

Epistemic irrelevance in credal networks

Gert de Cooman

Ghent University, SYSTeMS gert.decooman@UGent.be

Imprecise Probability Workshop Université Paris Dauphine 28 October 2008

イロン イヨン イヨン イヨン

Before we start

De Cooman (UGent)

・ロト ・回ト ・ヨト ・ヨト

Mass functions and expectations

Assume we are uncertain about:

- the value or a variable X
- in a set of possible values \mathscr{X} .

This is usually modelled by a probability mass function p on \mathscr{X} :

$$p(x) \ge 0$$
 and $\sum_{x \in \mathscr{X}} p(x) = 1;$

With p we can associate an expectation operator E_p :

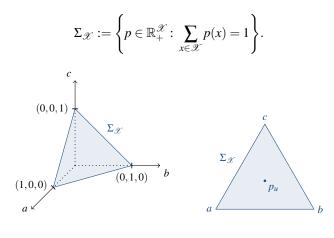
$$E_p(f) := \sum_{x \in \mathscr{X}} p(x) f(x)$$
 where $f : \mathscr{X} \to \mathbb{R}$.

If $A \subseteq \mathscr{X}$ is an event, then its probability is given by

$$P_p(A) = \sum_{x \in A} p(x) = E_p(I_A).$$

The simplex of all probability mass functions

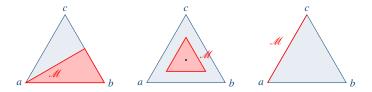
Consider the simplex $\Sigma_{\mathscr{X}}$ of all mass functions on \mathscr{X} :



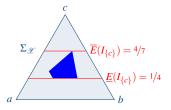
Credal sets

Definition

A credal set \mathscr{M} is a convex closed subset of $\Sigma_{\mathscr{X}}$.



Lower and upper expectations



Equivalent model

Consider the set $\mathscr{L}(\mathscr{X}) = \mathbb{R}^{\mathscr{X}}$ of all real-valued maps on \mathscr{X} . We define two real functionals on $\mathscr{L}(\mathscr{X})$: for all $f : \mathscr{X} \to \mathbb{R}$

 $\underline{E}_{\mathscr{M}}(f) = \min \{ E_p(f) : p \in \mathscr{M} \} \text{ lower expectation}$ $\overline{E}_{\mathscr{M}}(f) = \max \{ E_p(f) : p \in \mathscr{M} \} \text{ upper expectation.}$

Observe that [conjugacy]:
$$\overline{E}_{\mathscr{M}}(f) = -\underline{E}_{\mathscr{M}}(-f).$$

De Cooman (UGent)

Basic properties of upper expectations

Definition

We call a real functional \overline{E} on $\mathscr{L}(\mathscr{X})$ an upper expectation if it satisfies the following properties:

For all f and g in $\mathscr{L}(\mathscr{X})$ and all real $\lambda \geq 0$:

- $\overline{E}(f) \leq \max f$ [boundedness];

• $\overline{E}(\lambda f) = \lambda \overline{E}(f)$ [non-negative homogeneity].

Theorem (Other properties)

Let \overline{E} be an upper expectation, with conjugate lower expectation \underline{E} . Then for all real numbers μ and all f and g in $\mathscr{L}(\mathscr{X})$:

$$\underline{E}(f) \leq \overline{E}(f);$$

$$\underline{E}(f) + \underline{E}(g) \leq \underline{E}(f+g) \leq \underline{E}(f) + \overline{E}(g) \leq \overline{E}(f+g) \leq \overline{E}(f) + \overline{E}(g);$$

- $\textcircled{0} \ \overline{E}(|f|) \geq |\underline{E}(f)| \ \textit{and} \ \overline{E}(|f|) \geq |\overline{E}(f)|.$

Lower Envelope Theorem

Theorem (Lower Envelope Theorem)

A real functional \overline{E} is an upper expectation if and only if it is the upper envelope of some credal set \mathcal{M} .

Proof.

