A state-independent preference representation in he continuouscase

David Ríos, Enrique Miranda

Rey Juan Carlos University, University of Oviedo

COST meeting, October 2008

A state-independent preference representation in he continuous case $-$ p. 1/39

The setting

Take a set of alternatives A , a set of states S and a set of consequences *C*. We consider an order \succeq between the alternatives so: the alternatives, so:

- $a \succeq b$ means 'alternative a is preferred to alternative b alternative b^{\prime} .
- $a \succ b$ means 'alternative a is strictly preferred to alternative b^3 alternative b^{\prime} .
- $a \sim b$ means 'alternative a is indifferent to alternative b^3 alternative b^{\prime} .

The idea of an axiomatisation is to provide necessaryand sufficient conditions on \succeq to be able to represent
it by moons of an expected utility model it by means of an *expected utility model*.

Some axiomatisations

- L. Savage, *The foundations of statistics*. Wiley, 1954.
- F. Anscombe and R. Aumann, *A definition ofsubjective probability*. Annals of MathematicalStatistics, 34, 199-205, 1963.
- M. de Groot, *Optimal Statistical Decisions*. McGraw Hill, 1970.

The completeness axiom

The axiomatisations above all require that \succeq is weak
order i.e., complete and transitive; this means in order, i.e., complete and transitive: this means inparticular that we can express our preferencesbetween any pair of alternatives.

Then we obtain a *unique* utility function u over C and α wright probability α over a such that a unique probability p over s such that

$$
a \succeq b \Leftrightarrow \int_{S} \int_{C} u(c(a, s)) p(s) d c ds
$$

$$
\ge \int_{S} \int_{C} u(c(b, s)) p(s) d c ds.
$$

Dealing with incomplete information

If we do not have enough information, it is more reasonable that the order between the alternatives is only ^a quasi-order (reflexive and transitive): there willbe alternatives for which we cannot express ^apreference with guarantees.

 \hookrightarrow But then there will not be a unique probability and/or utility representing our information! and/or utility representing our information!

Generalisations to imprecise utilities

We consider a unique probability distribution over S and ^a set U of utility functions over C.

- R. Aumann, *Utility theory without the completeness axiom*. Econometrica 30, 445-462, 1962.
- J. Dubra, F. Maccheroni, E. Ok, *Expected utility theory without the completeness axiom*. Journalof Economic Theory, 115, 118-133, 2004.

Generalisations to imprecise beliefs

We consider a convex set P of probability distributions over S and a unique utility function u .

- D. Ríos Insua, F. Ruggeri, *Robust BayesianAnalysis*. Lecture Notes in Statistics 152. Springer, 2000.
- P. Walley, *Statistical Reasoning with ImpreciseProbabilities*. Chapman and Hall, 1991.
- R. Rigotti, C. Shannon, *Uncertainty and risk in financial markets*. Econometrica, 73, 203–243, 2005.

Imprecise utilities and beliefs

Our goal is to give an axiomatisation for the case where both probabilities and utilities are imprecise, sowe have a set P of probabilities and a set U of utilities which are paired up arbitrarily. Some early work inthis direction can be found in

- D. Ríos Insua, *Sensitivity analysis inmultiobjective decision making*. Springer, 1990.
- D. Ríos Insua, *On the foundations of decision making under partial information*. Theory andDecision, 33, 83-100, 1992.

State dependence and independence

In general the axiomatisations for imprecise beliefs and utilities are made for so-called *state-dependent* utilities, i.e., functions $v : S \times C \rightarrow \mathbb{R}$, such that

$$
a \succeq b \Leftrightarrow \int_{S} \int_{C} v(s, c(a, s)) d c ds
$$

$$
\ge \int_{S} \int_{C} v(s, c(b, s)) d c ds \ \forall v \in V.
$$

v is called *state-independent* or ^a *probability-utility pair* when it can be expresse^d as ^a product of ^aprobability p over S and ^a utility U over C:

$$
v(s,c) = p(s)u(c) \ \forall s,c.
$$

Some state independent representations

- R. Nau, *The shape of incomplete preferences*. Annals of Statistics, 34(5), 2430-2448, 2006.
- T. Seidenfeld, M. Schervisch, J. Kadane, *A representation of partially ordered preferences*. Annals of Statistics, 23(6), 2168-2217, 1995.
- A. García del Amo and D. Ríos Insua, *A note on an open problem in the foundations of statstics*. RACSAM, 96(1), 55-61, 2002.

