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In some voting contexts, the votes do not come all together at the
same time:

I general elections in Italy: the votes of the citizens living abroad is
known only a few days after the rest of the votes;

I choosing a date for a meeting: some participants express their
preferences later than the others.

We might want to “preprocess” the information given by the
subelectorate so as to “prepare the ground” for the time when the
latecomers will have expressed their votes.

2



“Preparing the ground”?

I minimize on-line time: compile the information, using as much
off-line time and space as needed, in such a way that once the
newcomers have expressed their vote, the outcome can be
computed as fast as possible.
⇒ knowledge compilation (very relevant to voting, especially for
hard voting rules – deserves another paper)

I minimize storage space: synthesize the information contained in
the votes of the subelectorate, using as less space as possible,
while keeping enough information so as to be able to compute
the outcome once the newcomers have expressed their votes.
⇒ the topic of this talk
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A specific context where it is particularly useful to compile the vote of
a subelectorate: verification of the outcome of a vote by the
population.
A frequent situation:

I the electorate is split into different districts; each district counts
its ballots separately and communicates the outcome to the
central authority (e.g. the Ministry of Innner Affairs), which, after
gathering the outcomes from all districts, determines the final
outcome;

I in each district, the voters can check that the local results are
sound;

I local results are made public and voters can check the final
outcome from these local outcomes.
space needed to synthesize the votes of a district

= amount of information the district has to send to the central authority

If this amount of information is too large, it is impractical to publish the
results locally, and therefore, difficult to check the final outcome and
voters may be reluctant to accept the voting rule.
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Related issues:

I complexity of vote elicitation (Conitzer & Sandholm 02): given a
voting rule r , a set of known votes S, and a set of t new voters, is
the outcome of the vote already determined from S?

I computation of possible and necessary winners (Konczak &
Lang 05, Pini et al. 07, Walsh 08, Xia & Conitzer08): given a
voting rule r , a set of incomplete votes, who are the candidates
who can still possibly win the election, and is there a candidate
who surely wins it?

⇒ when the outcome of the vote is already determined from S (=
existence of a necessary winner), the space needed to synthesize the
known votes is just the binary encoding of the winner.

I communication complexity of voting rules (Conitzer & Sandholm
05):

⇒ see later.
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Voting rules

I X set of candidates; p = |X |.
I n voters.
I vote = linear order over X .
I PX = set of all linear orders over X .
I profile: P = 〈V1, . . . ,Vn〉 where each Vi is a vote.
I voting rule r : function from Pn

X to X .

The compilation problem:

Input only m(≤ n) voters have expressed their vote.
P = 〈V1, . . . ,Vm〉 = partial profile obtained from these
m voters.

Question what is the minimal size needed to compile P, while still
being able to compute r when the last votes come in?
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first m voter

Example: rB = Borda.

σ(P ): vector of partial Borda scores 〈sB(x | P )〉x∈X

P = 〈abc, abc, cba, bca〉 7→ σ(P ) = 〈a : 4; b : 5; c : 3〉.

ρ(σ(P ), R) = argmaxx∈X (sB(x | P ) + sB(x | R))

R = 〈cab, abc〉 7→ 〈a : 4 + 3; b : 5 + 1; c : 3 + 2〉 7→ ρ(σ(P ), R) = a.

P = 〈V1, . . . , Vm〉
compilation

winner

σ(P ) σ(P )

last votes
R = 〈Vm+1, . . . , Vn〉

r(P ∪R)

ρ(σ(P ), R)

Test test

7



Compilation function for (r , k):

σ : Pm
X → {0,1}∗

such that there exists a function

ρ : {0,1}∗ × Pk
X → X

with ρ(σ(P),R) = r(P ∪ R) for every P ∈ Pm
X and every R ∈ Pk

X .

Similar definition for k not fixed.
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Size of a compilation function
Let σ be a compilation function for (r , k).

Size(σ) = max{|σ(P)| | P ∈ Pm
X }

Compilation complexity of (r , k):

C(r , k) = min{Size(σ) | σ is a compilation function for (r , k)}

C(r , k) is the minimum space needed to compile the m-voter partial
profile P without knowing the remaining k -voter profile R
(does not take into account the off-line time needed to compute σ, nor
the off-line time needed to compute ρ)
Similarly: C(r) = min{Size(σ) | σ is a compilation function for r}
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Compilation complexity as one-round communication
complexity
One-round communication complexity :

I two agents A and B have to compute a function f .
I each of them knows only a part of the input.
I one-round protocol: A sends only one message to B, and then B

sends the output to A.
I one-round communication complexity of f : worst-case number of

bits of the best one-round protocol for f .
One-round communication complexity ≈ compilation complexity

I A = set of voters having already expressed their votes
I B = set of remaining voters;
I compilation of the votes of A = information that A must send to B.
I minor difference: B does not send back the output to A.
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Compilation complexity vs. standard
communication complexity

Communication complexity of voting rules (Conitzer & Sandholm 05):
given a voting rule r and a set of voters, what is the worst-case cost
of the best protocol allowing to compute the outcome of the election?
Major difference with communication complexity: the agents may use
any protocol (not necessarily one-round).

Therefore: communication complexity is never smaller than standard
communication complexity.

