Control and manipulation in weighted voting games

Haris Aziz¹ M. Paterson¹

¹Department of Computer Science & DiMAP (Discrete Mathematics & its Applications) University of Warwick

3rd Lamsade-Dimacs Workshop Paris 28-31 Oct, 2008

イロト イポト イヨト イヨト

Э

Simple Games

Aziz and Paterson Control and manipulation in weighted voting games

< □ > < □ > < □ > < □ > < □ > < □ > = □

Simple Games

 A simple voting game is a pair (N, v) where N = {1, ..., n} is the set of voters and v is the valuation function v : 2^N → {0, 1}.

・ロト ・回ト ・ヨト ・ヨト

Э

Sar

Simple Games

- A simple voting game is a pair (N, v) where N = {1, ..., n} is the set of voters and v is the valuation function v : 2^N → {0, 1}.
- v has the properties that $v(\emptyset) = 0$, v(N) = 1 and $v(S) \le v(T)$ whenever $S \subseteq T$.

Simple Games

- A simple voting game is a pair (N, v) where N = {1, ..., n} is the set of voters and v is the valuation function v : 2^N → {0, 1}.
- v has the properties that $v(\emptyset) = 0$, v(N) = 1 and $v(S) \le v(T)$ whenever $S \subseteq T$.
- A coalition $S \subseteq N$ is winning if v(S) = 1 and losing if v(S) = 0.

イロト イポト イヨト

Simple Games

- A simple voting game is a pair (N, v) where N = {1, ..., n} is the set of voters and v is the valuation function v : 2^N → {0, 1}.
- v has the properties that $v(\emptyset) = 0$, v(N) = 1 and $v(S) \le v(T)$ whenever $S \subseteq T$.
- A coalition $S \subseteq N$ is winning if v(S) = 1 and losing if v(S) = 0.

イロト イポト イヨト

Simple Games

Background: Von Neumann and Morgenstern, *Theory of Games and Economic Behavior, 1944*

Aziz and Paterson

Control and manipulation in weighted voting games

< E ≥ < E ≥ ...</p>

Э

DQA

Simple Games

Reference: A. Taylor and W. Zwicker, *Simple Games: Desirability Relations, Trading, Pseudoweightings*, New Jersey: Princeton University Press, 1999.

...few structures arise in more contexts and lend themselves to more diverse interpretations than do simple games.

イロト イポト イヨト イヨト

Weighted Voting Games

Aziz and Paterson Control and manipulation in weighted voting games

イロト イヨト イヨト イヨト 三日

DQC

Weighted Voting Games

• Voters, $V = \{1, ..., n\}$ with corresponding voting weights $\{w_1, ..., w_n\}$

・ロト ・回ト ・ヨト ・ヨト

Э

Sar

Weighted Voting Games

• Voters, $V = \{1, ..., n\}$ with corresponding voting weights $\{w_1, ..., w_n\}$

• Quota,
$$0 \leq q \leq \sum_{1 \leq i \leq n} w_i$$

・ロト ・回ト ・ヨト ・ヨト

Э

Sar

Weighted Voting Games

- Voters, $V = \{1, ..., n\}$ with corresponding voting weights $\{w_1, ..., w_n\}$
- Quota, $0 \leq q \leq \sum_{1 \leq i \leq n} w_i$
- A coalition of voters, S is winning $\iff \sum_{i \in S} w_i \ge q$

イロト イポト イヨト

Weighted Voting Games

- Voters, $V = \{1, ..., n\}$ with corresponding voting weights $\{w_1, ..., w_n\}$
- Quota, $0 \leq q \leq \sum_{1 \leq i \leq n} w_i$
- A coalition of voters, S is winning $\iff \sum_{i \in S} w_i \ge q$
- Notation: [*q*; *w*₁, ..., *w*_n]

WVGs are concise although not complete representations of simple games.

イロト イポト イヨト イヨト 二日

San

Weighted Voting Games - an example

• Weighted Voting Game [51; 50, 49, 1] where $V = \{Germany, UK, Luxemburg\}$

・ロト ・回ト ・ヨト ・ヨト

3

Sar

Weighted Voting Games - an example

- Weighted Voting Game [51; 50, 49, 1] where $V = \{Germany, UK, Luxemburg\}$
- Winning Coalitions:{Germany, UK, Luxemburg}, {Germany,UK}, {Germany, Luxemburg}

Weighted Voting Games - an example

- Weighted Voting Game [51; 50, 49, 1] where $V = \{Germany, UK, Luxemburg\}$
- Winning Coalitions:{Germany, UK, Luxemburg}, {Germany,UK}, {Germany, Luxemburg}
- UK and Luxemburg have the same power!

イロト イポト イヨト イヨト

Э

Weighted Voting Games - Motivation

• Application in *political science* (EU, IMF etc.)

・ロト ・回ト ・ヨト ・ヨト

Э

Sar

Weighted Voting Games - Motivation

- Application in *political science* (EU, IMF etc.)
- Application in economics (shareholders)

イロト イポト イヨト

Э

DQA

Weighted Voting Games - Motivation

- Application in *political science* (EU, IMF etc.)
- Application in economics (shareholders)
- Decision Theory (basic threshold models)
- Multi agent systems

イロト イポト イヨト イヨト

Weighted Voting Games - Motivation

- Application in *political science* (EU, IMF etc.)
- Application in economics (shareholders)
- Decision Theory (basic threshold models)
- Multi agent systems
- Neuroscience

イロト イポト イヨト イヨト

Weighted Voting Games - Motivation

- Application in *political science* (EU, IMF etc.)
- Application in economics (shareholders)
- Decision Theory (basic threshold models)
- Multi agent systems
- Neuroscience

イロト イポト イヨト イヨト

Table of contents

Introduction

- Concepts
- Background

2 Splitting

- Split or not?
- Bounds
- Complexity of finding a beneficial split
- Algorithm to manipulate
- 3 Tolerance & Amplitude
 - Background
 - Complexity results
 - Uniform and unanimity WVGs

Conclusion

- 4 同下 4 日下 4 日下

Concepts Background

Key Concepts

Being critical for a coalition

A player, i is *critical* for a losing coalition C if the player's inclusion results in the coalition winning.

(日) (四) (三) (三) (三)

Э

Concepts Background

Key Concepts

Being critical for a coalition

A player, i is *critical* for a losing coalition C if the player's inclusion results in the coalition winning.

Banzhaf Value

Banzhaf Value, η_i of a player *i* is the number of coalitions for which *i* is critical.

Banzhaf Index

Banzhaf Index, β_i is the ratio of the Banzhaf value of the player *i* to sum of the Banzhaf value of all players.

Introduction Splitting

Conclusion

Tolerance & Amplitude

Concepts Background

Banzhaf Index

< 注 → < 注 → 二 注

Concepts Background

Banzhaf Index-Example

Weighted Voting Game [51; 50, 49, 1] where $V = \{\text{Germany, UK, Luxemburg}\}$

• {Germany, UK}: critical members are Germany and UK

Concepts Background

Banzhaf Index-Example

Weighted Voting Game [51; 50, 49, 1] where $V = \{\text{Germany, UK, Luxemburg}\}$

- {Germany, UK}: critical members are Germany and UK
- {Germany, Luxemburg}: critical members are Germany and Luxemburg

Concepts Background

Banzhaf Index-Example

Weighted Voting Game [51; 50, 49, 1] where $V = \{\text{Germany, UK, Luxemburg}\}$

- {Germany, UK}: critical members are Germany and UK
- {Germany, Luxemburg}: critical members are Germany and Luxemburg
- {Germany, Luxemburg, UK}: critical member is Germany.

Concepts Background

Banzhaf Index-Example Continued

- Number of coalitions in which Germany is critical: 3
- Number of coalitions in which UK is critical: 1
- Number of coalitions in which Luxemburg is critical: 1
- *Banzhaf index* of Germany is 3/5, *Banzhaf Index* of UK is 1/5 and the *Banzhaf Index* of Luxemburg is 1/5.

