Properties of CM

Electre-Tri

POC 0000000

イロン 不同と 不同と 不同と

Conclusions

A OUTRANKING-BASED SORTING METHOD FOR PARTIALLY ORDERED CATEGORIES

Ph. Nemery Université Libre de Bruxelles

DIMACS - Workshop and Meeting of the COST Action ICO602, Université Paris Dauphine 28-31 October 2008

Introduction	Properties of CM	Electre-Tri 000000	POC 00000000	Conclusions
TABLE OF	CONTENTS			

1 INTRODUCTION

- Introduction to the problem of regrouping actions
- Introduction to Classification Sorting
- Some multicriteria classification and sorting methods
- **2** Properties of classification methods
 - Preference-orientation dependency property
 - Use of indifference-based classification methods in 'sorting' problems
- **3** Electre-Tri with central profiles
 - Context and conditions
 - Assignment Rules
 - Relation between PROAFTN and Electre-Tri

Properties of CM Electre-Tri Conclusions Introduction

TABLE OF CONTENTS

4 PARTIALLY ORDERED CATEGORIES

- Different assignment problems
- Example
- Assignment Rules
- Particular Subproblems : properties

5 CONCLUSIONS

- < ≣ →

 Introduction
 Properties of CM
 Electre-Tri
 POC
 Conclusions

 •00000000000
 0000000
 0000000
 0000000
 00000000
 00000000

 REGROUPING ACTIONS
 DIFFERENT TYPES OF PROBLEMS
 From the second se

Regrouping :

The problem of regrouping '*similar*' actions has received a lot attention and finds its applications in different fields such as finance, agriculture, marketing, image processing, etc.

Different grouping problems may be encountered.

A possible differentiation of the grouping problems can be done on the basis of the *predefinition* and the *order* on the groups.

Introduction	Properties of CM	Electre-Tri	POC	Conclusions
0000000000				
DECEVEN		P		

REGROUPING OF ACTIONS DIFFERENT TYPES OF PROBLEMS

REGROUPING ACTIONS :				
	Not defined	Defined		
	a priori			
Not Ordered	Clustering	Classification		
groups	groups clusters			
Ordered	Ordered Clustering - Ranking	Sorting		
groups clusters categories				

◆□> ◆□> ◆目> ◆目> ◆目> 目 のへで

Introduction	Properties of CM	Electre-Tri	POC	Conclusions
00000000000				

REGROUPING OF ACTIONS DIFFERENT TYPES OF PROBLEMS

Regrouping :		
	Not defined	Defined
	a priori	a priori
Not Ordered	Clustering	Classification
groups	clusters	classes
Ordered	Ordered Clustering - Ranking	Sorting
groups	clusters	categories

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Introduction	Properties of CM	Electre-Tri	POC	Conclusions
000000000000000000000000000000000000000				
CLASSIFI	CATION - SOR'	TING		

Assignment Problems

PROBLEM FORMALIZATION

A set of objects $\mathcal{A} = \{a_1, \ldots, a_n\}$, called actions, have to be assigned to one or several groups of the set $\mathbb{C} = \{C_1, \ldots, C_K\}$, called classes or categories, which are defined a priori by the decision maker (eg. credit demands, movies, etc.).

Introduction	Properties of CM	Electre-Tri	POC	Conclusions
~	2			

CLASSIFICATION - SORTING PROBLEM FORMALIZATION

Assignment Problems

The classes are defined in the way the actions will be treated : actions assigned to the same categories will receive the same treatment (eg. categories of cyclones).

The assignment of an action, does not depend on the assignment of another action : actions are assigned independently (eg. medical diagnosis).

Introduction	Properties of CM	Electre-Tri 000000	POC 00000000	Conclusions
Multicrit	ERIA METHODS			

COMPLETELY ORDERED CATEGORIES

The decision maker expresses a complete order among the categories. The categories are defined in a *ordinal* way. e.g. Credit demand classification - cyclones.