Use
$$\mathscr{M} = \{ p \in \Sigma_{\mathscr{X}} : (\forall f \in \mathscr{L}(\mathscr{X})) (E_p(f) \leq \overline{E}(f)) \}.$$

Types of independence

Three possible definitions

Epistemic irrelevance

 X_2 is epistemically irrelevant to X_1 , conditional on X_3 :

 $\overline{E}(f(X_1)|X_2,X_3) = \overline{E}(f(X_1)|X_3)$

Epistemic independence

 X_1 and X_2 are epistemically independent, conditional on X_3 :

 $\overline{E}(f(X_1)|X_2,X_3) = \overline{E}(f(X_1)|X_3)$ and $\overline{E}(g(X_2)|X_1,X_3) = \overline{E}(g(X_2)|X_3)$

Strong independence

Model $\overline{E}(h(X_1, X_2)|X_3)$ is an upper envelope of precise independent models

(I)

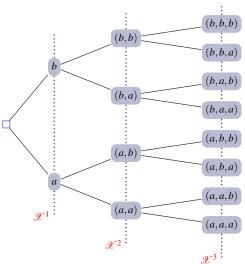
Precise probability trees

We consider an uncertain process with variables $X_1, X_2, ..., X_n, ...$ assuming values in a finite set of states \mathscr{X} .

This leads to a standard event tree with nodes

 $s = (x_1, x_2, \ldots, x_n), \quad x_k \in \mathscr{X}, \quad n \ge 0.$

Precise probability trees



< 3 >

Precise probability trees

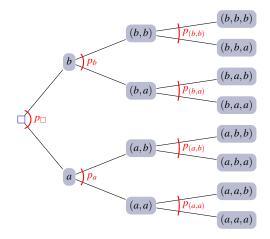
We consider an uncertain process with variables $X_1, X_2, ..., X_n, ...$ assuming values in a finite set of states \mathscr{X} .

This leads to a standard event tree with nodes

 $s = (x_1, x_2, \dots, x_n), \quad x_k \in \mathscr{X}, \quad n \ge 0.$

The standard event tree becomes a probability tree by attaching to each node *s* a local probability mass function p_s on \mathscr{X} with associated expectation operator E_s .

Precise probability trees



Calculating global expectations from local ones

Consider a function $g: \mathscr{X}^n \to \mathbb{R}$ of the first *n* variables:

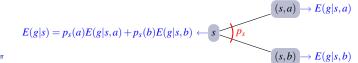
 $g = g(X_1, X_2, \ldots, X_n)$

We want to calculate its expectation E(g|s) in $s = (x_1, \dots, x_k)$.

Theorem (Law of Iterated Expectation)

Suppose we know E(g|s,x) for all $x \in \mathscr{X}$, then we can calculate E(g|s) by backwards recursion using the local model p_s :

$$E(g|s) = \underbrace{E_s}_{local}(E(g|s, \cdot)) = \sum_{x \in \mathscr{X}} p_s(x)E(g|s, x).$$



Calculating global expectations from local ones

All expectations $E(g|x_1,...,x_k)$ in the tree can be calculated from the local models as follows:

() start in the final cut \mathscr{X}^n and let:

 $E(g|x_1,x_2,\ldots,x_n)=g(x_1,x_2,\ldots,x_n);$

Ø do backwards recursion using the Law of Iterated Expectation:

$$E(g|x_1,\ldots,x_k) = \underbrace{E_{(x_1,\ldots,x_k)}}_{\text{local}} (E(g|x_1,\ldots,x_k,\cdot))$$

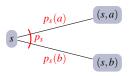
(a) go on until you get to the root node \Box , where:

 $E(g|\Box) = E(g).$

Sets of mass functions

Major restrictive assumption

Until now, we have assumed that we have sufficient information in order to specify, in each node *s*, a probability mass function p_s on the set \mathscr{X} of possible values for the next state.



More general uncertainty models

We consider credal sets as more general uncertainty models: closed convex subsets of $\Sigma_{\mathscr{X}}$.

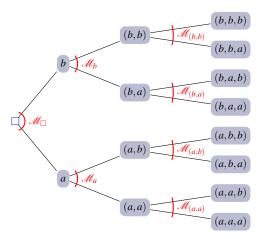
Definition and interpretation

Definition

An imprecise probability tree is a probability tree where in each node *s* the local uncertainty model is an imprecise probability model \mathcal{M}_s , or equivalently, its associated upper expectation \overline{E}_s :

 $\overline{E}_s(f) = \max \left\{ E_p(f) \colon p \in \mathscr{M}_s \right\} \text{ for all real maps } f \text{ on } \mathscr{X}.$

Definition and interpretation



Definition and interpretation

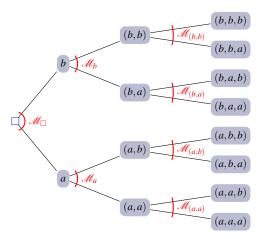
Definition

An imprecise probability tree is a probability tree where in each node *s* the local uncertainty model is an imprecise probability model \mathcal{M}_s , or equivalently, its associated upper expectation \overline{E}_s :

 $\overline{E}_s(f) = \max \left\{ E_p(f) \colon p \in \mathscr{M}_s \right\} \text{ for all real maps } f \text{ on } \mathscr{X}.$

An imprecise probability tree can be seen as an infinity of compatible precise probability trees: choose in each node *s* a probability mass function p_s from the set \mathcal{M}_s .