・ロン ・回 と ・ ヨン

Concepts Background

Shapley-Shubik index

Depends on permutations instead of coalitions.

Lloyd Shapley Martin Shubik

Aziz and Paterson Control and manipulation in weighted voting games

< 臣 > < 臣 >

Э

DQC

Concepts Background

Motivation-manipulations in voting

Complexity of Manipulation in voting

• Rochester Complexity Group: (E. Hemaspaandra, L. Hemaspaandra, Faliszewski, Rothe)

Concepts Background

Motivation-manipulations in voting

Complexity of Manipulation in voting

- Rochester Complexity Group: (E. Hemaspaandra, L. Hemaspaandra, Faliszewski, Rothe)
- Hebrew University Multiagent Systems Group (Jeffrey S. Rosenschein, Bachrach, Procaccia)

Concepts Background

Motivation-manipulations in voting

Complexity of Manipulation in voting

- Rochester Complexity Group: (E. Hemaspaandra, L. Hemaspaandra, Faliszewski, Rothe)
- Hebrew University Multiagent Systems Group (Jeffrey S. Rosenschein, Bachrach, Procaccia)
- Manipulation, Control or Bribery in election, auctions and other social choice protocols.

Concepts Background

Motivation-manipulations in voting

Complexity of Manipulation in voting

- Rochester Complexity Group: (E. Hemaspaandra, L. Hemaspaandra, Faliszewski, Rothe)
- Hebrew University Multiagent Systems Group (Jeffrey S. Rosenschein, Bachrach, Procaccia)
- Manipulation, Control or Bribery in election, auctions and other social choice protocols.

Concepts Background

Complexity can be our friend!

Complexity can be our friend!

- Bartholdi, Tovey and Trick. The computational difficulty of manipulating an election. Social Choice and Welfare, 1989.
- Bartholdi, Tovey and Trick. Voting schemes for which it can be difficult to tell who won the election. Social Choice and Welfare, 1989.
- Bartholdi, Tovey and Trick. How hard is it to control an election? Mathematical and Computer Modeling, 1992.

Concepts Background

Complexity can be our friend!

Complexity can be our friend!

- Bartholdi, Tovey and Trick. The computational difficulty of manipulating an election. Social Choice and Welfare, 1989.
- Bartholdi, Tovey and Trick. Voting schemes for which it can be difficult to tell who won the election. Social Choice and Welfare, 1989.
- Bartholdi, Tovey and Trick. How hard is it to control an election? Mathematical and Computer Modeling, 1992.

"Would it then be possible to construct a hierarchy reflecting the difficulty of benefiting from strategic behavior?" - Hannu Nurmi, Behavioral Science (1984).

イロト イポト イヨト
Concepts Background

WVGs in recent literature

- Elkind et al., Computing the Nucleolus of weighted voting games. SODA 2009
- M. Zuckerman, P. Faliszewski, Y. Bachrach, and E. Elkind. Manipulating the quota in weighted voting games. AAAI 2008
- E. Elkind, L. Goldberg, P. Goldberg, and M. Wooldridge. On the dimensionality of voting systems. AAAI 2008
- E. Elkind, L. A. Goldberg, P. W. Goldberg, and M. Wooldridge. Computational complexity of weighted threshold games. In AAAI, pages 718723, 2007.

Our aim

Analysis of limit of manipulation and complexity of manipulation in WVGs.

イロン イボン イヨン イヨン

Concepts Background

WVGs in recent literature

- Elkind et al., Computing the Nucleolus of weighted voting games. SODA 2009
- M. Zuckerman, P. Faliszewski, Y. Bachrach, and E. Elkind. Manipulating the quota in weighted voting games. AAAI 2008
- E. Elkind, L. Goldberg, P. Goldberg, and M. Wooldridge. On the dimensionality of voting systems. AAAI 2008
- E. Elkind, L. A. Goldberg, P. W. Goldberg, and M. Wooldridge. Computational complexity of weighted threshold games. In AAAI, pages 718723, 2007.

Our aim

Analysis of limit of manipulation and complexity of manipulation in WVGs.

イロン イボン イヨン イヨン

Split or not? Bounds Complexity of finding a beneficial split Algorithm to manipulate

Beneficial?

Splitting can be disadvantageous:

Example

Disadvantageous splitting.

• We take the WVG [5; 2, 2, 2] in which each player has a Banzhaf index of 1/3.

イロト イヨト イヨト イヨト

Split or not? Bounds Complexity of finding a beneficial split Algorithm to manipulate

Beneficial?

Splitting can be disadvantageous:

Example

Disadvantageous splitting.

- We take the WVG [5; 2, 2, 2] in which each player has a Banzhaf index of 1/3.
- If the last player splits up into two players, the new game is [5; 2, 2, 1, 1].

イロト イポト イヨト イヨト

Split or not? Bounds Complexity of finding a beneficial split Algorithm to manipulate

Beneficial?

Splitting can be disadvantageous:

Example

Disadvantageous splitting.

- We take the WVG [5; 2, 2, 2] in which each player has a Banzhaf index of 1/3.
- If the last player splits up into two players, the new game is [5; 2, 2, 1, 1].
- In that case, the split-up players have a Banzhaf index of 1/8 each.

イロト イポト イヨト イヨト

Split or not? Bounds Complexity of finding a beneficial split Algorithm to manipulate

Beneficial?

Splitting can be disadvantageous:

Example

Disadvantageous splitting.

- We take the WVG [5; 2, 2, 2] in which each player has a Banzhaf index of 1/3.
- If the last player splits up into two players, the new game is [5; 2, 2, 1, 1].
- In that case, the split-up players have a Banzhaf index of 1/8 each.

イロト イポト イヨト イヨト

Split or not? Bounds Complexity of finding a beneficial split Algorithm to manipulate

Beneficial?

Splitting can be neutral:

Example

Neutral splitting.

• We take the WVG [4; 2, 2, 2] in which each player has a Banzhaf index of 1/3.

イロト イヨト イヨト イヨト

E

Split or not? Bounds Complexity of finding a beneficial split Algorithm to manipulate

Beneficial?

Splitting can be neutral:

Example

Neutral splitting.

- We take the WVG [4; 2, 2, 2] in which each player has a Banzhaf index of 1/3.
- If the last player splits up into two players, the new game is [4; 2, 2, 1, 1].

イロト イヨト イヨト イヨト

Split or not? Bounds Complexity of finding a beneficial split Algorithm to manipulate

Beneficial?

Splitting can be neutral:

Example

Neutral splitting.

- We take the WVG [4; 2, 2, 2] in which each player has a Banzhaf index of 1/3.
- If the last player splits up into two players, the new game is [4; 2, 2, 1, 1].
- In that case, the split-up players have a Banzhaf index of 1/6 each.

イロト イポト イヨト イヨト

Split or not? Bounds Complexity of finding a beneficial split Algorithm to manipulate

Beneficial?

Splitting can be neutral:

Example

Neutral splitting.

- We take the WVG [4; 2, 2, 2] in which each player has a Banzhaf index of 1/3.
- If the last player splits up into two players, the new game is [4; 2, 2, 1, 1].
- In that case, the split-up players have a Banzhaf index of 1/6 each.

イロト イポト イヨト イヨト

Split or not? Bounds Complexity of finding a beneficial split Algorithm to manipulate

Beneficial?

Splitting can be advantageous:

Example

Advantageous splitting.

• We take the WVG [6; 2, 2, 2] in which each player has a Banzhaf index of 1/3.

イロト イヨト イヨト イヨト

Split or not? Bounds Complexity of finding a beneficial split Algorithm to manipulate

Beneficial?

Splitting can be advantageous:

Example

Advantageous splitting.

- We take the WVG [6; 2, 2, 2] in which each player has a Banzhaf index of 1/3.
- If the last player splits up into two players, the new game is [6; 2, 2, 1, 1].

