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A Configuration Problem
•Catalogs for components a and b

ya y1,a y2,a y3,a
a1 10 20 30
a2 20 30 10

yb y1,b y2,b y3,b
b1 10 10 30
b2 20 30 10

•Configure a system out of a and b s.t.
– the sum of the y1,i’s is greater than p1

– the sum of the y2,i’s is greater than p2

– the sum x of the y3,i’s is maximized

• Interactive usage:
– the parameters p1 and p2 are the user input
– the optimum x is the user output
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Configuration Rules
•Rules for making optimal decisions:

1. if p1 ≥ 0 ∧ p1 ≤ 20 ∧ p2 ≥ 0 ∧ p2 ≤ 30 then x := 60.

2. if p1 ≤ 30 ∧ p2 ≥ 31 ∧ p2 ≤ 50 then x := 40.

3. if p1 ≤ 40 ∧ p2 ≥ 51 ∧ p2 ≤ 60 then x := 20.

4. if p1 ≥ 0 ∧ p2 ≥ 61 then x := 0.

5. if p1 ≥ 21 ∧ p1 ≤ 30 ∧ p2 ≤ 50 then x := 40.

6. if p1 ≥ 31 ∧ p1 ≤ 40 ∧ p2 ≤ 60 then x := 20.

7. if p1 ≥ 41 ∧ p2 ≥ 0 then x := 0.

• Interactive usage:
– fast optimal online decision making
– without solving optimization problems online
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Changing Catalogs
•New component types are added

ya y1,a y2,a y3,a
a1 10 20 30
a2 20 30 10
a3 20 20 10

yb y1,b y2,b y3,b
b1 10 10 30
b2 20 30 10
b3 10 30 20

• Impact of the change
– are the rules still making feasible decisions?
– are the rules still making optimal decisions?
– if no, how to change the rules?
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Outline
•Decision policies
•Design of policies from models

1. Policy design by exhaustive optimization
2. Policy design by Pareto-optimization

•Computing the policy by a dual approach
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Decision under conditions
•Which are the possible decisions?

– described by a decision space X

– e.g., choose a category among Gold, Silver, Platinum

•Which parameter may influence the choice?
– described by a parameter space P

– e.g., the cart value of the customer

•When is which decision feasible?
– described by a subset X(p) of X for each p ∈ P

– e.g., Silver is always possible
Platinum is possible if the cart value is at least 1000
Gold is possible if the cart value is at least 500
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Decision policy
•What is a decision policy?

– chooses a single feasible decision for each parameter
value

– a function π : P → X s.t. π(p) ∈ X(p) for all p ∈ P

– can adequately be represented by rules

•Example
– if value ≥ 0 ∧ value < 800 then category = Silver.

– if value ≥ 800 ∧ value < 1000 then category = Gold.

– if value ≥ 1000 ∧ value ≤ 2000 then category =
Platinum.

– if value ≥ 2000 then category = Gold.
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Rational decision policy
•Preferences between decisions

– total preference order %x on the decision space
– e.g., Platinum is preferred to Gold, which is preferred

to Silver

•What is a rational policy?
– a rational policy chooses an optimal decision from

X(p) for each p

– i.e., there is no x∗ ∈ X(p) s.t. x∗ �x π(p)

•Example
– if value ≥ 0 ∧ value < 800 then category = Silver.

– if value ≥ 800 ∧ value < 1000 then category = Gold.

– if value ≥ 1000 then category = Platinum.
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Dominance between parameters
•Strictness order

– partial order %p on the parameter space
– p1 %p p2 implies X(p1) ⊆ X(p2)

•Examples
– less budget means less options
– smaller cart value will reduce the feasible categories
– less votes mean less seats

•Simplification of rules
– if value ≥ 0 then category %x Silver.

– if value ≥ 800 then category %x Gold.

– if value ≥ 1000 then category %x Platinum.

cf. [Greco, Matarazzo, Slowinsky, EJOR01]
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Outline
•Decision policies
•Design of policies from models

1. Policy design by exhaustive optimization
2. Policy design by Pareto-optimization

•Computing the policy by a dual approach
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Acquisition of policies
1. from experts

• domain is well-understood by experts
• use rule authoring or knowledge acquisition

2. from data:
• domain is not well-understood
• use data analysis, data mining, rule discovery

3. from models:
• domain deals with artifacts designed by humans
• example: product configuration, complex pricing
• use multi-criteria optimization
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Configuration Model
1. Variables y

• variables for parameters yp

• variables for decision yx

• auxiliary variables, e.g. yi,j

2. Constraints C

• (yi, y1,i, y2,i, y3,i) is a line in catalog i

• y1,a + y1,b ≥ yp1

• y2,a + y2,b ≥ yp2

• y3,a + y3,b = yx

3. Objective
• maximize yx
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Policy Design
•Solutions under p:

set of solutions y of C that satisfy yp = p

• Feasible decisions:
x ∈ X(p) iff
1. x is supported by a solution y of C under p, i.e.

yx = x

2. or x is the worst decision x⊥ (which is
unsupported).