Definition and interpretation



Associated lower and upper expectations

For each real map $g = g(X_1, ..., X_n)$, each node $s = (x_1, ..., x_k)$, and each such compatible precise probability tree, we can calculate the expectation

 $E(g|x_1,\ldots,x_k)$

using the backwards recursion method described before.

By varying over each compatible probability tree, we get a closed real interval:

 $[\underline{E}(g|x_1,\ldots,x_k),\overline{E}(g|x_1,\ldots,x_k)]$

We want a better, more efficient method to calculate these lower and upper expectations $\underline{E}(g|x_1,...,x_k)$ and $\overline{E}(g|x_1,...,x_k)$.

The Law of Iterated Expectation

Theorem (Law of Iterated Expectation)

Suppose we know $\overline{E}(g|s,x)$ for all $x \in \mathscr{X}$, then we can calculate $\overline{E}(g|s)$ by backwards recursion using the local model \overline{E}_s :

$$\overline{E}(g|s) = \underbrace{\overline{E}_s}_{local}(\overline{E}(g|s, \cdot)) = \max_{p_s \in \mathscr{M}_s} \sum_{x \in \mathscr{X}} p_s(x)\overline{E}(g|s, x).$$

$$\overline{E}(g|s) = \overline{E}_s(\overline{E}(g|s, \cdot)) \leftarrow s \qquad (s,a) \to \overline{E}(g|s,a)$$

$$(s,b) \to \overline{E}(g|s,b)$$

The complexity of calculating the $\overline{E}(g|s)$, as a function of *n*, is therefore essentially the same as in the precise case!

Definition

Definition

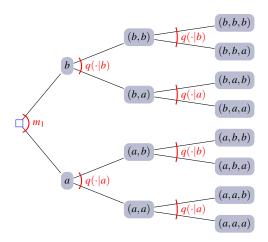
The uncertain process is a stationary precise Markov chain when all M_s are singletons (precise), and

$$M_{\Box} = \{m_1\},$$

the Markov Condition is satisfied:

$$\mathscr{M}_{(x_1,\ldots,x_n)}=\{q(\cdot|x_n)\}.$$

Definition



э.

Definition

Definition

The uncertain process is a stationary precise Markov chain when all M_s are singletons (precise), and

$$\mathfrak{M}_{\square} = \{m_1\},$$

the Markov Condition is satisfied:

$$\mathcal{M}_{(x_1,\ldots,x_n)}=\{q(\cdot|x_n)\}.$$

For each $x \in \mathscr{X}$, the transition mass function $q(\cdot|x)$ corresponds to an expectation operator:

$$E(f|x) = \sum_{z \in \mathscr{X}} q(z|x)f(z).$$

Transition operators

Definition

Consider the linear transformation T of $\mathscr{L}(\mathscr{X})$, called transition operator:

 $\mathrm{T}\colon \mathscr{L}(\mathscr{X}) \to \mathscr{L}(\mathscr{X})\colon f \mapsto \mathrm{T} f$

where T*f* is the real map given by, for any $x \in \mathscr{X}$:

$$Tf(x) := E(f|x) = \sum_{z \in \mathscr{X}} q(z|x)f(z)$$

T is the dual of the linear transformation with Markov matrix *M*, with elements $M_{xy} := q(y|x)$.

Transition operators

Definition

Consider the linear transformation T of $\mathscr{L}(\mathscr{X})$, called transition operator:

 $\mathrm{T}\colon \mathscr{L}(\mathscr{X}) \to \mathscr{L}(\mathscr{X})\colon f \mapsto \mathrm{T} f$

where T*f* is the real map given by, for any $x \in \mathscr{X}$:

$$Tf(x) := E(f|x) = \sum_{z \in \mathscr{X}} q(z|x)f(z)$$

T is the dual of the linear transformation with Markov matrix *M*, with elements $M_{xy} := q(y|x)$.

