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The setting
Take a set of alternativesA, a set of statesS and a set
of consequencesC. We consider an order� between
the alternatives, so:

• a � b means ‘alternativea is preferred to
alternativeb’.

• a ≻ b means ‘alternativea is strictly preferred to
alternativeb’.

• a ∼ b means ‘alternativea is indifferent to
alternativeb’.

The idea of an axiomatisation is to provide necessary
and sufficient conditions on� to be able to represent
it by means of anexpected utility model.

A state-independent preference representation in he continuous case – p. 2/39



Some axiomatisations

• L. Savage,The foundations of statistics. Wiley,
1954.

• F. Anscombe and R. Aumann,A definition of
subjective probability. Annals of Mathematical
Statistics, 34, 199-205, 1963.

• M. de Groot,Optimal Statistical Decisions.
McGraw Hill, 1970.
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The completeness axiom

The axiomatisations above all require that� is weak
order, i.e., complete and transitive: this means in
particular that we can express our preferences
between any pair of alternatives.

Then we obtain auniqueutility function u overC and
a unique probabilityp overs such that

a � b ⇔

∫

S

∫

C

u(c(a, s))p(s)dcds

≥

∫

S

∫

C

u(c(b, s))p(s)dcds.
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Dealing with incomplete information

If we do not have enough information, it is more
reasonable that the order between the alternatives is
only a quasi-order (reflexive and transitive): there will
be alternatives for which we cannot express a
preference with guarantees.

→֒ But then there will not be a unique probability
and/or utility representing our information!
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Generalisations to imprecise utilities

We consider a unique probability distribution over S
and a set U of utility functions over C.

• R. Aumann,Utility theory without the
completeness axiom. Econometrica 30, 445-462,
1962.

• J. Dubra, F. Maccheroni, E. Ok,Expected utility
theory without the completeness axiom. Journal
of Economic Theory, 115, 118-133, 2004.
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Generalisations to imprecise beliefs
We consider a convex setP of probability
distributions overS and a unique utility functionu.

• D. Ríos Insua, F. Ruggeri,Robust Bayesian
Analysis. Lecture Notes in Statistics 152.
Springer, 2000.

• P. Walley,Statistical Reasoning with Imprecise
Probabilities. Chapman and Hall, 1991.

• R. Rigotti, C. Shannon,Uncertainty and risk in
financial markets. Econometrica, 73, 203–243,
2005.
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Imprecise utilities and beliefs
Our goal is to give an axiomatisation for the case
where both probabilities and utilities are imprecise, so
we have a setP of probabilities and a setU of utilities
which are paired up arbitrarily. Some early work in
this direction can be found in

• D. Ríos Insua,Sensitivity analysis in
multiobjective decision making. Springer, 1990.

• D. Ríos Insua,On the foundations of decision
making under partial information. Theory and
Decision, 33, 83-100, 1992.
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State dependence and independence
In general the axiomatisations for imprecise beliefs
and utilities are made for so-calledstate-dependent
utilities, i.e., functionsv : S × C → R, such that

a � b ⇔

∫

S

∫

C

v(s, c(a, s))dcds

≥

∫

S

∫

C

v(s, c(b, s))dcds ∀v ∈ V.

v is calledstate-independentor aprobability-utility
pair when it can be expressed as a product of a
probability p over S and a utility U over C:

v(s, c) = p(s)u(c) ∀s, c.
A state-independent preference representation in he continuous case – p. 9/39



Some state independent representa-
tions

•• R. Nau,The shape of incomplete preferences.
Annals of Statistics, 34(5), 2430-2448, 2006.

• T. Seidenfeld, M. Schervisch, J. Kadane,A
representation of partially ordered preferences.
Annals of Statistics, 23(6), 2168-2217, 1995.

• A. García del Amo and D. Ríos Insua,A note on
an open problem in the foundations of statstics.
RACSAM, 96(1), 55-61, 2002.
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Nau’s framework
• A finiteset of states S and afiniteset of

consequences C.

• The setB of horse lotteriesf : S → P(C).

• Hc denotes the lottery such that
Hc(s)(c) = 1 ∀s ∈ S.

• 1 denotes the best consequence inC, and0 the
worst.

• For anyE ⊆ S and any horse lotteriesf, g,
Ef + Ecg is the horse lottery equal tof(s) if
s ∈ E and tog(s) is s /∈ E.
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The axioms

(A1) � is transitive and reflexive.

(A2) f � g ⇔ αf + (1 − α)h � αg + (1 − α)h ∀α ∈
(0, 1), h.

(A3) fn � gn ∀n, fn → f, gn → g ⇒ f � g.

(A4) H1 � Hc � H0 ∀c.

(A5) H1 ≻ H0.
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A state-dependent representation

� satisfies A1–A5⇔ it is represented by a closed
convex set of state-dependent utility functionsV, in
the sense that

f � g ⇔ Uv(f) ≥ Uv(g) ∀v ∈ V,

where
Uv(f) =

∑

s∈S,c∈C

f(s, c)v(s, c).
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A state-independent representation

(A6) If f, g are constant,f ′ � g′, HE � Hp, HF � Hq

with p > 0, then

αEf + (1 − α)f ′ � αEg + (a − α)g′

⇒ βFf + (1 − β)f ′ � βFg + (1 − β)g′

for β = 1 if α = 1 and forβ s.t. β

1−β
≤ α

1−α

p

q
.