Nau's framework

- •A *finite* set of states ^S and ^a *finite* set of consequences C.
- The set B of horse lotteries $f : S \to \mathcal{P}(C)$.
- H_c denotes the lottery such that $H_c(s)(c) = 1 \ \forall s \in S.$
- 1 denotes the best consequence in C , and 0 the worst.
- For any $E \subseteq S$ and any horse lotteries f, g , L^{\dagger} C_{α} $Ef+E^c$ $s \in E$ and to $g(s)$ is $s \notin E$. ^{c}g is the horse lottery equal to $f(s)$ if

The axioms

 $(A1) \geq$ is transitive and reflexive.

(A2) $f \succeq g \Leftrightarrow \alpha f + (1 - \alpha)h \succeq \alpha g + (1 - \alpha)h \,\forall \alpha \in$ $(0,1), h.$

(A3) $f_n \succeq g_n \,\forall n, f_n \to f, g_n \to g \Rightarrow f \succeq g.$ (A4) $H_1 \succeq H_c \succeq H_0 \,\forall c$.

(A5) $H_1 \succ H_0$.

A state-dependent representation

 \succeq satisfies A1–A5 \Leftrightarrow it is represented by a closed
convex set of state-dependent utility functions V. convex set of state-dependent utility functions $\mathcal{V},$ in the sense that

$$
f \succeq g \Leftrightarrow U_v(f) \ge U_v(g) \ \forall v \in \mathcal{V},
$$

where

$$
U_v(f) = \sum_{s \in S, c \in C} f(s, c)v(s, c).
$$

A state-independent representation

(A6) If f, g are constant, f' $\succeq g$ $',$ $H_E \succeq H_p,$ $H_F \preceq H_q$ with $p > 0$, then

$$
\alpha Ef + (1 - \alpha)f' \succeq \alpha Eg + (a - \alpha)g'
$$

\n
$$
\Rightarrow \beta Ff + (1 - \beta)f' \succeq \beta Fg + (1 - \beta)g'
$$

for
$$
\beta = 1
$$
 if $\alpha = 1$ and for β s.t. $\frac{\beta}{1-\beta} \le \frac{\alpha}{1-\alpha} \frac{p}{q}$.

 \succeq satisfies (A1)–(A6) if and only if it is represented
by a set λ ^y of state independent utilities by a set $\mathcal V'$ of state-independent utilities,

$$
f \succeq g \Leftrightarrow U_v(f) \ge U_v(g) \forall v \in \mathcal{V}',
$$

where
$$
U_v(f) = \sum_{s \in S, c \in C} f(s, c)p(s)u(c)
$$
.

Seidenfeld, Schervisch, Kadane

- •A *countable* set of consequences C.
- •A *finite* set of states S.
- Horse lotteries $f : S \to \mathcal{P}(C)$, and in particular
simple horse lotteries i.e. horse lotteries for *simple* horse lotteries, i.e., horse lotteries for which $f(s)$ is a simple probability distribution for all $s.$
- A strict preference relationship ≻ over horse lotteries.

The axioms

 $(A1)$ ≻ is transitive and irreflexive.

(A2) For any f, g, h , and any $\alpha \in (0, 1)$, $\alpha f + (1 - \alpha)h \succ \alpha g + (1 - \alpha)h \Leftrightarrow f \succ g.$

(A3) Let $(f_n)_n$ $n \rightarrow$ $f, (g_n)_n \to g$. Then:
 $\forall n \text{ and } a \subseteq b \to f$.

•
$$
f_n \succ g_n
$$
 $\forall n$ and $g \succ h \Rightarrow f \succ h$.

•
$$
f_n \succ g_n \forall n \text{ and } h \succ f \Rightarrow h \succ g.
$$

If \succ satisfies axioms (A1)–(A3), then:

- It can be extended to a weak order \succeq satisfying (42) $(A2), (A3).$
- \ge is uniquely represented by a (bounded) utility v that agrees with [≻] on *simple* horse lotteries.