SORTING METHODS

Description of the categories and the actions to be classified by means of a set of criteria $\mathcal{G} = \{g_1, \dots, g_q\}.$

Several approaches.

Introduction	Properties of CM	Electre-Tri 000000	POC 00000000	Conclusions
Multicrit	ERIA METHODS			

Sorting methods

Completely Ordered categories

The decision maker expresses a complete order among the categories. The categories are defined in a *ordinal* way. e.g. Credit demand classification - cyclones.

Description of the categories and the actions to be classified by means of a set of criteria $\mathcal{G} = \{g_1, \dots, g_q\}.$

Several approaches.

Introduction	Properties of CM	Electre-Tri 000000	POC 00000000	Conclusions
MULTICRIT	ERIA METHODS	3		

Categories are defined by central or limiting profiles, $\mathcal{R} = \{r_1, \dots, r_{K+1}\}.$

A preference or outranking relation is build between a_i and r_j : $S(a_i, r_j)$ and $S(r_j, a_i)$.

These outranking relations are exploited to assign the action *a_i* : e.g. Electre-Tri, Filtering Methods, FlowSort, etc.

Introduction	Properties of CM	Electre-Tri 000000	POC 00000000	Conclusions
MULTICRIT	ERIA METHODS			

Categories are defined by central or limiting profiles, $\mathcal{R} = \{r_1, \dots, r_{K+1}\}.$ A preference or outranking relation is build between a_i and r_j : $S(a_i, r_j)$ and $S(r_j, a_i).$

These outranking relations are exploited to assign the action *a_i* : e.g. Electre-Tri, Filtering Methods, FlowSort, etc.

Introduction	Properties of CM	Electre-Tri 000000	POC 00000000	Conclusions
MULTICRIT	ERIA METHOD	S		

Categories are defined by central or limiting profiles, $\mathcal{R} = \{r_1, \dots, r_{K+1}\}.$ A preference or outranking relation is build between a_i and r_j : $S(a_i, r_j)$ and $S(r_j, a_i).$

These outranking relations are exploited to assign the action *a_i* : e.g. Electre-Tri, Filtering Methods, FlowSort, etc.

Introduction	Properties of CM	Electre-Tri 000000	POC 00000000	Conclusions
MULTICRIT	ERIA METHOD	S		

Categories are defined by central or limiting profiles, $\mathcal{R} = \{r_1, \ldots, r_{K+1}\}.$ A preference or outranking relation is build between a_i and r_j : $S(a_i, r_j)$ and $S(r_j, a_i).$

These outranking relations are exploited to assign the action *a_i* : e.g. Electre-Tri, Filtering Methods, FlowSort, etc.

Introduction	Properties of CM	Electre-Tri 000000	POC 00000000	Conclusions
Multicrit	ERIA METHODS			

Sorting methods

Completely Ordered categories

Categories are defined by central or limiting profiles,

$$\mathcal{R} = \{r_1, \ldots, r_{K+1}\}.$$

A preference or outranking relation is build between a_i and r_j : $S(a_i, r_j)$ and $S(r_j, a_i)$.

These outranking relations are exploited to assign the action a_i :

e.g. Electre-Tri, Filtering Methods, FlowSort, etc.

・ロト ・ 日 ・ ・ ヨ ト

Introduction	Properties of CM	Electre-Tri	POC	Conclusions
00000000000				
MULTICR	ITERIA METHO	פתר		

MULTICRITERIA METHODS Classification methods

CLASSES WITH NO PREFERENCE RELATION

The decision maker does not express any preference relation amongst the classes. Classes are defined in a *nominal* way. e.g. Classification of books.

→ 同 → → 目

• 3 >

Introduction 000000000000	Properties of CM	Electre-Tri 000000	POC	Conclusions
MULTICRIT	ERIA METHODS			

CLASSIFICATION METHODS

CLASSES WITH NO PREFERENCE RELATION

Description of the classes and the actions to be classified by means of attributes/criteria.