(However, comparing our lower bounds to those in (Conitzer &
Sandholm 05) is not so simple – see the paper.)
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Equivalent profiles for a voting rule
r voting rule;
k number of remaining voters.

I two partial profiles P and Q are (r , k)-equivalent if no matter the
remaining unknown k votes, they will lead to the same outcome:

for every R ∈ Pk
X we have r(P ∪ R) = r(Q ∪ R)

I P and Q are r -equivalent if they are (r , k)-equivalent for every
k ≥ 0.

Example: rP = plurality with tie-breaking priority order b > a > c.

I 〈abc,abc,abc,abc〉 and 〈abc,abc,acb,acb〉 are rP-equivalent;
I P1 = 〈abc,abc,abc,abc〉 and P2 = 〈abc,abc,abc,bca〉 are

(rP , k )-equivalent for k = 1 but not for k ≥ 2.
For k = 2, take R = 〈bca,bca〉: rP(P1 ∪R) = a 6= rP(P2 ∪R) = b.
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A useful result (similar to a result in (Kushilevitz & Nisan, 97)):

I r a voting rule.
I m number of initial voters
I p number of candidates.

If the number of equivalence classes for the r -equivalence relation is
g(m,p) then the compilation complexity of r is exactly dlog g(m,p)e.
(A similar result holds for the compilation complexity of (r , k).)
Corollary:

I the communication complexity of a voting rule is ≤ m log(p!);
I the communication complexity of an anonymous voting rule is
≤ min(m log(p!),p! log m).

I the compilation complexity of a dictatorship is log p;
I the compilation complexity of r is 0 if and only if r is constant.
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Methodology

I seek a characterization of the equivalence classes
I count the number of equivalence classes
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Case study 1: plurality

rP = plurality
Lemma: for any partial m-voter profile P and x ∈ X , let ntop(P, x) be
the number of votes in P ranking x first.

P and P ′ are rP-equivalent iff for every x , ntop(P, x) = ntop(P ′, x).

Corollary: compilation complexity of rP = dlog L(m,p)e where
L(m,p)=

= number of vectors of positive integers 〈α1, . . . , αp〉
s.t.

∑p
i=1 αp = m

=
(p+m−1

m

)
Corollary
The compilation complexity of rP is Θ

(
p log m

p + m log p
m

)
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Case study 2: Borda

rB = Borda
Lemma:
Let scoreB(x ,P) = Borda score of x obtained from the partial profile P

P and P ′ are equivalent for rB iff for every x ,
scoreB(x ,P) = scoreB(x ,P ′).

Theorem
The compilation complexity of rB is at most (p − 1) log m(p − 1).

Lower bound: more difficult (idea = focus on a subset of vectors of
Borda scores). See the paper.

Theorem
The compilation complexity of the Borda rule is Θ(p log mp).
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Case study 3: Rules based on the weighted
majority graph

Let P be a (partial) profile and r a voting rule.

I NP(x , y) = number voters in P preferring x to y .
I majority graph MP = directed graph whose set of vertices is X

and containing an edge from x to y if and only if
NP(x , y) > NP(y , x).

I weighted majority graphMP : same as MP , where each edge
from x to y is weighted by N(x , y)

I r is based on the majority graph if r(P) can be computed from MP

I r based on the weighted majority graph if r(P) can be computed
fromMP .
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Case study 3: Rules based on the weighted
majority graph

Lemma Let r based on the weighted majority graph. IfMP =MP′

then P and P ′ are r -equivalent.
(Note: if r based on the (non-weighted) majority graph, we still need
MP)

T (m,p): number of all weighted tournaments on X that can be
obtained as the weighted majority graph of some m-voter profile.

Theorem The compilation complexity of any rule based on the
weighted majority graph is at most log T (m,p).
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Case study 3: Rules based on the weighted
majority graph

(The compilation complexity of any rule based on the weighted
majority graph is at most log T (m,p))
Getting a lower bound is not possible without a further assumption on
r .
Lemma For any Condorcet-consistent rule r , P r -equivalent to P ′

impliesMP =MP′ .
Therefore:

I the compilation complexity of a Condorcet-consistent rule is at
least log T (m,p).

I if r is both Condorcet-consistent and based on the majority
graph, then its compilation complexity is log T (m,p).

I the compilation complexity of the following rules is log T (m,p):
Copeland, Simpson/maximin, Slater, Banks, uncovered set,
Schwartz.

And finally: log T (m,p) = Θ(p2 log m)
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Case study 4: Plurality with runoff

r2 = plurality with runoff.

Lemma P and Q are r2-equivalent iff this two conditions holds
I for every x , ntop(P, x) = ntop(Q, x)

I for every x , y , NP(x , y) = NQ(x , y).

Theorem: the compilation complexity of plurality with runoff is
log L(m,p) + log T (m,p).
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Further issues

I more results when the number of remaining voters is not fixed;
I for a given voting rule, determine the probability that

I a voting process can be stopped after only m votes are known;
I the central authority would make a mistake were it forced to commit

on a winner in situations where no candidate is yet guaranteed to
prevail;

I design new ways of computing NP-hard voting rules using an
off-line compilation step so that their on-line computation time
becomes polynomial in the size of the initial profile.
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