イロト イポト イヨト イヨト

Split or not? Bounds Complexity of finding a beneficial split Algorithm to manipulate

Beneficial?

Splitting can be advantageous:

Example

Advantageous splitting.

- We take the WVG [6; 2, 2, 2] in which each player has a Banzhaf index of 1/3.
- If the last player splits up into two players, the new game is [6; 2, 2, 1, 1].
- In that case, the split-up players have a Banzhaf index of 1/4 each.

イロト イポト イヨト イヨト

Split or not? Bounds Complexity of finding a beneficial split Algorithm to manipulate

Beneficial?

Splitting can be advantageous:

Example

Advantageous splitting.

- We take the WVG [6; 2, 2, 2] in which each player has a Banzhaf index of 1/3.
- If the last player splits up into two players, the new game is [6; 2, 2, 1, 1].
- In that case, the split-up players have a Banzhaf index of 1/4 each.

イロト イポト イヨト イヨト

Split or not? Bounds Complexity of finding a beneficial split Algorithm to manipulate

Unanimity WVGs

Proposition

In a unanimity WVG with q = w(N), if Banzhaf indices are used as imputations of agents in a WVG, then it is beneficial for an agent to split up into agents.

Proof.

• In a WVG with q = w(N), the Banzhaf index of each player is 1/n.

Split or not? Bounds Complexity of finding a beneficial split Algorithm to manipulate

Unanimity WVGs

Proposition

In a unanimity WVG with q = w(N), if Banzhaf indices are used as imputations of agents in a WVG, then it is beneficial for an agent to split up into agents.

- In a WVG with q = w(N), the Banzhaf index of each player is 1/n.
- Let player *i* split up into m + 1 players.

Split or not? Bounds Complexity of finding a beneficial split Algorithm to manipulate

Unanimity WVGs

Proposition

In a unanimity WVG with q = w(N), if Banzhaf indices are used as imputations of agents in a WVG, then it is beneficial for an agent to split up into agents.

- In a WVG with q = w(N), the Banzhaf index of each player is 1/n.
- Let player *i* split up into m + 1 players.
- In that case there is a total of n + m players and the Banzhaf index of each player is 1/(n + m).

Split or not? Bounds Complexity of finding a beneficial split Algorithm to manipulate

Unanimity WVGs

Proposition

In a unanimity WVG with q = w(N), if Banzhaf indices are used as imputations of agents in a WVG, then it is beneficial for an agent to split up into agents.

- In a WVG with q = w(N), the Banzhaf index of each player is 1/n.
- Let player *i* split up into m + 1 players.
- In that case there is a total of n + m players and the Banzhaf index of each player is 1/(n + m).
- In that case the total Banzhaf index of the split up players is $\frac{m+1}{n+m}$, and for n > 1, $\frac{m+1}{n+m} > \frac{1}{n}$.

Split or not? Bounds Complexity of finding a beneficial split Algorithm to manipulate

Unanimity WVGs

Proposition

In a unanimity WVG with q = w(N), if Banzhaf indices are used as imputations of agents in a WVG, then it is beneficial for an agent to split up into agents.

- In a WVG with q = w(N), the Banzhaf index of each player is 1/n.
- Let player *i* split up into m + 1 players.
- In that case there is a total of n + m players and the Banzhaf index of each player is 1/(n + m).
- In that case the total Banzhaf index of the split up players is $\frac{m+1}{n+m}$, and for n > 1, $\frac{m+1}{n+m} > \frac{1}{n}$.
- An exactly similar analysis holds for Shapley-Shubik index.

Split or not? Bounds Complexity of finding a beneficial split Algorithm to manipulate

Unanimity WVGs

Proposition

In a unanimity WVG with q = w(N), if Banzhaf indices are used as imputations of agents in a WVG, then it is beneficial for an agent to split up into agents.

- In a WVG with q = w(N), the Banzhaf index of each player is 1/n.
- Let player *i* split up into m + 1 players.
- In that case there is a total of n + m players and the Banzhaf index of each player is 1/(n + m).
- In that case the total Banzhaf index of the split up players is $\frac{m+1}{n+m}$, and for n > 1, $\frac{m+1}{n+m} > \frac{1}{n}$.
- An exactly similar analysis holds for Shapley-Shubik index.

Splitting

Proposition

Let WVG v be $[q; w_1, ..., w_n]$. If v transforms to v' by the splitting of player i into i' and i'', then $\beta_{i'}(v') + \beta_{i''}(v') \le 2\beta_i(v)$.

Proof: We assume that a player *i* splits up into *i'* and *i''* and that $w_{i'} \le w_{i''}$. We consider a losing coalition *C* for which *i* is critical in *v*. Then $w(C) < q \le w(C) + w_i = w(C) + w_{i'} + w_{i''}$.

- If $q w(C) \le w_{i'}$, then i' and i'' are critical for C in v'.
- If $w_{i'} < q w(C) \le w_{i''}$, then i' is critical for $C \cup \{i''\}$ and i'' is critical for C in v'.
- If $q w(C) > w_{i''}$, then i' is critical for $C \cup \{i''\}$ and i'' is critical for $C \cup \{i'\}$ in v'.

Therefore we have $\eta_{i'}(v') + \eta_{i''}(v') = 2\eta_i(v)$ in each case.

Splitting

Aziz and Paterson Control and manipulation in weighted voting games

E

DQC

Split or not? Bounds Complexity of finding a beneficial split Algorithm to manipulate

Splitting Proof

Split or not? Bounds Complexity of finding a beneficial split Algorithm to manipulate

Splitting Proof

Aziz and Paterson Control and manipulation in weighted voting games

Э

DQC

Split or not? Bounds Complexity of finding a beneficial split Algorithm to manipulate

Splitting Proof

Aziz and Paterson Control and manipulation in weighted voting games

DQC

Split or not? Bounds Complexity of finding a beneficial split Algorithm to manipulate

Splitting Proof

We have $\eta_{i'}(v') + \eta_{i''}(v') = 2\eta_i(v)$ in each case.

・ロト ・回ト ・ヨト ・ヨト

Э

Split or not? Bounds Complexity of finding a beneficial split Algorithm to manipulate

Splitting Proof

Now we consider a player x in v which is other than player i. If x is critical for a coalition C in v then x is also critical for the corresponding coalition C' in v' where we replace $\{i\}$ by $\{i', i''\}$. Hence $\eta_x(v) \leq \eta_x(v')$.

Splitting Proof

Moreover,

$$egin{aligned} eta_{i'}(\mathbf{v}')+eta_{i''}(\mathbf{v}')&=&rac{2\eta_i(\mathbf{v})}{2\eta_i(\mathbf{v})+\sum_{x\in N(\mathbf{v}')\setminus\{i',i''\}}\eta_x(\mathbf{v}')}\ &\leq&rac{2\eta_i(\mathbf{v})}{2\eta_i(\mathbf{v})+\sum_{x\in N(\mathbf{v})\setminus\{i\}}\eta_x(\mathbf{v})}\ &\leq&rac{2\eta_i(\mathbf{v})}{\eta_i(\mathbf{v})+\sum_{x\in N(\mathbf{v})\setminus\{i\}}\eta_x(\mathbf{v})}=2eta_i(\mathbf{v}). \end{aligned}$$

Aziz and Paterson Control and manipulation in weighted voting games

イロト イヨト イヨト イヨト

Э

DQC

Tight bounds

Example

Advantageous splitting.

• We take a WVG [n; 2, 1, ..., 1] with n + 1 players.

ヘロン 人間と 人間と 人間と

DQC

Tight bounds

Example

Advantageous splitting.

- We take a WVG [n; 2, 1, ..., 1] with n + 1 players.
- We find that $\eta_1 = n + {n \choose 2}$ and for all other x, $\eta_x = 1 + {n-1 \choose 2}$.

ヘロン 人間と 人間と 人間と

nan

Tight bounds

Example

Advantageous splitting.