Several approaches.

Use of a similarity index, indifference index computed between the reference profiles and the actions of A.

PROAFTN, TRINOMFC, Filtering methods, etc.

Ph. Nemery - ULB - DIMACS Outranking-based sorting methods

 C_1

 a_i

9

 C_{κ}

Introduction	Properties of CM	Electre-Tri 000000	POC 00000000	Conclusions
MULTICRIT	ERIA METHODS			

Description of the classes and the actions to be classified by means of attributes/criteria.

Several approaches.

CLASSIFICATION METHODS

Use of a similarity index, indifference index computed between the reference profiles and the actions of A.

PROAFTN, TRINOMFC, Filtering methods, etc.

Classes are defined by means of (central) reference profiles $\mathcal{R} = \{r_1, \ldots, r_K\}.$

Introduction	Properties of CM	Electre-Tri 000000	POC 00000000	Conclusions
MULTICRIT	ERIA METHODS			

Description of the classes and the actions to be classified by means of attributes/criteria.

Several approaches.

CLASSIFICATION METHODS

Use of a similarity index, indifference index computed between the reference profiles and the actions of A.

PROAFTN, TRINOMFC, Filtering methods, etc.

Classes are defined by means of (central) reference profiles $\mathcal{R} = \{r_1, \ldots, r_K\}.$

Introduction	Properties of CM	Electre-Tri 000000	POC 00000000	Conclusions
MULTICRIT Classification M	ERIA METHODS			

The central profiles and the actions are defined by a set of attributes/criteria $\mathcal{G} = \{g_1, \ldots, g_q\}.$

For each criterion/attribute $g_j \in \mathcal{G}$ a uni-criterion similarity or indifference index $c_k^l(a_i, r_j)$ is computed.

All these uni-criterion indexes are then aggregated to $\mathcal{I}(a_i,r_j)$.

Introduction	Properties of CM	Electre-Tri 000000	POC 00000000	Conclusions
MULTICRIT Classification M	ERIA METHODS			

The central profiles and the actions are defined by a set of attributes/criteria $\mathcal{G} = \{g_1, \ldots, g_q\}.$

For each criterion/attribute $g_j \in \mathcal{G}$ a uni-criterion similarity or indifference index $c_k^I(a_i, r_i)$ is computed.

All these uni-criterion indexes are then aggregated to $\mathcal{I}(a_i, r_i)$

Introduction	Properties of CM	Electre-Tri 000000	POC 00000000	Conclusions
MULTICRIT Classification M	ERIA METHODS	5		

The central profiles and the actions are defined by a set of attributes/criteria $\mathcal{G} = \{g_1, \ldots, g_q\}.$

For each criterion/attribute $g_j \in \mathcal{G}$ a uni-criterion similarity or indifference index $c_k^I(a_i, r_j)$ is computed.

All these uni-criterion indexes are then aggregated to $\mathcal{I}(a_i, r_j)$.

$$\mathcal{I}(a_i, r_j) = \sum_{k=1}^{q} w_k \times c_k^I(a_i, r_j)$$

 $orall r_j \in \mathcal{R}$

Assignment Rules.

Introduction	Properties of CM	Electre-Tri 000000	POC 00000000	Conclusions
MULTICRIT Classification M	ERIA METHODS			

The central profiles and the actions are defined by a set of attributes/criteria $\mathcal{G} = \{g_1, \ldots, g_q\}.$

For each criterion/attribute $g_j \in \mathcal{G}$ a uni-criterion similarity or indifference index $c_k^l(a_i, r_j)$ is computed.

All these uni-criterion indexes are then aggregated to $\mathcal{I}(a_i, r_j)$.