The representation theorem above is made in terms ofstate-dependent utilities: any v has associated a probability p and utility functions u_1, \ldots, u_n , so that for every horse lottery $f,$

$$
v(f) = \sum_{j=1}^{n} p(s_j) u_j(f(s)).
$$

The goal would be to have $u_1 = \ldots, u_n$, i.e., state-independent utilities.

Almost state-independent utilities

 \geq admits almost state-independent utilities when for any finite set of rewards $\{r_1, \ldots, r_n\}, \epsilon > 0$, there is a pair (p, u_j) s.t. for any $\{s_1, \ldots, s_k\}$ s.t. $\sum_{i=1}^k p(s)$ $\sum\limits_{i=1}^{\kappa}p(s_i)>1-\epsilon,$

$$
\max_{1 \le i \le n, 1 \le j \ne j' \le k} |u_j(r_i) - u_{j'}(r_i)| < \epsilon.
$$

Some definitions

A state s is \succ -*potentially null* when for any horse lotteries f,g with $f(s)$ $') =$ $g(s$ ′)∀s′ $\neq s,$ f $\sim g.$

We denote f_L the horse lottery which is constant on the probability distribution L over C .

Given a constant horse lottery $f_{L_{\alpha}}$,

$$
f_{j,m}^{\alpha} := \begin{cases} (1 - 2^{-m})f_0 + 2^{-m}f_{L_{\alpha}} \text{ if } s \neq s_j\\ f_{L_{\alpha}} \text{ if } s = s_j \end{cases}
$$

An (almost) state-independent representation

- (A4) If s_j is not \succ potentially null, then for each each $\sum_{r=1}^{\infty}$ is not ζ is the set of the s acts f_{L_1}, f_{L_2} f if f \hat{f} \hat{f} \hat{f} \hat{f} $\,f_2, f_1, f_2, f_L$ $f_1 \succ f_{L_2} \Leftrightarrow f_1 \succ f_2$, where $f_i(s) = f_i$ if $s = s_j$, $f_1(s) = f_2(s)$ otherwise.
- (A5) For any two constant horse lotteries $f_{L_\alpha}, f_{L_\beta},$ it holds that

$$
f_{L_{\alpha}} \succ f_{L_{\beta}} \Leftrightarrow f_{j,m}^{\alpha} \succ f_{j,m}^{\beta} \ \forall m \in \mathbb{N}, \forall j.
$$

If \succ satisfies (A1)–(A5), then it admits almost
state independent utilitas state-independent utilites.

Ríos Insua and García del Amo

- A *compact* set $S \subseteq \mathbb{R}^n$ of states.
- A *compact* set $C \subseteq \mathbb{R}^m$ of consequences.
- The set of Young measures $f : S$ \blacksquare \longrightarrow $\rightarrow ca$
ires o $(C),$ where $ca(C)$ are the signed measures of bounded variation on $\mathcal{B}_X.$

The axioms

 $(A1) \geq$ is transitive and reflexive.

(A2) For any f, g, h horse lotteries, $\alpha \in (0, 1)$, $f \succeq g \Rightarrow \alpha f + (1 - \alpha)h \succeq \alpha g + (1 - \alpha)h.$

(A3) If $f_n \succeq g_n \forall n$ and $f_n \to f, g_n \to g$, then $f \succeq g$.

A state-dependent representation

 \succeq satisfies (A1)–(A3) if and only if there is a set of state-dependent utilities ${\mathcal V}$ of the form

$$
v(s,c) = \sum_{i=1}^{j} u_i(s) p_i(c),
$$

with u_i a utility function over S and p_i a density function on C for $i = 1, \ldots, j, j \in \mathbb{N}$, such that

$$
f \succeq g \Leftrightarrow \int_{S} \int_{C} v(s, c) df_s(c) ds \ge \int_{S} \int_{C} v(s, c) dg_s(c) dc \forall v
$$

The problem

 The goal would be to give an axiomatisation of state-independent representations in the context ofRíos Insua and García del Amo, i.e.:

- For a compact set of states S .
- For a compact set of consequences C .

An idea would be to use functional analysis results sothat in the above representation we have $j = 1$.

Another idea would be to extend Nau's or Seidenfeldet al.'s results using limit arguments.