- We take a WVG [n; 2, 1, ..., 1] with n + 1 players.
- We find that $\eta_1 = n + \binom{n}{2}$ and for all other x, $\eta_x = 1 + \binom{n-1}{2}$.
- Therefore

$$eta_1 = rac{n + \binom{n}{2}}{n + \binom{n}{2} + n(1 + \binom{n-1}{2})} = rac{n+1}{(n-2)^2} \sim 1/n.$$

ヘロン 人間と 人間と 人間と

nan

Tight bounds

Example

Advantageous splitting.

- We take a WVG [n; 2, 1, ..., 1] with n + 1 players.
- We find that $\eta_1 = n + \binom{n}{2}$ and for all other x, $\eta_x = 1 + \binom{n-1}{2}$.
- Therefore

$$\beta_1 = \frac{n + \binom{n}{2}}{n + \binom{n}{2} + n(1 + \binom{n-1}{2})} = \frac{n+1}{(n-2)^2} \sim 1/n.$$

• In case player 1 splits up into 1' and 1" with weights 1 each, then for all players j, $\beta_j = \frac{1}{n+2}$.

DQR

Tight bounds

Example

Advantageous splitting.

- We take a WVG [n; 2, 1, ..., 1] with n + 1 players.
- We find that $\eta_1 = n + \binom{n}{2}$ and for all other x, $\eta_x = 1 + \binom{n-1}{2}$.
- Therefore

$$\beta_1 = \frac{n + \binom{n}{2}}{n + \binom{n}{2} + n(1 + \binom{n-1}{2})} = \frac{n+1}{(n-2)^2} \sim 1/n.$$

• In case player 1 splits up into 1' and 1" with weights 1 each, then for all players j, $\beta_j = \frac{1}{n+2}$.

• Thus for large
$$n$$
, $\beta_{1'} + \beta_{1''} = \frac{2}{n+2} \sim 2\beta_1$.

DQR

Extreme example of disadvantageous split

Example

• Take WVG v on n players where v = [3n/2; 2n, 1, ..., 1] and n is even. Then Player 1 is a dictator.

DQ (~

Extreme example of disadvantageous split

Example

- Take WVG v on n players where v = [3n/2; 2n, 1, ..., 1] and n is even. Then Player 1 is a dictator.
- Consider the case where v changes into v' with player 1, splitting up into 1' and 1" with weight n each.

DQ (A

Extreme example of disadvantageous split

Example

- Take WVG v on n players where v = [3n/2; 2n, 1, ..., 1] and n is even. Then Player 1 is a dictator.
- Consider the case where v changes into v' with player 1, splitting up into 1' and 1" with weight n each.
- For player 1' to be critical for a losing coalition in v', the coalition must exclude 1" and have from n/2 to n-1 players with weight 1 or it must include 1" and have from 0 to (n/2) 1 players with weight 1. So $\eta_{1'}(v') = \eta_{1''}(v') = \sum_{i=0}^{n} {n-1 \choose i} = 2^{n-1}$.
Introduction Split or not? Splitting Bounds Tolerance & Amplitude Complexity of finding a beneficial split Conclusion Algorithm to manipulate

Extreme example of disadvantageous split

Example

- Take WVG v on n players where v = [3n/2; 2n, 1, ..., 1] and n is even. Then Player 1 is a dictator.
- Consider the case where v changes into v' with player 1, splitting up into 1' and 1" with weight n each.
- For player 1' to be critical for a losing coalition in v', the coalition must exclude 1" and have from n/2 to n-1 players with weight 1 or it must include 1" and have from 0 to (n/2) 1 players with weight 1. So $\eta_{1'}(v') = \eta_{1''}(v') = \sum_{i=0}^{n} {n-1 \choose i} = 2^{n-1}$.
- For a smaller player x with weight 1 to be critical for a coalition in v', the coalition must include only one of 1' or 1" and (n-2)/2 of the n-2 other smaller players. So,

$$\eta_{x}(\mathbf{v}') = 2\binom{n-2}{(n-2)/2} \approx \sqrt{\frac{2}{\pi(n-2)}} 2^{n-1}.$$

Introduction Split or not? Splitting Bounds Tolerance & Amplitude Complexity of finding a beneficial split Conclusion Algorithm to manipulate

Extreme example of disadvantageous split

Example

- Take WVG v on n players where v = [3n/2; 2n, 1, ..., 1] and n is even. Then Player 1 is a dictator.
- Consider the case where v changes into v' with player 1, splitting up into 1' and 1" with weight n each.
- For player 1' to be critical for a losing coalition in v', the coalition must exclude 1" and have from n/2 to n-1 players with weight 1 or it must include 1" and have from 0 to (n/2) 1 players with weight 1. So $\eta_{1'}(v') = \eta_{1''}(v') = \sum_{i=0}^{n} {n-1 \choose i} = 2^{n-1}$.
- For a smaller player x with weight 1 to be critical for a coalition in v', the coalition must include only one of 1' or 1" and (n-2)/2 of the n-2 other smaller players. So,

$$\eta_{x}(\mathbf{v}') = 2\binom{n-2}{(n-2)/2} \approx \sqrt{\frac{2}{\pi(n-2)}} 2^{n-1}.$$

Split or not? Bounds Complexity of finding a beneficial split Algorithm to manipulate

Extreme example of disadvantageous split

Example

$$\beta_{i'}(\mathbf{v}') = \beta_{i''}(\mathbf{v}')$$

・ロト ・回ト ・ヨト ・ヨト

Split or not? Bounds Complexity of finding a beneficial split Algorithm to manipulate

Extreme example of disadvantageous split

Example

$$\beta_{i'}(\mathbf{v}') = \beta_{i''}(\mathbf{v}')$$

$$\approx \frac{2^{n-1}}{2^{n-1} + 2^{n-1} + (n-1)\sqrt{\frac{2}{\pi(n-2)}}2^{n-1}}$$

Aziz and Paterson Control and manipulation in weighted voting games

・ロト ・回ト ・ヨト ・ヨト

3

DQR

Split or not? Bounds Complexity of finding a beneficial split Algorithm to manipulate

Extreme example of disadvantageous split

Example

$$\begin{split} \beta_{j'}(\mathbf{v}') &= \beta_{j''}(\mathbf{v}') \\ &\approx \frac{2^{n-1}}{2^{n-1} + 2^{n-1} + (n-1)\sqrt{\frac{2}{\pi(n-2)}}2^{n-1}} \\ &= \frac{1}{2 + \frac{(n-1)}{\sqrt{n-2}}\sqrt{\frac{2}{\pi}}} \end{split}$$

Aziz and Paterson Control and manipulation in weighted voting games

・ロト ・四ト ・ヨト ・ヨト

Split or not? Bounds Complexity of finding a beneficial split Algorithm to manipulate

Extreme example of disadvantageous split

Example

$$\begin{split} \beta_{i'}(\mathbf{v}') &= \beta_{i''}(\mathbf{v}') \\ &\approx \frac{2^{n-1}}{2^{n-1} + 2^{n-1} + (n-1)\sqrt{\frac{2}{\pi(n-2)}}2^{n-1}} \\ &= \frac{1}{2 + \frac{(n-1)}{\sqrt{n-2}}\sqrt{\frac{2}{\pi}}} \\ &\sim \sqrt{\frac{\pi}{2n}}. \end{split}$$

・ロト ・回ト ・ヨト ・ヨト

Split or not? Bounds Complexity of finding a beneficial split Algorithm to manipulate

Complexity of finding a beneficial split

• It is #P-hard for a manipulator to find the ideal splitting to maximize his payoff.

・ロト ・回ト ・ヨト ・ヨト

Introduction Split or not? Spliting Bounds Tolerance & Amplitude Conclusion Algorithm to manipulate

Complexity of finding a beneficial split

- It is #P-hard for a manipulator to find the ideal splitting to maximize his payoff.
- An easier question is to check whether a beneficial splitting exists or not.