Assignment Rules.

$$a_i \in C_k \Leftrightarrow \left\{ egin{array}{ll} I(a_i,r_k) = \max_{orall r_j \in \mathcal{R}} I(a_i,r_j) \ I(a_i,r_k) \geq \lambda_I, \ orall r_j \in \mathcal{R} \end{array}
ight.$$

Introduction	Properties of CM	Electre-Tri	POC	Conclusions
000000000000000000000000000000000000000				
Aim of 7	THIS WORK			

- Can we use indifference/similarity based classification methods, which use criteria, when there is a (partial or complete) order on the categories (and vice-versa)?
- Is there a relationship between indifference-based classification approach and outranking-based sorting approach? (advantages?)
- How can we tackle problems when the categories are partially ordered ?

 Introduction
 Properties of CM
 Electre-Tri
 POC
 Conclusions

 0000000000
 000000
 000000
 0000000
 0000000
 0000000

TABLE OF CONTENTS

2 PROPERTIES OF CLASSIFICATION METHODS

- Preference-orientation dependency property
- Use of indifference-based classification methods in 'sorting' problems

<ロ> (日) (日) (日) (日) (日)

æ

Properties of CM 00000

Electre-Tri

POC

Conclusions

PREFERENCE-ORIENTATION DEPENDENCY USEFULNESS OF 'CRITERIA' IN CLASSIFICATION PROBLEMS?

Some indifference or similarity based classification methods use 'criteria' to define the profiles of non-ordered classes : e.g. PROAFTN, TRINOMFC, Filtering Methods.

Nevertheless, the indifference or similarity index is (often) symmetric \Rightarrow there might be a loss of information.

 Introduction
 Properties of CM
 Electre-Tri
 POC

 00000000000
 000000
 0000000
 0000000

PREFERENCE-ORIENTATION DEPENDENCY USEFULNESS OF 'CRITERIA' IN CLASSIFICATION PROBLEMS ?

Some indifference or similarity based classification methods use 'criteria' to define the profiles of non-ordered classes : e.g. PROAFTN, TRINOMFC, Filtering Methods.

Conclusions

Nevertheless, the indifference or similarity index is (often) symmetric \Rightarrow there might be a loss of information.

Properties of CM 00000

Electre-Tri

POC

Conclusions

PREFERENCE-ORIENTATION DEPENDENCY USEFULNESS OF 'CRITERIA' IN CLASSIFICATION PROBLEMS?

Some indifference or similarity based classification methods use 'criteria' to define the profiles of non-ordered classes : e.g. PROAFTN, TRINOMFC, Filtering Methods.

Nevertheless, the indifference or similarity index is (often) symmetric \Rightarrow there might be a loss of information.

Analyze the use of preference-orientation : does the assignment of an action depend on it?

Inverse Function of a criterion $\mathfrak{I}nv(\mathcal{G}, g_j)$

Let us define the inverse function $\Im nv(\mathcal{G}, g_j)$ associated to a set of criteria \mathcal{G} and criterion g_j , which transforms g_j to g'_j such that the induced preference order on the criterion is inverted.

イロト イヨト イヨト イヨト

3

Inverse Function of a criterion $\Im nv(\mathcal{G}, g_i)$

Let us define the inverse function $\Im nv(\mathcal{G}, g_j)$ associated to a set of criteria \mathcal{G} and criterion g_j , which transforms g_j to g'_j such that the induced preference order on the criterion is inverted.

イロン イヨン イヨン イヨン

æ

Inverse Function of a criterion $\Im nv(\mathcal{G}, g_i)$

Let us define the inverse function $\Im nv(\mathcal{G}, g_j)$ associated to a set of criteria \mathcal{G} and criterion g_j , which transforms g_j to g'_j such that the induced preference order on the criterion is inverted.

