially when the imperfection is tiny

• Two approaches
• A “clean” approach:

• We admit that there is a latent and a manifest level
• Yet, we want both to learn and make predictions on the manifest

level only
• Then

• We are obliged to apply a modified IDM
• The learning problem pops up again, this time in predicting S

• A “dirty” approach:
• We pretend that there is no latent level
• I.e., that observations are perfect even if we know they are not

(This is what all the people who use the IDM in practice do)
• Then

• We can apply the usual IDM
• Learning is possible
• Empirically works very well, yet theoretically is unexplored

• This is a strange paradox still to be solved
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(This is what all the people who use the IDM in practice do)
• Then

• We can apply the usual IDM
• Learning is possible

• Empirically works very well, yet theoretically is unexplored
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Discussion

• Initial question

Can we learn about X from data under prior near-ignorance?

• Our answer (in the current setup): not very likely when X is latent
• . . . and X appears to be latent most of the times

• What to do?

Optimist Search for ways out that may preserve
learning+near-ignorance

Skeptic • Perhaps forget about the possibility of adopting
near-ignorance

• Wonder whether symmetry+embedding can be really
met in practice

• Study forms of weak beliefs that are stronger than
near-ignorance

• Or (perhaps easier) show that our results are wrong!
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