� satisfies (A1)–(A6) if and only if it is represented
by a setV ′ of state-independent utilities,

f � g ⇔ Uv(f) ≥ Uv(g)∀v ∈ V ′,

whereUv(f) =
∑

s∈S,c∈C f(s, c)p(s)u(c).
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Seidenfeld, Schervisch, Kadane

• A countableset of consequencesC.

• A finiteset of statesS.

• Horse lotteriesf : S → P(C), and in particular
simplehorse lotteries, i.e., horse lotteries for
whichf(s) is a simple probability distribution for
all s.

• A strict preference relationship≻ over horse
lotteries.
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The axioms
(A1) ≻ is transitive and irreflexive.

(A2) For anyf, g, h, and anyα ∈ (0, 1),
αf + (1 − α)h ≻ αg + (1 − α)h ⇔ f ≻ g.

(A3) Let (fn)n → f, (gn)n → g. Then:
• fn ≻ gn ∀n andg ≻ h ⇒ f ≻ h.
• fn ≻ gn ∀n andh ≻ f ⇒ h ≻ g.

If ≻ satisfies axioms (A1)–(A3), then:
• It can be extended to a weak order� satisfying

(A2), (A3).
• ≻ is uniquely represented by a (bounded) utilityv

that agrees with≻ onsimplehorse lotteries.
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The representation theorem above is made in terms of
state-dependent utilities: anyv has associated a
probabilityp and utility functionsu1, . . . , un, so that
for every horse lotteryf ,

v(f) =
n

∑

j=1

p(sj)uj(f(s)).

The goal would be to haveu1 = . . . , un, i.e.,
state-independent utilities.
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Almost state-independent utilities

≻ admits almost state-independent utilities when for
any finite set of rewards{r1, . . . , rn}, ǫ > 0, there is a
pair (p, uj) s.t. for any{s1, . . . , sk} s.t.
∑k

i=1 p(si) > 1 − ǫ,

max
1≤i≤n,1≤j 6=j′≤k

|uj(ri) − uj′(ri)| < ǫ.
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Some definitions
A states is≻-potentially nullwhen for any horse
lotteriesf, g with f(s′) = g(s′) ∀s′ 6= s, f ∼ g.

We denotefL the horse lottery which is constant on
the probability distributionL overC.

Given a constant horse lotteryfLα
,

fα
j,m :=

{

(1 − 2−m)f0 + 2−mfLα
if s 6= sj

fLα
if s = sj
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An (almost) state-independent repre-
sentation

• (A4) If sj is not≻ potentially null, then for each
actsfL1

, fL2
, f1, f2, fL1

≻ fL2
⇔ f1 ≻ f2, where

fi(s) = fi if s = sj, f1(s) = f2(s) otherwise.
• (A5) For any two constant horse lotteries

fLα
, fLβ

, it holds that

fLα
≻ fLβ

⇔ fα
j,m ≻ fβ

j,m ∀m ∈ N,∀j.

If ≻ satisfies (A1)–(A5), then it admits almost
state-independent utilites.
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Ríos Insua and García del Amo

• A compactsetS ⊆ R
n of states.

• A compactsetC ⊆ R
m of consequences.

• The set of Young measuresf : S → ca(C),
whereca(C) are the signed measures of bounded
variation onBX .
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The axioms

(A1) � is transitive and reflexive.

(A2) For anyf, g, h horse lotteries,α ∈ (0, 1),
f � g ⇒ αf + (1 − α)h � αg + (1 − α)h.

(A3) If fn � gn ∀n andfn → f, gn → g, thenf � g.
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A state-dependent representation

� satisfies (A1)–(A3) if and only if there is a set of
state-dependent utilitiesV of the form

v(s, c) =

j
∑

i=1

ui(s)pi(c),

with ui a utility function overS andpi a density
function onC for i = 1, . . . , j, j ∈ N, such that

f � g ⇔

∫

S

∫

C

v(s, c)dfs(c)ds ≥

∫

S

∫

C

v(s, c)dgs(c)dc∀v ∈
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The problem
The goal would be to give an axiomatisation of
state-independent representations in the context of
Ríos Insua and García del Amo, i.e.:

• For a compact set of statesS.
• For a compact set of consequencesC.

An idea would be to use functional analysis results so
that in the above representation we havej = 1.

Another idea would be to extend Nau’s or Seidenfeld
et al.’s results using limit arguments.
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Discretising the spaces
For any natural numbern, we can considerSn, Cn

discretisations ofS, C with diameters smaller than12n .

We may also assume without loss of generality that
givenn > n′, Sn is a refinement of the partitionSn′

andCn is a refinement ofCn′

.