イロン イヨン イヨン イヨン

æ

PREFERENCE-ORIENTATION DEPENDENCY INVERSE FUNCTION OF A CRITERION $\Im nv(\mathcal{G}, g_i)$

In case of a real-valued criterion, we may define this $\Im nv(\mathcal{G}, g_j)$ function by changing the sign of the criterion values : $\forall \mathcal{G}, \exists g_j \in \mathcal{G} : \Im nv(\mathcal{G}, g_j) = (\mathcal{G} \setminus \{g_j\}) \cup \{g_j'\}$ where $g_j'(a_i) = -g_j(a_i), \forall a_i \in \mathcal{A}$

Properties of CM 000000

Electre-Tri

POC

・ロン ・回と ・ヨン ・ヨン

Conclusions

PREFERENCE-ORIENTATION DEPENDENCY INVERSE FUNCTION OF A CRITERION $\Im nv(\mathcal{G}, g_i)$

PROPERTY OF PREFERENCE-ORIENTATION DEPENDENCY

An assignment procedure is preference-orientation dependent, if there exists a set A, such that, inverting one criterion, leads to at least one change in the assignments :

where $\mathcal{G}' = \Im nv(\mathcal{G}, g_i)$ $\exists \mathcal{A} \mid \exists a_i \in \mathcal{A}, g_j \in \mathcal{G} : C_{\mathcal{S}_{\mathcal{G}}}(a_i) \neq C_{\mathcal{S}_{\mathcal{C}'}}(a_i)$

Properties of CM 000000

Electre-Tri

POC

イロト イポト イヨト イヨト

Conclusions

PREFERENCE-ORIENTATION DEPENDENCY INVERSE FUNCTION OF A CRITERION $\Im nv(\mathcal{G}, g_i)$

PROPERTY OF PREFERENCE-ORIENTATION DEPENDENCY

An assignment procedure is preference-orientation dependent, if there exists a set A, such that, inverting one criterion, leads to at least one change in the assignments :

$$\exists \mathcal{A} \mid \exists a_i \in \mathcal{A}, g_j \in \mathcal{G}: \mathcal{C}_{\mathcal{S}_{\mathcal{G}}}(a_i) \neq \mathcal{C}_{\mathcal{S}_{\mathcal{G}'}}(a_i) \quad \text{ where } \mathcal{G}' = \Im \textit{nv}(\mathcal{G}, g_j)$$

eg. TRINOMFC, PROAFTN do not respect this property :

$$I(a_i, r_j) = min[S(a_i, r_j), S(r_j, a_i)]$$

PREFERENCE-ORIENTATION DEPENDENCY

DIFFERENT PROBLEMS :

- categories are defined a priori as dis-similar (nominal classification)
- categories are defined a priori as incomparable (completely non-ordered)

< ≣⇒

PREFERENCE-ORIENTATION DEPENDENCY

DIFFERENT PROBLEMS :

- categories are defined a priori as dis-similar (nominal classification)
- categories are defined a priori as incomparable (completely non-ordered)

< ≣⇒

PREFERENCE-ORIENTATION DEPENDENCY

DIFFERENT PROBLEMS :

- categories are defined a priori as dis-similar (nominal classification)
- categories are defined a priori as incomparable (completely non-ordered)

æ

< ∃ >

< 67 ▶

Introduction	Properties of CM	Electre-Tri	POC	Conclusion
	000000			

USE OF INDIFFERENCE-BASED CLASSIFICATION METHODS IN 'SORTING' PROBLEMS

CONSEQUENCE-2

Suppose that the categories are completely ordered and defined each by one central profile.

If action *a* is *indifferent* to one or more central profiles, *a* will be assigned to the corresponding category.

Introduction	Properties of CM ○○○○●○	Electre-Tri 000000	POC 00000000	Conclusion

USE OF INDIFFERENCE-BASED CLASSIFICATION METHODS IN 'SORTING' PROBLEMS

CONSEQUENCE-2

Suppose that the categories are completely ordered and defined each by one central profile.

In case of *non-indifference* (incomparability or preference), *a* will be assigned to none category or to all the categories.