Then the Law of Iterated Expectation yields:

$$E_n(f) = E_1(\mathbf{T}^{n-1}f)$$
, and dually, $m_n^T = m_1^T M^{n-1}$.

Complexity is linear in the number of time steps n.

De Cooman (UGent)

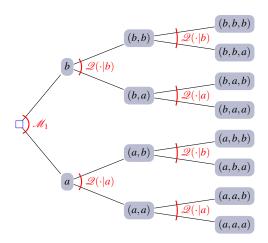
Definition

Definition

The uncertain process is a stationary imprecise Markov chain when the Markov Condition is satisfied:

$$\mathscr{M}_{(x_1,\ldots,x_n)}=\mathscr{Q}(\cdot|x_n).$$

Definition



< E.

Definition

Definition

The uncertain process is a stationary imprecise Markov chain when the Markov Condition is satisfied:

$$\mathscr{M}_{(x_1,\ldots,x_n)}=\mathscr{Q}(\cdot|x_n).$$

An imprecise Markov chain can be seen as an infinity of probability trees.

For each $x \in \mathscr{X}$, the local transition model $\mathscr{Q}(\cdot|x)$ corresponds to lower and upper expectation operators:

$$\underline{E}(f|x) = \min \left\{ E_p(f) \colon p \in \mathcal{Q}(\cdot|x) \right\}$$
$$\overline{E}(f|x) = \max \left\{ E_p(f) \colon p \in \mathcal{Q}(\cdot|x) \right\}.$$

Lower and upper transition operators

Definition

Consider the non-linear transformations <u>T</u> and <u>T</u> of $\mathscr{L}(\mathscr{X})$, called lower and upper transition operators:

$$\begin{split} \underline{\mathrm{T}} \colon \mathscr{L}(\mathscr{X}) \to \mathscr{L}(\mathscr{X}) \colon f \mapsto \underline{\mathrm{T}} f \\ \overline{\mathrm{T}} \colon \mathscr{L}(\mathscr{X}) \to \mathscr{L}(\mathscr{X}) \colon f \mapsto \overline{\mathrm{T}} f \end{split}$$

where the real maps $\underline{T}f$ and $\overline{T}f$ are given by:

$$\underline{\mathrm{T}}f(x) := \underline{E}(f|x) = \min\left\{E_p(f) : p \in \mathscr{Q}(\cdot|x)\right\}$$
$$\overline{\mathrm{T}}f(x) := \overline{E}(f|x) = \max\left\{E_p(f) : p \in \mathscr{Q}(\cdot|x)\right\}$$

Lower and upper transition operators

Definition

Consider the non-linear transformations <u>T</u> and <u>T</u> of $\mathscr{L}(\mathscr{X})$, called lower and upper transition operators:

 $\begin{array}{l} \underline{\mathrm{T}} \colon \mathscr{L}(\mathscr{X}) \to \mathscr{L}(\mathscr{X}) \colon f \mapsto \underline{\mathrm{T}} f \\ \overline{\mathrm{T}} \colon \mathscr{L}(\mathscr{X}) \to \mathscr{L}(\mathscr{X}) \colon f \mapsto \overline{\mathrm{T}} f \end{array}$

where the real maps $\underline{T}f$ and $\overline{T}f$ are given by:

$$\underline{\mathrm{T}}f(x) := \underline{E}(f|x) = \min\left\{E_p(f) : p \in \mathscr{Q}(\cdot|x)\right\}$$

$$\overline{\mathrm{T}}f(x) := \overline{E}(f|x) = \max\left\{E_p(f) : p \in \mathscr{Q}(\cdot|x)\right\}$$

Then the Law of Iterated Expectation yields:

$$\underline{E}_n(f) = \underline{E}_1(\underline{T}^{n-1}f) \text{ and } \overline{E}_n(f) = \overline{E}_1(\overline{T}^{n-1}f).$$

Complexity is still linear in the number of time steps n_{res} ,

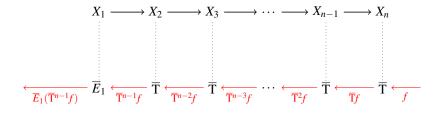
De Cooman (UGent)

Irrelevance in credal nets

Message passing

Important observation

The backpropagation can be seen as message passing.