イロト イポト イヨト イヨト

Complexity of finding a beneficial split

- It is #P-hard for a manipulator to find the ideal splitting to maximize his payoff.
- An easier question is to check whether a beneficial splitting exists or not.
- We define a Banzhaf version of the BENEFICIAL SPLIT problem:

イロト イポト イヨト イヨト

Complexity of finding a beneficial split

- It is #P-hard for a manipulator to find the ideal splitting to maximize his payoff.
- An easier question is to check whether a beneficial splitting exists or not.
- We define a Banzhaf version of the BENEFICIAL SPLIT problem:

Name: BENEFICIAL-BANZHAF-SPLIT

Instance: (v, i) where v is the WVG $v = [q; w_1, \dots, w_n]$ and player $i \in \{1, \dots, n\}$

Question: Is there a way for player *i* to split his weight w_i between sub-players i_1, \ldots, i_m so in the new game v', $\sum_{j=1}^k \beta_{i_k}(v') > \beta_i(v)$?

イロト イポト イヨト イヨト 二日

Split or not? Bounds Complexity of finding a beneficial split Algorithm to manipulate

Complexity of finding a beneficial split

Proposition

BENEFICIAL-BANZHAF-SPLIT is NP-hard even if a player can only split into two players with equal weights.

We prove this by a reduction from an instance of the classical NP-hard PARTITION problem to BENEFICIAL-BANZHAF-SPLIT. **Name**: PARTITION

Instance: A set of k weights $A = \{a_1, \ldots, a_k\}$ **Question**: Is it possible to partition A, into two subsets $P_1 \subseteq A$, $P_1 \subseteq A$ so that $P_1 \cap P_2 = \emptyset$ and $P_1 \cup P_2 = A$ and $\sum_{a_i \in A_1} a_i = \sum_{a_i \in A_2} a_i$.

Introduction Split or not? Spliting Bounds Tolerance & Amplitude Complexity of finding a beneficial split Conclusion Algorithm to manipulate

Proof (NP-hard to decide whether split beneficial)

Reduction

- Given an instance of PARTITION $\{a_1, \ldots, a_k\}$, we can transform it to a WVG $v = [q; w_1, \ldots, w_n]$ with n = k + 1 where $w_i = 8a_i$ for i = 1 to n 1, $w_n = 2$ and $q = 4 \sum_{i=1}^{k} a_i + 2$.
- After that, we want to see whether it can be beneficial for player n with weight 2 to split into two sub-players n and n + 1 each with weight 1 to form a new WVG v' = [q; w₁,..., w_{n-1}, 1, 1].
- If A is a 'no' instance of PARTITION, then we see that no subset of the weights {w₁,..., w_{n-1}} can sum to 4 ∑_i a_i. This implies that player n is a dummy.
- Even after splitting, new players remain dummies.
- Thus 'no' instance of PARTITION implies a 'no' instance of BENEFICIAL-BANZHAF-SPLIT.

Split or not? Bounds Complexity of finding a beneficial split Algorithm to manipulate

Proof (NP-hard to decide whether split beneficial)

- Now let us assume that A is a 'yes' instance of PARTITION.
- Then after some technical work it can be shown that this implies a 'yes' instance of BENEFICIAL-BANZHAF-SPLIT.

Introduction Split or not? Splitting Bounds Tolerance & Amplitude Complexity of finding a beneficial split Conclusion Algorithm to manipulate

How to manipulate?

• There are pseudo-polynomial time algorithms using dynamic programming or generating function to compute Banzhaf indices.

・ロト ・回ト ・ヨト ・ヨト

Introduction Split or not? Spliting Bounds Tolerance & Amplitude Conplexity of finding a beneficial split Conclusion Algorithm to manipulate

How to manipulate?

- There are pseudo-polynomial time algorithms using dynamic programming or generating function to compute Banzhaf indices.
- Let this pseudo-polynomial time algorithm be called BanzhafIndex(v, i) which takes a WVG v and player indexed i as input and returns β_i(v), the Banzhaf index of player i in v.

Introduction Split or a Splitting Bounds Tolerance & Amplitude Complex Conclusion Algorithm

Split or not? Bounds Complexity of finding a beneficial split Algorithm to manipulate

How to manipulate?

- There are pseudo-polynomial time algorithms using dynamic programming or generating function to compute Banzhaf indices.
- Let this pseudo-polynomial time algorithm be called BanzhafIndex(v, i) which takes a WVG v and player indexed i as input and returns β_i(v), the Banzhaf index of player i in v.
- We devise a polynomial time algorithm to find a beneficial split if the weights of players are polynomial in *n* and the player *i* in question can split into upto a constant *k* number of sub-players.

Introduction Split or Splitting Bounds Tolerance & Amplitude Comple Conclusion Algorith

Split or not? Bounds Complexity of finding a beneficial split Algorithm to manipulate

How to manipulate?

- There are pseudo-polynomial time algorithms using dynamic programming or generating function to compute Banzhaf indices.
- Let this pseudo-polynomial time algorithm be called BanzhafIndex(v, i) which takes a WVG v and player indexed i as input and returns β_i(v), the Banzhaf index of player i in v.
- We devise a polynomial time algorithm to find a beneficial split if the weights of players are polynomial in *n* and the player *i* in question can split into upto a constant *k* number of sub-players.
- Whenever player *i* in WVG *v* splits up according to a split *s*, we denote the new game by *v*_{*i*,*s*}.

イロト イポト イヨト

Introduction Split or not? Splitting Bounds Tolerance & Amplitude Complexity of finding a beneficial split Conclusion Algorithm to manipulate

How to manipulate?

Algorithm 1 BeneficialSplitInWVG

Input: (v, i) where $v = [q; w_1, \ldots, w_n]$ and *i* is the player which wants to split into maximum of *k* sub-players. **Output:** Returns NO if there is no beneficial split. Otherwise returns the optimal split $(w_{i_1}, \ldots, w_{i_{k'}})$ where

```
k' \leq k, and \sum_{i=1}^{k'} w_{i_i} = w_i
1: BeneficialSplitExists = false; BestSplit = \emptyset; BestSplitValue = -\infty
2: \beta_i = \text{BanzhafIndex}(v, i)
3: for j = 2 to k do
4:
         for Each possible split s where w_i = w_{i_1} + \ldots + w_{i_i} do
5:
              SplitValue = \sum_{a=1}^{j} BanzhafIndex(v_{i,s}, i_a)
6:
7:
8:
9:
10:
12:
13:
              if SplitValue > \beta_i then
                   BeneficialSplitExists = true
                   if SplitValue > BestSplitValue then
                       BestSplit = s; BestSplitValue = SplitValue
                    end if
                end if
           end for
      end for
14:
      if BeneficialSplitExists = false then
15:
           return false
16: else
17:
           return BestSplit
18: end if
```

Split or not? Bounds Complexity of finding a beneficial split Algorithm to manipulate

How to manipulate?

Proposition

Algorithm 1 has computational complexity which is pseudo-polynomial in n

Proof.

It is clear that for a constant k, the number of splits of player i is less than $(w_i)^k$ which is a polynomial in n. Since the computational complexity for each split is also a polynomial in n, therefore Algorithm 1 is polynomial in n if weights are polynomial in n.

イロト イポト イヨト イヨト

Background Complexity results Uniform and unanimity WVGs

Varation in parameters of WVGs

•
$$f_{(\lambda_1,\ldots,\lambda_n),\Lambda}:[q;w_1,\ldots,w_n]\mapsto [q';w_1',\ldots,w_n']$$

イロト イヨト イヨト イヨト 三日

Background Complexity results Uniform and unanimity WVGs

Varation in parameters of WVGs

•
$$f_{(\lambda_1,...,\lambda_n),\Lambda} : [q; w_1,..., w_n] \mapsto [q'; w_1',..., w_n']$$

• $w_i' = (1 + \lambda_i)w_i$

イロト イヨト イヨト イヨト 三日

Background Complexity results Uniform and unanimity WVGs

Varation in parameters of WVGs

•
$$f_{(\lambda_1,...,\lambda_n),\Lambda}$$
: $[q; w_1,..., w_n] \mapsto [q'; w_1',..., w_n']$
• $w_i' = (1 + \lambda_i)w_i$
• $q' = (1 + \Lambda)q$.

