Decision Policy Design as Pareto-Minimization of Infeasible Lower Bounds

Ulrich Junker ILOG Alexis Tsoukiàs LAMSADE-CNRS

A Configuration Problem

• Catalogs for components *a* and *b*

y_b	$y_{1,b}$	$y_{2,b}$	$y_{3,b}$
b_1	10	10	30
b_2	20	30	10

- Configure a system out of *a* and *b* s.t.
 - the sum of the $y_{1,i}$'s is greater than p_1
 - the sum of the $y_{2,i}$'s is greater than p_2
 - the sum x of the $y_{3,i}$'s is maximized
- Interactive usage:
 - the parameters p_1 and p_2 are the user input
 - the optimum x is the user output

Configuration Rules

• Rules for making optimal decisions:

- **1.** if $p_1 \ge 0 \land p_1 \le 20 \land p_2 \ge 0 \land p_2 \le 30$ then x := 60.
- **2.** if $p_1 \le 30 \land p_2 \ge 31 \land p_2 \le 50$ then x := 40.
- **3.** if $p_1 \le 40 \land p_2 \ge 51 \land p_2 \le 60$ then x := 20.
- **4.** if $p_1 \ge 0 \land p_2 \ge 61$ then x := 0.
- **5.** if $p_1 \ge 21 \land p_1 \le 30 \land p_2 \le 50$ then x := 40.
- **6.** if $p_1 \ge 31 \land p_1 \le 40 \land p_2 \le 60$ then x := 20.
- **7.** if $p_1 \ge 41 \land p_2 \ge 0$ then x := 0.
- Interactive usage:
 - fast optimal online decision making
 - without solving optimization problems online

Changing Catalogs

• New component types are added

y_a	$y_{1,a}$	$y_{2,a}$	$y_{3,a}$
a_1	10	20	30
a_2	20	30	10
a_3	20	20	10

y	b	$y_{1,b}$	$y_{2,b}$	$y_{3,b}$
b	1	10	10	30
b_{2}	2	20	30	10
b_{z}	3	10	30	20

Impact of the change

- are the rules still making feasible decisions?
- are the rules still making optimal decisions?
- if no, how to change the rules?

Outline

- Decision policies
- Design of policies from models
 - Policy design by exhaustive optimization
 Policy design by Pareto-optimization
- Computing the policy by a dual approach

Decision under conditions

- Which are the possible decisions?
 - described by a decision space ${\mathcal X}$
 - e.g., choose a category among Gold, Silver, Platinum
- Which parameter may influence the choice?
 - described by a parameter space \mathcal{P}
 - e.g., the cart value of the customer
- When is which decision feasible?
 - described by a subset X(p) of \mathcal{X} for each $p \in \mathcal{P}$
 - e.g., Silver is always possible
 Platinum is possible if the cart value is at least 1000
 Gold is possible if the cart value is at least 500

Decision policy

• What is a decision policy?

- chooses a single feasible decision for each parameter value
- a function $\pi: \mathcal{P} \to \mathcal{X}$ s.t. $\pi(p) \in X(p)$ for all $p \in \mathcal{P}$
- can adequately be represented by rules

• Example

- if $value \ge 0 \land value < 800$ then category = Silver.
- if $value \ge 800 \land value < 1000$ then category = Gold.
- if $value \ge 1000 \land value \le 2000$ then category = Platinum.
- if $value \ge 2000$ then category = Gold.

Rational decision policy

- Preferences between decisions
 - total preference order \succeq^x on the decision space
 - e.g., Platinum is preferred to Gold, which is preferred to Silver
- What is a rational policy?
 - a rational policy chooses an optimal decision from X(p) for each p

- *i.e., there is no* $x^* \in X(p)$ *s.t.* $x^* \succ^x \pi(p)$

• Example

- if $value \ge 0 \land value < 800$ then category = Silver.
- if $value \ge 800 \land value < 1000$ then category = Gold.

- if $value \ge 1000$ then category = Platinum.