イロト イポト イヨト イヨト 二日

A special credal network

under epistemic irrelevance

An imprecise Markov chain can also be depicted as follows:

$$X_1 \longrightarrow X_2 \longrightarrow X_3 \longrightarrow \cdots \longrightarrow X_{n-1} \longrightarrow X_n$$

Interpretation of the graph

Conditional on X_k we have that X_1, \ldots, X_{k-1} are epistemically irrelevant to X_{k+1}, \ldots, X_n :

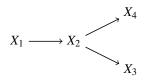
$$\overline{E}(f(X_{k+1},\ldots,X_n)|X_1,\ldots,X_{k-1},X_k)=\overline{E}(f(X_{k+1},\ldots,X_n)|X_k)$$

Credal networks under epistemic irrelevance

The graphical structure is interpreted as follows:

Conditional on the parents, the non-parent non-descendants of each node are epistemically irrelevant to it.

Credal networks under epistemic irrelevance

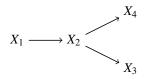


- X₁ is epistemically irrelevant to X₃, conditional on X₂
- X_3 need not be epistemically irrelevant to X_1 , conditional on X_2 .

Conclusion

 X_1 and X_3 need not be epistemically, and certainly not strongly independent, conditional on X_2 .

Credal networks under epistemic irrelevance Example



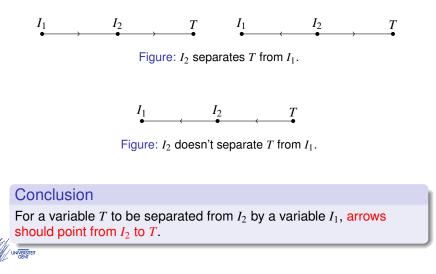
- X₃ is epistemically irrelevant to X₄, conditional on X₂
- *X*₄ is epistemically irrelevant to *X*₃, conditional on *X*₂.

Conclusion

 X_3 and X_4 are epistemically, but not necessarily strongly, independent, conditional on X_2 .

Credal networks under epistemic irrelevance

Some separation properties



Credal networks under epistemic irrelevance

As an expert system

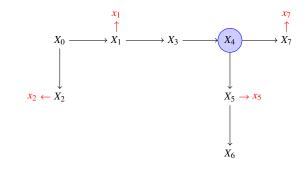
Message passing algorithm

- when the credal network is a (Markov) tree
- treated as an expert system
- linear complexity in the number of nodes

Python code

- written by Filip Hermans
- testing and connection with strong independence by Alessandro Antonucci

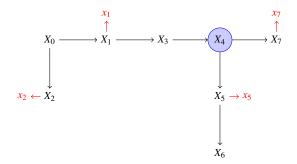
A particular Markov tree



We are looking for:

 $\underline{E}(f(X_4)|x_1,x_2,x_5,x_7)$

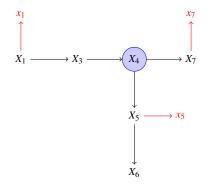
A particular Markov tree



This is the unique μ such that:

 $\underline{E}([f(X_4) - \mu]I_{\{x_1\}}I_{\{x_2\}}I_{\{x_5\}}I_{\{x_7\}}) = 0$

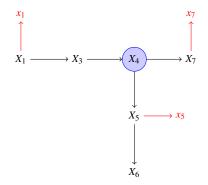
A particular Markov tree



This is the unique μ such that:

```
\underline{E}([f(X_4) - \mu]I_{\{x_5\}}I_{\{x_7\}}|x_1) = 0
```

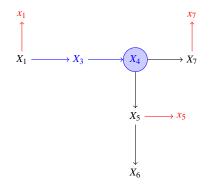

A particular Markov tree



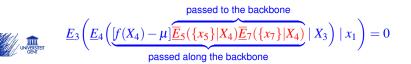
This is the unique μ such that:

 $\underline{E}_3(\underline{E}_4([f(X_4)-\mu]\overline{\underline{E}}_5(\{x_5\}|X_4)\overline{\underline{E}}_7(\{x_7\}|X_4)|X_3)|x_1)=0$

A particular Markov tree



This is the unique μ such that:



Literature

Gert de Cooman and Filip Hermans. Imprecise probability trees: Bridging two theories of imprecise probability. Artificial Intelligence, 2008, vol. 172, pp. 1400–1427. (arXiv:0801.1196v1). Gert de Cooman, Filip Hermans, and Erik Quaeghebeur. Imprecise Markov chains and their limit behaviour. Submitted for publication (arXiv:0801.0980). Glenn Shafer and Vladimir Vovk. Probability and Finance: It's Only a Game! Wiley, New York, 2001. Peter Walley. Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London, 1991.