イロト イヨト イヨト イヨト 三日

Background Complexity results Uniform and unanimity WVGs

Varation in parameters of WVGs

- $f_{(\lambda_1,\ldots,\lambda_n),\Lambda}:[q;w_1,\ldots,w_n]\mapsto [q';w_1',\ldots,w_n']$
- $w_i' = (1 + \lambda_i)w_i$
- $q' = (1 + \Lambda)q$.
- If the quota q' of v' is such that for all $S \subseteq N$, $\sum_{i \in S} w_i' \neq q'$, then v' is called a *strict representation* of v.

Background Complexity results Uniform and unanimity WVGs

Varation in parameters of WVGs

- $f_{(\lambda_1,\ldots,\lambda_n),\Lambda}:[q;w_1,\ldots,w_n]\mapsto [q';w_1',\ldots,w_n']$
- $w_i' = (1 + \lambda_i)w_i$
- $q' = (1 + \Lambda)q$.
- If the quota q' of v' is such that for all $S \subseteq N$, $\sum_{i \in S} w_i' \neq q'$, then v' is called a *strict representation* of v.

Background Complexity results Uniform and unanimity WVGs

Tolerance

• Let A be the maximum of w(S) for all $\{S|v(S)=0\}$.

Aziz and Paterson Control and manipulation in weighted voting games

イロト イヨト イヨト イヨト

E

Background Complexity results Uniform and unanimity WVGs

Tolerance

- Let A be the maximum of w(S) for all $\{S|v(S) = 0\}$.
- let B be the minimum of w(S) for all $\{S|v(S) = 1\}$.

・ロト ・回ト ・ヨト ・ヨト

Э

Sar

Background Complexity results Uniform and unanimity WVGs

Tolerance

- Let A be the maximum of w(S) for all $\{S|v(S) = 0\}$.
- let B be the minimum of w(S) for all $\{S|v(S) = 1\}$.
- Then $A < q \le B$ (and q < B if the representation is strict).

Background Complexity results Uniform and unanimity WVGs

Tolerance

- Let A be the maximum of w(S) for all $\{S|v(S)=0\}$.
- let B be the minimum of w(S) for all $\{S|v(S) = 1\}$.
- Then $A < q \le B$ (and q < B if the representation is strict).
- Moreover, let m = Min(q A, B q) and M = q + w(N).

Background Complexity results Uniform and unanimity WVGs

Tolerance

- Let A be the maximum of w(S) for all $\{S|v(S)=0\}$.
- let B be the minimum of w(S) for all $\{S|v(S) = 1\}$.
- Then $A < q \le B$ (and q < B if the representation is strict).
- Moreover, let m = Min(q A, B q) and M = q + w(N).

Tolerance

• (Hu + Freixas & Puente) If for all $1 \le i \le n$, $|\lambda_i| < m/M$ and $|\Lambda| < m/M$, then v' is just another representation of v.

イロト イポト イヨト イヨト

Background Complexity results Uniform and unanimity WVGs

Tolerance

- Let A be the maximum of w(S) for all $\{S|v(S)=0\}$.
- let B be the minimum of w(S) for all $\{S|v(S) = 1\}$.
- Then $A < q \le B$ (and q < B if the representation is strict).
- Moreover, let m = Min(q A, B q) and M = q + w(N).

Tolerance

- (Hu + Freixas & Puente) If for all $1 \le i \le n$, $|\lambda_i| < m/M$ and $|\Lambda| < m/M$, then v' is just another representation of v.
- They defined $\tau[q; w_1, \ldots, w_n] = m/M$ as the *tolerance* of the system.

イロト イポト イヨト イヨト

Background Complexity results Uniform and unanimity WVGs

Tolerance

- Let A be the maximum of w(S) for all $\{S|v(S)=0\}$.
- let B be the minimum of w(S) for all $\{S|v(S) = 1\}$.
- Then $A < q \le B$ (and q < B if the representation is strict).
- Moreover, let m = Min(q A, B q) and M = q + w(N).

Tolerance

- (Hu + Freixas & Puente) If for all $1 \le i \le n$, $|\lambda_i| < m/M$ and $|\Lambda| < m/M$, then v' is just another representation of v.
- They defined $\tau[q; w_1, \ldots, w_n] = m/M$ as the *tolerance* of the system.

イロト イポト イヨト イヨト

Background Complexity results Uniform and unanimity WVGs

Amplitude

Amplitude

(Freixas and Puente): amplitude is the maximum μ such that f_{(λ1,...,λn),Λ} is a representation of v whenever Max(|λ1|,...,|λn|, |Λ|) < μ(v).

・ロト ・回ト ・ヨト ・ヨト

Background Complexity results Uniform and unanimity WVGs

Amplitude

Amplitude

- (Freixas and Puente): amplitude is the maximum μ such that f_{(λ1,...,λn),Λ} is a representation of v whenever Max(|λ1|,...,|λn|, |Λ|) < μ(v).
- For a strict representation of a WVG [q; w₁,..., w_n], for each coalition S ⊆ N, let a(S) = |w(S) q| and b(S) = q + w(S).

イロト イポト イヨト イヨト

Background Complexity results Uniform and unanimity WVGs

Amplitude

Amplitude

- (Freixas and Puente): amplitude is the maximum μ such that f_{(λ1,...,λn),Λ} is a representation of v whenever Max(|λ1|,...,|λn|, |Λ|) < μ(v).
- For a strict representation of a WVG [q; w₁,..., w_n], for each coalition S ⊆ N, let a(S) = |w(S) q| and b(S) = q + w(S).
- Amplitude of a WVG is $\mu(v) = \frac{\ln f}{S \subseteq N \frac{a(S)}{b(S)}}$.

イロト イポト イヨト イヨト

Background Complexity results Uniform and unanimity WVGs

Amplitude

Amplitude

- (Freixas and Puente): amplitude is the maximum μ such that f_{(λ1,...,λn),Λ} is a representation of v whenever Max(|λ1|,...,|λn|, |Λ|) < μ(v).
- For a strict representation of a WVG [q; w₁,..., w_n], for each coalition S ⊆ N, let a(S) = |w(S) q| and b(S) = q + w(S).
- Amplitude of a WVG is $\mu(v) = \frac{\ln f}{S \subseteq N \frac{a(S)}{b(S)}}$.

The amplitude is a more precise and accurate indicator of the maximum possible variation than tolerance.

イロト イポト イヨト イヨト

Background Complexity results Uniform and unanimity WVGs

Amplitude

We let WVG-STRICT be the problem of checking whether a WVG $v = [q; w_1, ..., w_n]$ is strict or not, i.e., WVG-STRICT = {v: v is strict}.

・ロト ・回ト ・ヨト ・ヨト
Background Complexity results Uniform and unanimity WVGs

Amplitude

We let WVG-STRICT be the problem of checking whether a WVG $v = [q; w_1, \ldots, w_n]$ is strict or not, i.e., WVG-STRICT = {v: v is strict}.

Proposition

WVG-STRICT is co-NP-complete

Proof.

• WVG-NOT-STRICT is in NP since a certificate of weights can be added in linear time to confirm that they sum up to *q*.

Background Complexity results Uniform and unanimity WVGs

Amplitude

We let WVG-STRICT be the problem of checking whether a WVG $v = [q; w_1, \ldots, w_n]$ is strict or not, i.e., WVG-STRICT = {v: v is strict}.

Proposition

WVG-STRICT is co-NP-complete

- WVG-NOT-STRICT is in NP since a certificate of weights can be added in linear time to confirm that they sum up to *q*.
- Moreover v is not strict if and only if there is a subset of weights which sum up to q.

