Decision Policy Design as Pareto-Minimization of Infeasible Lower Bounds

Ulrich Junker ILOG

Alexis Tsoukiàs LAMSADE-CNRS

1 U. Junker, A. Tsoukias` , Decision Policy Design, AAAI-08 WS on Preferences

A Configuration Problem

\bullet \bullet Catalogs for components a and b

\bullet \bullet Configure a system out of a and b s.t.

- **–**– the sum of the $y_{1,i}$'s is greater than p_1
- **–**– the sum of the $y_{2,i}$'s is greater than p_2
- **–**– the sum x of the $y_{3,i}$'s is maximized

\bullet • Interactive usage:

- **–**– the parameters p_1 and p_2 are the user input
- **–**– the optimum x is the user output

Configuration Rules

\bullet Rules for making optimal decisions:

- **1.** if $p_1 \geq 0 \wedge p_1 \leq 20 \wedge p_2 \geq 0 \wedge p_2 \leq 30$ then $x := 60$.
- 2. if $p_1 \leq 30 \land p_2 \geq 31 \land p_2 \leq 50$ then $x := 40$.
- **3.** if $p_1 \leq 40 \land p_2 \geq 51 \land p_2 \leq 60$ then $x := 20$.
- 4. if $p_1 \geq 0 \wedge p_2 \geq 61$ then $x := 0$.
- 5. if $p_1 > 21 \wedge p_1 < 30 \wedge p_2 < 50$ then $x := 40$.
- 6. if $p_1 \geq 31 \wedge p_1 \leq 40 \wedge p_2 \leq 60$ then $x := 20$.
- 7. if $p_1 \geq 41 \wedge p_2 \geq 0$ then $x := 0$.
- \bullet • Interactive usage:
	- **–**– fast optimal online decision making
	- **–**– without solving optimization problems online

Changing Catalogs

\bullet New component types are added

\bullet • Impact of the change

- **–**– are the rules still making feasible decisions?
- **–**– are the rules still making optimal decisions?
- **–**– if no, how to change the rules?

Outline

- \bullet Decision policies
- \bullet Design of policies from models
	- 1. Policy design by exhaustive optimization 2. Policy design by Pareto-optimization
- \bullet Computing the policy by ^a dual approach

Decision under conditions

- \bullet Which are the possible decisions?
	- **–**– described by a decision space $\mathcal X$
	- **–**e.g., choose ^a category among Gold, Silver, Platinum
- \bullet Which parameter may influence the choice?
	- **–**– described by a parameter space $\mathcal P$
	- **–**– e.g., the cart value of the customer
- When is which decision feasible?
	- **–**– described by a subset $X(p)$ of $\mathcal X$ for each $p\in\mathcal P$
	- **–** e.g., Silver is always possible Platinum is possible if the cart value is at least 1000 Gold is possible if the cart value is at least 500

Decision policy

\bullet What is ^a decision policy?

- **–** chooses ^a single feasible decision for each parameter value
- **–**– a function $\pi: \mathcal{P} \rightarrow \mathcal{X}$ s.t. $\pi(p) \in X(p)$ for all $p \in \mathcal{P}$
- **–**– can adequately be represented by rules

\bullet Example

- **–** $-{\bf if} \ value \geq 0 \wedge value < 800 {\bf \ then} \ category = Silver.$
- **–** $-{\bf if} \ value \geq 800 \wedge value < 1000$ ${\bf then} \ category = Gold.$
- **–** $- \textbf{if } value \geq 1000 \wedge value \leq 2000 \textbf{ then } category =$ Platinum.
- **–** $-{\bf if} \ value \ge 2000$ then $category = Gold.$

Rational decision policy

• Preferences between decisions

- **–**– total preference order \succsim^x on the decision space
- **–** e.g., Platinum is preferred to Gold, which is preferred to Silver
- \bullet What is ^a rational policy?
	- **–**– a rational policy chooses an optimal decision from $X(p)$ for each p

–— i.e., there is no $x^* \in X(p)$ s.t. $x^* \succ^x \pi(p)$

\bullet Example

- **–** $-{\bf if} \ value \geq 0 \wedge value < 800 {\bf \ then} \ category = Silver.$
- **–** $-{\bf if} \ value \geq 800 \wedge value < 1000$ ${\bf then} \ category = Gold.$

– $-{\bf if} \ value \geq 1000 {\bf \ then} \ category = Platinum.$

Dominance between parameters

• Strictness order

- **–**– partial order \succsim^p on the parameter space
- **–** $-p_1\succsim^p p_2$ implies $X(p_1)\subseteq X(p_2)$
- \bullet • Examples
	- **–**– less budget means less options
	- **–**smaller cart value will reduce the feasible categories
	- **–** less votes mean less seats