Discretising the spaces

For any natural number $n,$ we can consider \mathcal{S}^n discretisations of \mathcal{S}, \mathcal{C} with diameters smaller than $\frac{1}{2^n}$ $^{n},\mathcal{C}^{n}$ 2^n .

We may also assume without loss of generality that given $n>n',$ \mathcal{S}^n is a refinement of the partition \mathcal{S}^n and \mathcal{C}^n is a refinement of \mathcal{C}^n ′ ′ .

We shall denote k_n in the partition \mathcal{S}^n and j_n η_n the number of different elements in the partition \mathcal{C}^n $_n$ the total number of elements .

Relating the horse lotteries (I)

For each natural number *n* and each set S_n^i partition \mathcal{S}^n , we select an element s_n^i in $\frac{n}{n}$ in the $\frac{i}{n}$ i_n in S_n^i .

This means just taking a selection U_n of

$$
\Gamma_n: \mathcal{S} \ \to \ \mathcal{P}(\mathcal{S}) \\ s \ \hookrightarrow \ S_n^i \Leftrightarrow s \in S_n^i.
$$

We assume that given $n > n'$, the selections $U_n, U_{n'}$ are *consistent*:

$$
U_{n'}(s) \in \Gamma_n(s) \Rightarrow U_n(s) = U_{n'}(s).
$$

Relating the horse lotteries (II)

 $\text{Let } \mathcal{F}_n := \mathcal{F}_{\mathcal{S}^n, \mathcal{C}^n}$ between \mathcal{S}^n and \mathcal{C}^n $\frac{n}{n}$ denote the set of horse lotteries .

Consider the mapping π_n $n: \mathcal{F} \to \mathcal{F}_n$ given by

 $\pi_n(f)(S^i_r$ $\binom{i}{n}(C_n^j)$ $f(n) := f(s)$ i $\binom in(C_n^j)$ $\forall C_n^j$ $c_n^j \in \mathcal{C}_n, S_n^i$ $n \in \mathcal{S}_n$.

 π_n $_n$ is onto.

Discretising the relationship

Let \leq be a preference relation on F. Then for each
natural number we define a preference relation \prec natural number we define a preference relation \preceq_n n On \mathcal{F}_n by

$$
f \preceq_n g \Leftrightarrow \forall f' \in \pi_n^{-1}(f), g' \in \pi_n^{-1}(g), f \preceq g.
$$

1. If \preceq is transitive, so is \preceq_n .

E

2. If \preceq is antisymmetric, so is \preceq_n .

But...

1. \preceq_n may not be reflexive, even if \preceq is! 2. \preceq_n may not be a total order, even if \preceq is!

As ^a consequence,

 $\exists n_0 \in \mathbb{N} \text{ s.t. } \pi_n(f) \preceq_n \pi_n(g) \ \forall n \geq n_0 \Rightarrow f \preceq g$

but the converse is not necessarily true.

Projecting probabilities and utilities

For any natural number $n,$ let

$$
H_n: \ U \to \ U_n
$$

$$
u \hookrightarrow H_n(u): C \to \mathbb{R}
$$

$$
c \hookrightarrow u(c_n^j) \Leftrightarrow c \in C_n^j.
$$

We consider also the functional $T_n : \mathcal{P}_{\mathcal{S}} \to \mathcal{P}_{\mathcal{S}_n}$, given by $T_n(P)(S^i_r$ $\binom{i}{n}=P(S_n^i)$ for all S_n^i $\frac{n}{n} \in \mathcal{S}_n$.

Properties of H_n, T_n

- For any natural number n , H_n , T_n are onto.
- If we consider on U_C the topology of uniform convergence and on \mathcal{U}_n the topology of point-wise convergence, then T_n is a continuous mapping for all $n.$
- If we consider on P_S the weak-* topology and on $\mathcal{P}_{\mathcal{S}_n}$ the topology of weak convergence, then H_n is a continuous mapping for all $n.$

If for \preceq_n satisfies the axioms (A1)-(A6) of Nau, there is some set $B_n \times C_n$ of probability/utility pairs
(D, II) where $D \subset D$, II $\subset U$ such that (P_n, U_n) , where $P_n \in \mathcal{P}_{\mathcal{S}^n}$, $U_n \in \mathcal{U}_{\mathcal{C}^n}$ such that

$$
f \preceq_n g \Leftrightarrow E_{P_n,U_n}(f) \le E_{P_n,U_n}(g) \,\forall (P_n,U_n) \in B_n \times C_n.
$$

The idea is to use these to obtain ^a representation of \prec .