Background Complexity results Uniform and unanimity WVGs

Amplitude

We let WVG-STRICT be the problem of checking whether a WVG $v = [q; w_1, \ldots, w_n]$ is strict or not, i.e., WVG-STRICT = {v: v is strict}.

Proposition

WVG-STRICT is co-NP-complete

- WVG-NOT-STRICT is in NP since a certificate of weights can be added in linear time to confirm that they sum up to *q*.
- Moreover v is not strict if and only if there is a subset of weights which sum up to q.
- Therefore the NP-complete problem SUBSET-SUM reduces to WVG-NOT-STRICT.

Background Complexity results Uniform and unanimity WVGs

Amplitude

We let WVG-STRICT be the problem of checking whether a WVG $v = [q; w_1, \ldots, w_n]$ is strict or not, i.e., WVG-STRICT = {v: v is strict}.

Proposition

WVG-STRICT is co-NP-complete

- WVG-NOT-STRICT is in NP since a certificate of weights can be added in linear time to confirm that they sum up to *q*.
- Moreover v is not strict if and only if there is a subset of weights which sum up to q.
- Therefore the NP-complete problem SUBSET-SUM reduces to WVG-NOT-STRICT.
- Hence WVG-NOT-STRICT is NP-complete and WVG-STRICT is co-NP-complete.

Background Complexity results Uniform and unanimity WVGs

Amplitude

We let WVG-STRICT be the problem of checking whether a WVG $v = [q; w_1, \ldots, w_n]$ is strict or not, i.e., WVG-STRICT = {v: v is strict}.

Proposition

WVG-STRICT is co-NP-complete

- WVG-NOT-STRICT is in NP since a certificate of weights can be added in linear time to confirm that they sum up to *q*.
- Moreover v is not strict if and only if there is a subset of weights which sum up to q.
- Therefore the NP-complete problem SUBSET-SUM reduces to WVG-NOT-STRICT.
- Hence WVG-NOT-STRICT is NP-complete and WVG-STRICT is co-NP-complete.

Background Complexity results Uniform and unanimity WVGs

Amplitude

Corollary

The problem of checking whether the amplitude of a WVG is 0 is NP-hard.

イロト イヨト イヨト イヨト

Э

Background Complexity results Uniform and unanimity WVGs

Amplitude

Proposition

The problem of computing the amplitude of a WVG v is NP-hard, even for integer WVGs.

Proof.

• Let us assume that weights in v are even integers whereas the quota q is an odd integer 2k - 1 where $k \in \mathbf{N}$.

Background Complexity results Uniform and unanimity WVGs

Amplitude

Proposition

The problem of computing the amplitude of a WVG v is NP-hard, even for integer WVGs.

- Let us assume that weights in v are even integers whereas the quota q is an odd integer 2k 1 where $k \in \mathbf{N}$.
- Then the minimum possible difference between q and A, the weight of the maximal losing coalition, or q and B, the weight of minimal winning coalition is 1.

Background Complexity results Uniform and unanimity WVGs

Amplitude

Proposition

The problem of computing the amplitude of a WVG v is NP-hard, even for integer WVGs.

- Let us assume that weights in v are even integers whereas the quota q is an odd integer 2k 1 where $k \in \mathbf{N}$.
- Then the minimum possible difference between q and A, the weight of the maximal losing coalition, or q and B, the weight of minimal winning coalition is 1.

• So
$$A \leq 2k - 2$$
 and $B \geq 2k$.

Background Complexity results Uniform and unanimity WVGs

Amplitude

Proposition

The problem of computing the amplitude of a WVG v is NP-hard, even for integer WVGs.

Proof.

- Let us assume that weights in v are even integers whereas the quota q is an odd integer 2k 1 where $k \in \mathbf{N}$.
- Then the minimum possible difference between q and A, the weight of the maximal losing coalition, or q and B, the weight of minimal winning coalition is 1.
- So $A \leq 2k 2$ and $B \geq 2k$.
- We see that $\mu(v) \le 1/2k$ if and only if there exists a coalition C such that w(C) = 2k.

Background Complexity results Uniform and unanimity WVGs

Amplitude

Proposition

The problem of computing the amplitude of a WVG v is NP-hard, even for integer WVGs.

- Let us assume that weights in v are even integers whereas the quota q is an odd integer 2k 1 where $k \in \mathbf{N}$.
- Then the minimum possible difference between q and A, the weight of the maximal losing coalition, or q and B, the weight of minimal winning coalition is 1.
- So $A \leq 2k 2$ and $B \geq 2k$.
- We see that $\mu(v) \le 1/2k$ if and only if there exists a coalition C such that w(C) = 2k.
- Thus the problem of computing $\mu(v)$ of a WVG is NP-hard by a reduction from the SUBSET-SUM problem.

Background Complexity results Uniform and unanimity WVGs

Amplitude

A similar proof can be used to prove the following proposition:

Proposition

The problem of computing the tolerance of a strict WVG is NP-hard.

イロト イポト イヨト イヨト

Background Complexity results Uniform and unanimity WVGs

Uniform WVGs

Proposition

For a strict representation of a proper uniform WVG v = [q; w, ..., w],

 $\tau(\mathbf{v}) \leq \frac{1}{3n}.$

Proof:

- Since $\frac{q-A}{q+w(N)} = 1 \frac{w(N)+A}{q+w(N)}$ is an increasing function of q and $\frac{B-q}{q+w(N)}$ is a decreasing function of q, the tolerance reaches its maximum when q A = B q, i.e. when q is the arithmetic mean $\frac{A+B}{2}$.
- We let the size of the maximal losing coalition be *r* and the size of the minimal winning coalition be *r* + 1.

Background Complexity results Uniform and unanimity WVGs

Uniform WVGs

- Then the weight of a maximal losing coalition is rw and the weight of the minimal winning coalition is (r + 1)w and m = w/2. Since v is proper, $q \ge \frac{1}{2}(nw)$, and $M = q + w(N) \ge \frac{3nw}{2}$
- Then,

$$\tau(\mathbf{v})=m/M\leq\frac{1}{3n}.$$

イロト イポト イヨト イヨト 二日

Background Complexity results Uniform and unanimity WVGs

Uniform WVGs

Proposition For a uniform WVG $v = [q; \underbrace{w, \dots, w}_{n}]$, we have $B = w \lceil \frac{q}{w} \rceil$ and A = B - w. Then, $\mu(v) = \begin{cases} \frac{q-A}{A+q}, & \text{if } q \leq \sqrt{AB} \\ \frac{B-q}{B+q}, & \text{otherwise.} \end{cases}$

Aziz and Paterson Control and manipulation in weighted voting games

・ロト ・回ト ・ヨト ・ヨト

Э

Background Complexity results Uniform and unanimity WVGs

Uniform WVGs

Proof.

• It is clear that *B*, the weight of the minimal winning coalition is $w \lceil \frac{q}{w} \rceil$ and *A*, the weight of the maximal losing coalition is B - w.

DQ C

Background Complexity results Uniform and unanimity WVGs

Uniform WVGs

Proof.

• It is clear that *B*, the weight of the minimal winning coalition is $w \lceil \frac{q}{w} \rceil$ and *A*, the weight of the maximal losing coalition is B - w.

• If
$$\frac{q-A}{q+a} \leq \frac{B-q}{q+B}$$
, then $q \leq \sqrt{AB}$.

DQ C

Background Complexity results Uniform and unanimity WVGs

Uniform WVGs

Proof.

• It is clear that *B*, the weight of the minimal winning coalition is $w \lceil \frac{q}{w} \rceil$ and *A*, the weight of the maximal losing coalition is B - w.

• If
$$rac{q-A}{q+a} \leq rac{B-q}{q+B}$$
, then $q \leq \sqrt{AB}$

 For losing coalitions with weight w, ^{q-w}/_{q+w} is a decreasing function for w.

a A

Background Complexity results Uniform and unanimity WVGs

Uniform WVGs

Proof.