Dominance between parameters

• Strictness order

- partial order \succeq^p on the parameter space
- $-p_1 \succeq^p p_2$ implies $X(p_1) \subseteq X(p_2)$
- Examples
 - less budget means less options
 - smaller cart value will reduce the feasible categories
 - less votes mean less seats

• Simplification of rules

- if value ≥ 0 then category \succeq^x Silver.
- if value ≥ 800 then category $\succeq^x Gold$.
- if value ≥ 1000 then category \succeq^x Platinum.

cf. [Greco, Matarazzo, Slowinsky, EJOR01]

Outline

- Decision policies
- Design of policies from models
 - Policy design by exhaustive optimization
 Policy design by Pareto-optimization
- Computing the policy by a dual approach

Acquisition of policies

1. from experts

- domain is well-understood by experts
- use rule authoring or knowledge acquisition

2. from data:

- domain is not well-understood
- use data analysis, data mining, rule discovery

3. from models:

- domain deals with artifacts designed by humans
- example: product confi guration, complex pricing
- use multi-criteria optimization

Configuration Model

1. Variables y

- ullet variables for parameters $y_{\mathbf{p}}$
- \bullet variables for decision $y_{\mathbf{x}}$
- auxiliary variables, e.g. $y_{i,j}$

2. Constraints C

- $(y_i, y_{1,i}, y_{2,i}, y_{3,i})$ is a line in catalog i
- $y_{1,a} + y_{1,b} \ge y_{\mathbf{p}_1}$
- $y_{2,a} + y_{2,b} \ge y_{\mathbf{p}_2}$
- $\bullet \ y_{3,a} + y_{3,b} = y_{\mathbf{X}}$

3. Objective

 \bullet maximize $y_{\mathbf{x}}$

Policy Design

• Solutions under *p*:

set of solutions y of C that satisfy $y_{\mathbf{p}} = p$

• Feasible decisions:

 $x\in X(p) \text{ iff }$

1. x is supported by a solution y of C under p, i.e.

 $y_{\mathbf{X}} = x$

2. or x is the worst decision x^{\perp} (which is unsupported).

Optimal decisions

 x^* is an optimal decision in X(p) iff there is no solution y under p s.t. $y_{\mathbf{x}}\succ^x x^*$

classic combinatorial optimization problem!

Exhaustive Optimization

• Approach

- for each $p \in \mathcal{P}$, find the optimal decision $\textbf{x}^{\!*}$ in X(p)
- we know that all solutions of C satisfy:

 $y_{\mathbf{p}} = p \Rightarrow y_{\mathbf{x}} \precsim^x x^*$

- we can represent this implication by a rule

if $y_{\mathbf{p}} = p$ then $y_{\mathbf{x}} := x^*$.

• Cost

- the number of optimization problem is equal to the size of $\ensuremath{\mathcal{P}}$
- the number of rules is equal to the size of ${\mathcal{P}}$
- $-\mathcal{P}$ may have exponential size

Example

Many rules are similar:

- $y_{\mathbf{p}_1} = 0 \land y_{\mathbf{p}_2} = 0 \Rightarrow y_{\mathbf{x}} \precsim^x 60$
- $y_{\mathbf{p}_1} = 0 \land y_{\mathbf{p}_2} = 1 \Rightarrow y_{\mathbf{x}} \precsim^x 60$
- . . .
- $y_{\mathbf{p}_1} = 0 \land y_{\mathbf{p}_2} = 30 \Rightarrow y_{\mathbf{x}} \precsim^x 60$ • $y_{\mathbf{p}_1} = 0 \land y_{\mathbf{p}_2} = 31 \Rightarrow y_{\mathbf{x}} \precsim^x 50$ • $y_{\mathbf{p}_1} = 0 \land y_{\mathbf{p}_2} = 32 \Rightarrow y_{\mathbf{x}} \precsim^x 50$ •
- $y_{\mathbf{p}_1} = 0 \land y_{\mathbf{p}_2} = 50 \Rightarrow y_{\mathbf{x}} \precsim^x 50$ • $y_{\mathbf{p}_1} = 0 \land y_{\mathbf{p}_2} = 51 \Rightarrow y_{\mathbf{x}} \precsim^x 30$

Relax conditions

Original Rules

$$-y_{\mathbf{p}} = p \Rightarrow y_{\mathbf{x}} \precsim^x x^*$$

• Relaxing condition:

$$-y_{\mathbf{p}} \succeq^p p \Rightarrow y_{\mathbf{x}} \precsim^x x^*$$

• Strict upper bound action:

$$-y_{\mathbf{p}} \succeq^p p \Rightarrow y_{\mathbf{x}} \prec^x u^*$$

where u^* is the worst element in $\{x \in X(p) \mid x \succ^x x^*\}$

• Rule:

$$- \text{ if } y_{\mathbf{p}} \succeq^p p \text{ then } y_{\mathbf{x}} := \max(y_{\mathbf{x}}, x^*).$$