\bullet Simplification of rules

- **–** $- \textbf{if } value \geq 0 \textbf{ then } category \succsim^x Silver.$
- **–** $- \textbf{if } value \geq 800 \textbf{ then } category \succsim^x Gold.$
- **–** $-{\bf if}~value \geq 1000~{\bf then}~category~{\succsim}^x~Platinum.$

cf. [Greco, Matarazzo, Slowinsky, EJOR01]

Outline

- \bullet Decision policies
- \bullet Design of policies from models
	- 1. Policy design by exhaustive optimization 2. Policy design by Pareto-optimization
- \bullet Computing the policy by ^a dual approach

Acquisition of policies

1. from experts

- domain is well-understood by experts
- use rule authoring or knowledge acquisition

2. from data:

- domain is not well-understood
- use data analysis, data mining, rule discovery

3. from models:

- domain deals with artifacts designed by humans
- example: product confi guration, complex pricing
- use multi-criteria optimization

Configuration Model

1. Variables y

- \bullet variables for parameters $y_{\mathbf{p}}$
- \bullet variables for decision $y_{\mathbf{x}}$
- \bullet auxiliary variables, e.g. $y_{i,j}$

2. Constraints C

- \bullet $(y_i, y_{1,i}, y_{2,i}, y_{3,i})$ is a line in catalog i
- \bullet $y_{1,a} + y_{1,b} \geq y_{\mathbf{p}_1}$
- \bullet $y_{2,a} + y_{2,b} \geq y_{\mathbf{p}_2}$
- \bullet $y_{3,a} + y_{3,b} = y_{\textbf{x}}$

3. Objective

 \bullet maximize $y_{\mathbf{x}}$

Policy Design

 \bullet Solutions under p :

set of solutions y of C that satisfy $y_{\textbf{p}} = p$

• Feasible decisions:

 $x \in X(p)$ iff

1. x is supported by a solution y of C under p , i.e.

 $y_{\mathbf{x}}=x$

- 2. or x is the worst decision x^{\perp} (which is unsupported).
- \bullet Optimal decisions

 x^* is an optimal decision in $X(p)$ iff there is no solution y under p s.t. $y_x \succ^x x^*$

classic combinatorial optimization problem!

Exhaustive Optimization

\bullet Approach

- **–**– for each $p\in \mathcal{P},$ fi nd the optimal decision \vec{x} in $X(p)$
- **–**– we know that all solutions of C satisfy:

 $y_{\mathbf{p}} = p \Rightarrow y_{\mathbf{x}} \preceq^x x^*$

–– we can represent this implication by a rule

if $y_{\mathbf{p}} = p$ then $y_{\mathbf{x}} := x^*$.

• Cost

- **–** $\hspace{0.1mm}-$ the number of optimization problem is equal to the size of $\mathcal P$
- **–**– the number of rules is equal to the size of ${\mathcal P}$
- **–**– ${\cal P}$ may have exponential size

Example

Many rules are similar:

- $y_{\mathbf{p}_1} = 0 \wedge y_{\mathbf{p}_2} = 0 \Rightarrow y_{\mathbf{x}} \precsim^x 60$
- $y_{\mathbf{p}_1} = 0 \wedge y_{\mathbf{p}_2} = 1 \Rightarrow y_{\mathbf{x}} \precsim^x 60$
- \bullet . . .
- $y_{\mathbf{p}_1} = 0 \wedge y_{\mathbf{p}_2} = 30 \Rightarrow y_{\mathbf{x}} \preceq^x 60$ \bullet $y_{\mathbf{p}_1} = 0 \wedge y_{\mathbf{p}_2} = 31 \Rightarrow y_{\mathbf{x}} \precsim^x 50$
- $y_{\mathbf{p}_1} = 0 \wedge y_{\mathbf{p}_2} = 32 \Rightarrow y_{\mathbf{x}} \precsim^x 50$

 \bullet . . .

$$
\bullet y_{\mathbf{p}_1} = 0 \land y_{\mathbf{p}_2} = 50 \Rightarrow y_{\mathbf{x}} \preceq^x 50
$$

$$
\bullet y_{\mathbf{p}_1} = 0 \land y_{\mathbf{p}_2} = 51 \Rightarrow y_{\mathbf{x}} \preceq^x 30
$$

Relax conditions

 \bullet Original Rules

$$
-y_{\mathbf{p}} = p \Rightarrow y_{\mathbf{x}} \preceq^{x} x^{*}
$$

 \bullet Relaxing condition:

$$
-y_{\mathbf{p}} \succsim^{p} p \Rightarrow y_{\mathbf{x}} \preceq^{x} x^{*}
$$