We shall denotekn the number of different elements
in the partitionSn andjn the total number of elements
in the partitionCn.
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Relating the horse lotteries (I)
For each natural numbern and each setSi

n in the
partitionSn, we select an elementsi

n in Si
n.

This means just taking a selectionUn of

Γn : S → P(S)

s →֒ Si
n ⇔ s ∈ Si

n.

We assume that givenn > n′, the selectionsUn, Un′

areconsistent:

Un′(s) ∈ Γn(s) ⇒ Un(s) = Un′(s).
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Relating the horse lotteries (II)

LetFn := FSn,Cn denote the set of horse lotteries
betweenSn andCn.

Consider the mappingπn : F → Fn given by

πn(f)(Si
n)(C

j
n) := f(si

n)(C
j
n) ∀Cj

n ∈ Cn, S
i
n ∈ Sn.

πn is onto.
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Discretising the relationship
Let� be a preference relation onF . Then for each
natural number we define a preference relation�n on
Fn by

f �n g ⇔ ∀f ′ ∈ π−1
n (f), g′ ∈ π−1

n (g), f � g.

1. If � is transitive, so is�n.

2. If � is antisymmetric, so is�n.
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But...

1. �n may not be reflexive, even if� is!

2. �n may not be a total order, even if� is!

As a consequence,

∃n0 ∈ N s.t.πn(f) �n πn(g) ∀n ≥ n0 ⇒ f � g

but the converse is not necessarily true.
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Projecting probabilities and utilities

For any natural numbern, let

Hn : U → Un

u →֒ Hn(u) : C → R

c →֒ u(cj
n) ⇔ c ∈ Cj

n.

We consider also the functionalTn : PS → PSn
, given

by Tn(P )(Si
n) = P (Si

n) for all Si
n ∈ Sn.
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Properties ofHn, Tn

• For any natural numbern, Hn, Tn are onto.

• If we consider onUC the topology of uniform
convergence and onUn the topology of
point-wise convergence, thenTn is a continuous
mapping for alln.

• If we consider onPS the weak-* topology and on
PSn

the topology of weak convergence, thenHn

is a continuous mapping for alln.
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If for �n satisfies the axioms (A1)-(A6) of Nau, there
is some setBn × Cn of probability/utility pairs
(Pn, Un), wherePn ∈ PSn, Un ∈ UCn such that

f �n g ⇔ EPn,Un
(f) ≤ EPn,Un

(g) ∀(Pn, Un) ∈ Bn×Cn.

The idea is to use these to obtain a representation of
�.
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Step by step projection
Let us define the mappingπn,n+1 : Fn → P(Fn+1),
that assigns to anyf ∈ Fn the set of horse lotteries in
Fn+1 satisfying that for anyg ∈ π−1

n+1(f
′), πn(g) = f .

Let f, g be horse lotteries inFn, and consider
arbitraryf ′ ∈ πn,n+1(f), g′ ∈ πn,n+1(g).

1. f �n g ⇒ f ′ �n+1 g′.

2. f ∼n g ⇒ f ′ ∼n+1 g′.
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We can relate in this way the expected utilities.
Let P be a probability measure onS andu a utility
function onC. For anyf ∈ Fn there isf ′ ∈ Fn+1

such that

E(Tn(P ),Hn(u))(f) = E(Tn+1(P ),Hn+1(u))(f
′).

Moreover,f ′ ∈ πn,n+1(f).
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Making the limit
We can prove thatT−1

n (Bn) ⊆ PS andH−1
n (Cn) ⊆ UC

are compact for alln.

As a consequence,∩nT
−1
n (Bn),∩nH

−1
n (Cn) ∩ U∗ are

non-empty.

Let A := {(P,U) ∈ ∩nT
−1
n (Bn) × ∩nH

−1
n (Cn)} be

the corresponding set of probability/utility pairs.
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Continuous horse lotteries
LetF ′ be the set ofcontinuoushorse lotteries, where
we consider the Euclidean distance onS and the
weak-* topology onPC. This means that for all
f ∈ F ′, all ǫ > 0 and allu ∈ UC there is someδ > 0
such that

‖s − s′‖ < δ ⇒ |Ef(s)(u) − Ef(s′)(u)| < ǫ,

whereEf(s)(u) =
∫

C u(c)f(s)(c)dc.
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Representing (a bit)�

• For any(P,U) ∈ A and any horse lotteryf ∈ F ′,
E(P,U)(f) = limn E(Tn(P ),Hn(U))(πn(f)).

• For anyf, g ∈ F ,
E(P,U)(f) < E(P,U)(g) ∀(P,U) ∈ A ⇒ f � g.
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But still there are many problems:

• This approach will only work with horse lotteries
satisfying some kind of continuity.

• The definition of�n is not satisfactory, and as a
consequence we do not obtain the converse in the
previous theorem.

• There may be problems with finitely versus
σ-additive probabilities.
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Other approaches
• Trying to work with thestrict preferences, like

Seidenfeld.
• Look for functional analysis results that help

generalising the work by Ríos and del Amo.
• ...and any other ideas you may have!
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