Dominance Phenomenon

• Two rules

- $-y_{\mathbf{p}} \succeq^{p} p^{(1)} \Rightarrow y_{\mathbf{x}} \prec^{x} u^{(1)}$ $-y_{\mathbf{p}} \succeq^{p} p^{(2)} \Rightarrow y_{\mathbf{x}} \prec^{x} u^{(2)}$
- Dominance
 - suppose $p^{(1)} \succsim^p p^{(2)}$ and $u^{(1)} \succsim^x u^{(2)}$
 - then the second rule makes the first rule redundant
 - if a rule r_1 makes a rule r_2 redundant, but not vice versa, then we can delete r_2

The Policy Design Problem

• Pareto-dominance

– combined space $\mathcal{Z} := \mathcal{P} \times \mathcal{X}$

 $-\,(p^{(1)},u^{(1)})\succsim^{z}(p^{(2)},u^{(2)}) \text{ iff } p^{(1)}\succsim^{p}p^{(2)} \text{ and } u^{(1)}\succsim^{x}u^{(2)}$

Infeasible lower bounds

- (p,u) from $\ensuremath{\mathcal{Z}}$ is a candidate iff
- all solutions y of C satisfy $y_{\mathbf{p}} \succeq^p p \Rightarrow y_{\mathbf{x}} \prec^x u$ iff
- no solution y of C satisfi es $y_{\mathbf{p}} \succeq^p p \land y_{\mathbf{x}} \succeq^x u$ iff

– no solution y of C satisfies $y_{\mathbf{px}} \succeq^{z} (p, u)$

• Pareto-minimal infeasible lower bounds

– fi nd all infeasible lower bounds (p, u) that are Pareto-minimal w.r.t. \succ^z

Outline

- Decision policies
- Design of policies from models
 - Policy design by exhaustive optimization
 Policy design by Pareto-optimization
- Computing the policy by a dual approach

Dual Approach: Step I

Fareto-maximal solutions.

find all Pareto-maximal elements of ${\mathcal Z}$ that are supported by a solution

Dual Approach: Step II

Dual Approach: Step III

Nondominated region ("infeasible lower bounds") part of \mathcal{Z} that is not weakly dominated by some Pareto-maximal solution

Dual Approach: Step III

Pareto-minimal elements of the non-dominated region

Pareto-frontier

Dual frontier

Rules before catalog change

1. if $p_1 \ge 0 \land p_2 \ge 0$ then x := min(x, 60). **2.** if $p_1 \ge 0 \land p_2 \ge 31$ then x := min(x, 40). **3.** if $p_1 \ge 0 \land p_2 \ge 51$ then x := min(x, 20). **4.** if $p_1 \ge 0 \land p_2 \ge 61$ then x := min(x, 0). **5.** if $p_1 \ge 21 \land p_2 \ge 0$ then x := min(x, 40). **6.** if $p_1 \ge 31 \land p_2 \ge 0$ then x := min(x, 20). **7.** if $p_1 \ge 41 \land p_2 \ge 0$ then x := min(x, 0).

Rules after catalog change

1. if $p_1 \ge 0 \land p_2 \ge 0$ then x := min(x, 60). **2.** if $p_1 \ge 0 \land p_2 \ge 31$ then x := min(x, 50). **3.** if $p_1 \ge 0 \land p_2 \ge 51$ then x := min(x, 30). **4.** if $p_1 \ge 0 \land p_2 \ge 61$ then x := min(x, 0). **5.** if $p_1 \ge 21 \land p_2 \ge 0$ then x := min(x, 40). **6.** if $p_1 \ge 31 \land p_2 \ge 0$ then x := min(x, 20). **7.** if $p_1 \ge 41 \land p_2 \ge 0$ then x := min(x, 0).

Conclusion

• New method for policy acquisition

- rules are derived from a domain model
- by Pareto-minimization of 'infeasible lower bounds'

• Dual approach

- determine Pareto-maximal solutions
- use them to define the constraints of the dual problem
- determine Pareto-minimal solutions of the dual problem

Applications

- web-based confi guration
- automated pricing