 \bullet Strict upper bound action:

$$
-y_{\mathbf{p}} \succsim^{p} p \Rightarrow y_{\mathbf{x}} \prec^{x} u^{*}
$$

where u^* is the worst element in $\{x \in X(p) \mid x \succ^x x^*\}$

• Rule:

– $- \textbf{ if } y_\mathbf{p} \succsim^p p \textbf{ then } y_\mathbf{x} := \max(y_\mathbf{x}, x^*).$

Dominance Phenomenon

• Two rules

- **–** $-y_{\mathbf{p}} \succsim^{p} p^{(1)} \Rightarrow y_{\mathbf{x}} \prec^{x} u^{(1)}$ **–** $-y_{\mathbf{p}} \succsim^{p} p^{(2)} \Rightarrow y_{\mathbf{x}} \prec^{x} u^{(2)}$
- Dominance
	- **–**– suppose $p^{(1)}\succsim^p p^{(2)}$ and $u^{(1)}\succsim^x u^{(2)}$
	- **–** then the second rule makes the first rule redundant
	- **–**– if a rule r_1 makes a rule r_2 redundant, but not vice versa, then we can delete r_2

The Policy Design Problem

• Pareto-dominance

–– combined space $\mathcal{Z} := \mathcal{P} \times \mathcal{X}$

– $(- (p^{(1)}, u^{(1)}) \succsim^z (p^{(2)}, u^{(2)})$ iff $p^{(1)} \succsim^p p^{(2)}$ and $u^{(1)} \succsim^x u^{(2)}$

• Infeasible lower bounds

- **–** $-(p, u)$ from ${\cal Z}$ is a candidate iff
- **–**– all solutions y of C satisfy $y_\mathbf{p} \succsim^p p \Rightarrow y_\mathbf{x} \prec^x u$ iff
- **–**– no solution y of C satisfi es $y_\mathbf{p} \succsim^p p \wedge y_\mathbf{x} \succsim^x u$ iff

–– no solution y of C satisfi es $y_{\mathbf{p}\mathbf{x}}\succsim^z(p,u)$

• Pareto-minimal infeasible lower bounds

–– fi nd all infeasible lower bounds $\left(p,u\right)$ that are Pareto-minimal w.r.t. \succ^z

Outline

- \bullet Decision policies
- \bullet Design of policies from models
	- 1. Policy design by exhaustive optimization
	- 2. Policy design by Pareto-optimization
- \bullet Computing the policy by ^a dual approach

Dual Approach: Step I

find all Pareto-maximal elements of Z that are supported by ^a solution

Dual Approach: Step II

Dual Approach: Step III

Nondominated region ("infeasible lower bounds") part of $\mathcal Z$ that is not weakly dominated by some Pareto-maximal solution

Dual Approach: Step IIII

Pareto-minimal elements of the non-dominated region

Pareto-frontier

Dual frontier

Rules before catalog change

1. if $p_1 \geq 0 \wedge p_2 \geq 0$ then $x := min(x, 60)$.

2. if $p_1 \geq 0 \wedge p_2 \geq 31$ then $x := min(x, 40)$.

3. if $p_1 \geq 0 \land p_2 \geq 51$ then $x := min(x, 20)$.

4. if $p_1 \geq 0 \wedge p_2 \geq 61$ then $x := min(x, 0)$.

5. if $p_1 \geq 21 \wedge p_2 \geq 0$ then $x := min(x, 40)$.

6. if $p_1 \geq 31 \wedge p_2 \geq 0$ then $x := min(x, 20)$.

7. if $p_1 \geq 41 \wedge p_2 \geq 0$ then $x := min(x, 0)$.

Rules after catalog change

1. if $p_1 \geq 0 \wedge p_2 \geq 0$ then $x := min(x, 60)$. 2. if $p_1 \geq 0 \wedge p_2 \geq 31$ then $x := min(x, 50)$.

3. if $p_1 \geq 0 \land p_2 \geq 51$ then $x := min(x, 30)$.

4. if $p_1 \geq 0 \wedge p_2 \geq 61$ then $x := min(x, 0)$.

5. if $p_1 \geq 21 \wedge p_2 \geq 0$ then $x := min(x, 40)$.

6. if $p_1 \geq 31 \wedge p_2 \geq 0$ then $x := min(x, 20)$.

7. if $p_1 \geq 41 \wedge p_2 \geq 0$ then $x := min(x, 0)$.

Conclusion

\bullet New method for policy acquisition

- **–** rules are derived from a domain model
- **–**by Pareto-minimization of 'infeasible lower bounds'

\bullet Dual approach

- **–** determine Pareto-maximal solutions
- **–**– use them to defi ne the constraints of the dual problem
- **–** determine Pareto-minimal solutuions of the dual problem

\bullet Applications

- **–**– web-based confi guration
- **–**– automated pricing