 Introduction
 Properties of CM
 Electre-Tri
 POC
 Conclusions

 OUSE OF INDIFFERENCE-BASED CLASSIFICATION

METHODS IN 'SORTING' PROBLEMS

Consequence-2

Motivation to slightly modify Electre-Tri when working with central profiles while keeping the notion of indifference and distinguishing the cases of non-indifference.

・ロン ・回と ・ヨン・

Properties of CM

Electre-Tri

POC

<ロ> (日) (日) (日) (日) (日)

æ

Conclusions

TABLE OF CONTENTS

3 Electre-Tri with central profiles

- Context and conditions
- Assignment Rules
- Relation between PROAFTN and Electre-Tri

 Introduction
 Properties of CM
 Electre-Tri
 POC
 Conclusions

 00000000000
 000000
 ●00000
 00000000
 Conclusions

ELECTRE-TRI WITH CENTRAL PROFILES

Context

- Completely Ordered categories, each defined by one central profile *r_j*
- The central profile respect the order of the categories :
 - $\forall i < j : r_i \succ^D r_j$
 - $\forall i < j : r_i \succ^P r_j$
- Pairwise comparisons between the central profiles and the actions to be sorted are performed by means of outranking relations.

Properties of CM

Electre-Tri

POC

▲ □ ► ▲ □ ►

Conclusions

ELECTRE-TRI WITH CENTRAL PROFILES

Assignment rules when working with CENTRAL PROFILES Similar assignment rules are used as when working with limiting profiles, except only the outranking relation S is used for both the optimistic (and not the preference relation) and pessimistic version :

ELECTRE-TRI WITH CENTRAL PROFILES

Assignment rules when working with central profiles

Similar assignment rules are used as when working with limiting profiles, except only the outranking relation S is used for both the optimistic (and not the preference relation) and pessimistic version :

•
$$r_1 \succ a, r_2 \succ a, \ldots, r_j \succ a, a \succ r_{j+1}, a \succ r_{j+2}, \ldots, a \succ r_K$$
 (1)

ELECTRE-TRI WITH CENTRAL PROFILES

Assignment rules when working with central profiles

Similar assignment rules are used as when working with limiting profiles, except only the outranking relation S is used for both the optimistic (and not the preference relation) and pessimistic version :

•
$$r_1 \succ a, r_2 \succ a, \dots, r_{j-1} \succ a, a \mathcal{I} r_j, a \succ r_{j+1}, \dots, a \succ r_K$$
 (II)

ELECTRE-TRI WITH CENTRAL PROFILES

Assignment rules when working with central profiles

Similar assignment rules are used as when working with limiting profiles, except only the outranking relation S is used for both the optimistic (and not the preference relation) and pessimistic version :

•
$$r_1 \succ a, r_2 \succ a, \ldots, r_{j+1} \succ a, a\mathcal{J}r_j, \ldots, a\mathcal{J}r_{j+k-1}, a\mathcal{J}r_{j+k}, a \succ r_{j+k+1}, \ldots, a \succ r_K$$
 (III)

GRAPHICAL REPRESENTATION

Ph. Nemery - ULB - DIMACS Outranking-based sorting methods

GRAPHICAL REPRESENTATION

FIGURE: The reduced "pessimistic S-graph" : $xSy \Leftrightarrow x \leftarrow -y$

 Introduction
 Properties of CM
 Electre-Tri
 POC
 Conclusions

 NONO
 NONO
 NONO
 NONO
 NONO
 Conclusions

 RELATION
 BETWEEN
 PROAFTN
 AND
 ELECTRE-TRI

 WHEN WORKING
 WITH CENTRAL PROFILES
 Conclusions
 NON
 NON

Hypothesis :

Define similarity, discrimination, indifference and preference parameters such that :

$$C'(a, r_h) = \min(S(a, r_h), S(r_h, a))$$
(1)

イロト イヨト イヨト イヨト

3

PROPOSITION :

If the parameters of Electre-Tri-Central and PROAFTN are such that Eq.1 is verified, we have $\forall h \neq 1$ and $h \neq K$:

PROAFTN assigns action a to the unique category C_h

\uparrow

Electre-Tri-Central optimistic and pessimistic affects the action a to the same category C_h .