•Optimal decisions
x∗ is an optimal decision in X(p) iff there is no solution
y under p s.t. yx �x x∗

classic combinatorial optimization problem!
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Exhaustive Optimization
•Approach

– for each p ∈ P, find the optimal decision x∗ in X(p)

– we know that all solutions of C satisfy:
yp = p ⇒ yx -x x∗

– we can represent this implication by a rule
if yp = p then yx := x∗.

•Cost
– the number of optimization problem is equal to the

size of P
– the number of rules is equal to the size of P
– P may have exponential size
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Example
Many rules are similar:
• yp1 = 0 ∧ yp2 = 0 ⇒ yx -x 60

• yp1 = 0 ∧ yp2 = 1 ⇒ yx -x 60

• . . .

• yp1 = 0 ∧ yp2 = 30 ⇒ yx -x 60

• yp1 = 0 ∧ yp2 = 31 ⇒ yx -x 50

• yp1 = 0 ∧ yp2 = 32 ⇒ yx -x 50

• . . .

• yp1 = 0 ∧ yp2 = 50 ⇒ yx -x 50

• yp1 = 0 ∧ yp2 = 51 ⇒ yx -x 30
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Relax conditions
•Original Rules

– yp = p ⇒ yx -x x∗

•Relaxing condition:
– yp %p p ⇒ yx -x x∗

•Strict upper bound action:
– yp %p p ⇒ yx ≺x u∗

where u∗ is the worst element in {x ∈ X(p) | x �x x∗}

•Rule:
– if yp %p p then yx := max(yx, x∗).
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Dominance Phenomenon
• Two rules

– yp %p p(1) ⇒ yx ≺x u(1)

– yp %p p(2) ⇒ yx ≺x u(2)

•Dominance
– suppose p(1) %p p(2) and u(1) %x u(2)

– then the second rule makes the first rule redundant
– if a rule r1 makes a rule r2 redundant, but not vice

versa, then we can delete r2
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The Policy Design Problem
•Pareto-dominance

– combined space Z := P × X

– (p(1), u(1)) %z (p(2), u(2)) iff p(1) %p p(2) and u(1) %x u(2)

• Infeasible lower bounds
– (p, u) from Z is a candidate iff
– all solutions y of C satisfy yp %p p ⇒ yx ≺x u iff
– no solution y of C satisfies yp %p p ∧ yx %x u iff
– no solution y of C satisfies ypx %z (p, u)

•Pareto-minimal infeasible lower bounds
– find all infeasible lower bounds (p, u) that are

Pareto-minimal w.r.t. �z
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Outline
•Decision policies
•Design of policies from models

1. Policy design by exhaustive optimization
2. Policy design by Pareto-optimization

•Computing the policy by a dual approach
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Dual Approach: Step I

s2

s3

s1

Pareto-maximal solutions:
find all Pareto-maximal elements of Z that are supported

by a solution
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Dual Approach: Step II

s2

s3

s1

Dominated region (“feasible lower bounds”):
part of Z that is weakly dominated by some

Pareto-maximal solution
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Dual Approach: Step III

c4

c3

c2

c1

s2

s3

s1

Nondominated region (“infeasible lower bounds”)
part of Z that is not weakly dominated by some

Pareto-maximal solution
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Dual Approach: Step IIII

r1

r2

r3

r4

Dual frontier:
Pareto-minimal elements of the non-dominated region
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Pareto-frontier
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Dual frontier
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Rules before catalog change
1. if p1 ≥ 0 ∧ p2 ≥ 0 then x := min(x, 60).

2. if p1 ≥ 0 ∧ p2 ≥ 31 then x := min(x, 40).

3. if p1 ≥ 0 ∧ p2 ≥ 51 then x := min(x, 20).

4. if p1 ≥ 0 ∧ p2 ≥ 61 then x := min(x, 0).

5. if p1 ≥ 21 ∧ p2 ≥ 0 then x := min(x, 40).

6. if p1 ≥ 31 ∧ p2 ≥ 0 then x := min(x, 20).

7. if p1 ≥ 41 ∧ p2 ≥ 0 then x := min(x, 0).
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Rules after catalog change
1. if p1 ≥ 0 ∧ p2 ≥ 0 then x := min(x, 60).

2. if p1 ≥ 0 ∧ p2 ≥ 31 then x := min(x, 50).

3. if p1 ≥ 0 ∧ p2 ≥ 51 then x := min(x, 30).

4. if p1 ≥ 0 ∧ p2 ≥ 61 then x := min(x, 0).

5. if p1 ≥ 21 ∧ p2 ≥ 0 then x := min(x, 40).

6. if p1 ≥ 31 ∧ p2 ≥ 0 then x := min(x, 20).

7. if p1 ≥ 41 ∧ p2 ≥ 0 then x := min(x, 0).
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Conclusion
•New method for policy acquisition

– rules are derived from a domain model
– by Pareto-minimization of ‘infeasible lower bounds’

•Dual approach
– determine Pareto-maximal solutions
– use them to define the constraints of the dual problem
– determine Pareto-minimal solutuions of the dual

problem

•Applications
– web-based configuration
– automated pricing
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