Step by step projection

Let us define the mapping $\pi_{n,n+1} : \mathcal{F}_n \to \mathcal{P}(\mathcal{F}_{n+1}),$ that assigns to any $f \in \mathcal{F}_n$ the set of horse lotteries in \mathcal{F}_{n+1} satisfying that for any $g\in\pi^-_n$ 1 $_{n+1}^{-1}(f^{\prime}% f^{{\prime},\sigma}_{h}f^{\prime},\sigma_{h}^{{\prime},\sigma}_{h}f^{\prime},\sigma_{h}^{{\prime},\sigma}_{h}f^{\prime})$), $\pi_n(g) = f$.

Let f, g be horse lotteries in \mathcal{F}_n , and consider arbitrary $f'\in \pi_{n,n+1}(f), g'\in \pi_{n,n+1}(g).$

1.
$$
f \preceq_n g \Rightarrow f' \preceq_{n+1} g'.
$$

2. $f \sim_n g \Rightarrow f' \sim_{n+1} g'.$

We can relate in this way the expected utilities. Let P be a probability measure on S and u a utility function on C. For any $f \in \mathcal{F}_n$ there is $f' \in \mathcal{F}_{n+1}$ such that

$$
E_{(T_n(P),H_n(u))}(f)=E_{(T_{n+1}(P),H_{n+1}(u))}(f').
$$

Moreover, $f' \in \pi_{n,n+1}(f)$.

Contract

Making the limit

We can prove that $T_n^$ are compact for all $n.$ 1 $\mathcal{P}_n^{-1}(B_n) \subseteq \mathcal{P}_\mathcal{S}$ and H_n^- 1 $\mathcal{C}_n^{-1}(C_n) \subseteq \mathcal{U}_{\mathcal{C}}$

As a consequence, $\cap_n T_n^{-1}$ $n^{-1}(B_n),\cap_n H^{-1}_n$ $\mathcal{C}_n^{-1}(C_n) \cap \mathcal{U}^*$ are non-empty.

Let A $A:=$ rocnonding cot of $\{(P, U) \in \bigcap$ nT_n^{-1} $\mathcal{C}_n^{-1}(B_n)\times \cap_{n}$ gab111tv/11t111 $_{n}H_{n}^{-1}$ $\binom{-1}{n}$ be the corresponding set of probability/utility pairs.

Continuous horse lotteries

Let \mathcal{F}' be the set of *continuous* horse lotteries, where we consider the Euclidean distance on S and the weak-* topology on $\mathcal{P}_{\mathcal{C}}.$ This means that for all $f \in \mathcal{F}'$, all $\epsilon > 0$ and all u $u \in \mathcal{U}_{\mathcal{C}}$ there is some $\delta > 0$ such that

$$
||s - s'|| < \delta \Rightarrow |E_{f(s)}(u) - E_{f(s')}(u)| < \epsilon,
$$

where E $f(s)\big(u\big) = \int_{\mathcal{C}}$ $u(c)f(s)(c)dc.$

Representing (a bit) \preceq

- For any $(P, U) \in A$ and any horse lottery $f \in \mathcal{F}'$, $E_{(PII)}(f) = \lim$ $_{(P,U)}(f)=\lim$ $_{n}\,E$ $_{\left(T_{n}(P),H_{n}(U)\right) }(\pi_{n}(f)).$
- For any $f, g \in \mathcal{F}$, $\,E$ $_{(P,U)}(f) < E_{(P,U)}(g)$ $\forall (P,U) \in A \Rightarrow f \preceq g.$

But still there are many problems:

- This approach will only work with horse lotteriessatisfying some kind of continuity.
- The definition of \preceq_n n is not satisfactory, and as a consequence we do not obtain the converse in theprevious theorem.
- There may be problems with finitely versus σ -additive probabilities.

Other approaches

- Trying to work with the *strict* preferences, like Seidenfeld.
- Look for functional analysis results that help generalising the work by Ríos and del Amo.
- ...and any other ideas you may have!