イロン イヨン イヨン イヨン

 Introduction
 Properties of CM
 Electre-Tri
 POC
 Conclusions

 000000000000
 000000
 000000
 0000000
 0000000
 0000000

TABLE OF CONTENTS

4 Partially Ordered categories

- Different assignment problems
- Example
- Assignment Rules
- Particular Subproblems : properties

・ロト ・回ト ・ヨト

< ≣ >

Ph. Nemery - ULB - DIMACS Outranking-based sorting methods

RECRUITMENT PROCESS

The HR wants to evaluate the employees of their computer company according to some profiles and identify four type of persons :

- managers
- engineers
- technical salespeople
- bad-performing employees

・ロト ・回ト ・ヨト

Properties of CM

Electre-Tri

POC

イロト イヨト イヨト イヨト

Conclusions

PARTIALLY ORDERED CATEGORIES Example

RECRUITMENT PROCESS

The HR wants to evaluate the employees of their computer company according to some profiles and identify four type of persons :

Use of the following criteria :

- g_1 : software knowledge
- 2 g_2 : programming experience
- 3 g₃ : commercial aptitude
- 4 : potential mobility
- \bigcirc g_5 : leadership attitude

Ph. Nemery - ULB - DIMACS Outranking-based sorting methods

イロト イヨト イヨト イヨト

э

イロン イヨン イヨン イヨン

Э

The employees to be categorized, will be pairwise compared to the central reference profiles by means of outranking relations $(S(a_i, r_j^k), S(r_j^k, a_i))$.

The reduced optimistic and pessimistic outranking graphs will be computed.

The assignment of action a_i will depend on its position in these graphs.

イロン イヨン イヨン イヨン

FIGURE: $C_{opt}(a) = C_2^1$ and $C_{pess}(a) = C_3^1$

・ロン ・回と ・ヨン・

Э

 r_2^1

 r_{2}^{2}

 r_{2}^{1}

Э

a

・ロン ・回と ・ヨン・

r_N

 r_{2}^{2}

r_N

FIGURE: $C_{opt}(a) = C_2^1$ and $C_{pess}(a) = C_3^1$

Properties of CM

Electre-Tri

POC ○○○○○○●○

・ロト ・回ト ・ヨト ・ヨト

æ

Conclusions

PARTIALLY ORDERED CATEGORIES PARTICULAR SUBPROBLEMS : COMPLETELY ORDERED CATEGORIES

PROPOSITION :

When the categories are completely ordered, the assignment results are the same as the one obtained with Electre-Tri for central profiles.

Properties of CM

Electre-Tri

POC

・ロト ・回ト ・ヨト

• 3 > 1

Conclusions

PARTIALLY ORDERED CATEGORIES PARTICULAR SUBPROBLEMS : INCOMPARABLE CATEGORIES

PROPOSITION :

When the categories are incomparable, the assignment results are not always the same as the one obtained with PROAFTN. The difference lies in the way of how non-indifference is treated. However, it permits a refinement of the assignments.

Properties of CM

Electre-Tri

POC

Conclusions

PARTIALLY ORDERED CATEGORIES PARTICULAR SUBPROBLEMS : INCOMPARABLE CATEGORIES

PROPOSITION :

When the categories are incomparable, the assignment results are not always the same as the one obtained with PROAFTN. The difference lies in the way of how non-indifference is treated. However, it permits a refinement of the assignments.

Introduction	Properties of CM	Electre-Tri	POC	Conclusions
CONCLUS	LONG			

CONCLUSIONS

- Preference-orientation dependency property
- The use of indifference/similarity based classification methods in particular assignment problems
- Electre-Tri with central profiles
- Assignment Rules for a more general assignment problem where the categories are partially ordered.