• It is clear that *B*, the weight of the minimal winning coalition is $w \lceil \frac{q}{w} \rceil$ and *A*, the weight of the maximal losing coalition is B - w.

• If
$$\frac{q-A}{q+a} \leq \frac{B-q}{q+B}$$
, then $q \leq \sqrt{AB}$.

- For losing coalitions with weight w, ^{q-w}/_{q+w} is a decreasing function for w.
- For winning coalitions with weight w, $\frac{w-q}{q+w} = 1 \frac{2q}{q+w}$ is an increasing function for w.

Background Complexity results Uniform and unanimity WVGs

Uniform WVGs

Proof.

• It is clear that *B*, the weight of the minimal winning coalition is $w \lceil \frac{q}{w} \rceil$ and *A*, the weight of the maximal losing coalition is B - w.

• If
$$\frac{q-A}{q+a} \leq \frac{B-q}{q+B}$$
, then $q \leq \sqrt{AB}$.

- For losing coalitions with weight w, ^{q-w}/_{q+w} is a decreasing function for w.
- For winning coalitions with weight w, $\frac{w-q}{q+w} = 1 \frac{2q}{q+w}$ is an increasing function for w.

• Thus if
$$q \leq \sqrt{AB}$$
, $\mu(v) = \frac{q-A}{A+q}$.

Background Complexity results Uniform and unanimity WVGs

Uniform WVGs

Proof.

• It is clear that *B*, the weight of the minimal winning coalition is $w \lceil \frac{q}{w} \rceil$ and *A*, the weight of the maximal losing coalition is B - w.

• If
$$\frac{q-A}{q+a} \leq \frac{B-q}{q+B}$$
, then $q \leq \sqrt{AB}$.

- For losing coalitions with weight w, ^{q-w}/_{q+w} is a decreasing function for w.
- For winning coalitions with weight w, $\frac{w-q}{q+w} = 1 \frac{2q}{q+w}$ is an increasing function for w.
- Thus if $q \leq \sqrt{AB}$, $\mu(v) = \frac{q-A}{A+q}$.

• Otherwise,
$$\mu(v) = \frac{B-q}{B+q}$$
.

Background Complexity results Uniform and unanimity WVGs

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 · • ● ◆

Background Complexity results Uniform and unanimity WVGs

Unanimity WVGs

Proposition

For a unanimity WVG
$$\mathsf{v} = [\mathsf{q}; \mathsf{w}_1, \dots, \mathsf{w}_n], \ \tau(\mathsf{v}) \leq rac{\mathsf{w}_n}{4\mathsf{w}(\mathsf{N}) - \mathsf{w}_n} \leq rac{1}{4n-1}.$$

Aziz and Paterson Control and manipulation in weighted voting games

イロト イヨト イヨト イヨト 三日

Background Complexity results Uniform and unanimity WVGs

Unanimity WVGs

Proposition

For a unanimity WVG
$$v = [q; w_1, \dots, w_n]$$
, $\tau(v) \leq \frac{w_n}{4w(N) - w_n} \leq \frac{1}{4n-1}$.

Proof.

• We know that B = w(N) and $A = w(N) - w_n$ which means that $w(N) - w_n < q \le w(N)$.

Background Complexity results Uniform and unanimity WVGs

Unanimity WVGs

Proposition

For a unanimity WVG
$$v = [q; w_1, \dots, w_n]$$
, $\tau(v) \leq \frac{w_n}{4w(N) - w_n} \leq \frac{1}{4n-1}$.

- We know that B = w(N) and $A = w(N) w_n$ which means that $w(N) w_n < q \le w(N)$.
- For maximum tolerance, $q = \frac{A+B}{2} = w(N) \frac{w_n}{2}$.

Background Complexity results Uniform and unanimity WVGs

Unanimity WVGs

Proposition

For a unanimity WVG
$$v = [q; w_1, \dots, w_n]$$
, $\tau(v) \leq \frac{w_n}{4w(N) - w_n} \leq \frac{1}{4n-1}$.

Proof.

- We know that B = w(N) and $A = w(N) w_n$ which means that $w(N) w_n < q \le w(N)$.
- For maximum tolerance, $q = \frac{A+B}{2} = w(N) \frac{w_n}{2}$.
- Therefore $m = w_n/2$ and $M = w(N) \frac{w_n}{2} + w(N)$.

Background Complexity results Uniform and unanimity WVGs

Unanimity WVGs

Proposition

For a unanimity WVG
$$v = [q; w_1, \dots, w_n]$$
, $\tau(v) \leq \frac{w_n}{4w(N) - w_n} \leq \frac{1}{4n-1}$.

Proof.

- We know that B = w(N) and $A = w(N) w_n$ which means that $w(N) w_n < q \le w(N)$.
- For maximum tolerance, $q = \frac{A+B}{2} = w(N) \frac{w_n}{2}$.
- Therefore $m = w_n/2$ and $M = w(N) \frac{w_n}{2} + w(N)$.
- Then the tolerance of v satisfies:

$$\tau(\mathbf{v}) \leq \frac{m}{M} = \frac{w_n}{4w(N) - w_n} \leq \frac{1}{4n-1},$$

since $w_n \leq w(N)/n$.

Background Complexity results Uniform and unanimity WVGs

Unanimity WVGs

Proposition

For a unanimity WVG
$$v = [q; w_1, \dots, w_n]$$
, $\tau(v) \leq \frac{w_n}{4w(N) - w_n} \leq \frac{1}{4n-1}$.

Proof.

- We know that B = w(N) and $A = w(N) w_n$ which means that $w(N) w_n < q \le w(N)$.
- For maximum tolerance, $q = \frac{A+B}{2} = w(N) \frac{w_n}{2}$.
- Therefore $m = w_n/2$ and $M = w(N) \frac{w_n}{2} + w(N)$.
- Then the tolerance of v satisfies:

$$\tau(\mathbf{v}) \leq \frac{m}{M} = \frac{w_n}{4w(N) - w_n} \leq \frac{1}{4n-1},$$

since $w_n \leq w(N)/n$.

• Analysis and Complexity of splitting in WVG.

Aziz and Paterson Control and manipulation in weighted voting games

イロト イヨト イヨト イヨト

Э

- Analysis and Complexity of splitting in WVG.
- Analysis and Complexity of amplitude/tolerance in WVG.

イロト イヨト イヨト イヨト

- Analysis and Complexity of splitting in WVG.
- Analysis and Complexity of amplitude/tolerance in WVG.

イロト イヨト イヨト イヨト

Future Work

- Analyze other kinds of manipulations: merging and annexation.
- There is more scope to analyse 'splitting 'situations with respect to other cooperative game theoretic solutions.

Future Work

- Analyze other kinds of manipulations: merging and annexation.
- There is more scope to analyse 'splitting 'situations with respect to other cooperative game theoretic solutions.
- Amplitude and tolerance motivates the formulation of an overall framework to check the 'sensitivity' of voting games under fluctuations.

イロト イポト イヨト イヨト

Future Work

- Analyze other kinds of manipulations: merging and annexation.
- There is more scope to analyse 'splitting 'situations with respect to other cooperative game theoretic solutions.
- Amplitude and tolerance motivates the formulation of an overall framework to check the 'sensitivity' of voting games under fluctuations.
- It will be interesting to analyze power index solutions in other domains.

Future Work

- Analyze other kinds of manipulations: merging and annexation.
- There is more scope to analyse 'splitting 'situations with respect to other cooperative game theoretic solutions.
- Amplitude and tolerance motivates the formulation of an overall framework to check the 'sensitivity' of voting games under fluctuations.
- It will be interesting to analyze power index solutions in other domains.

Thank You

Thank you for your attention. If you are interested in my work, please feel free to email to haris.aziz@warwick.ac.uk

・ロト ・回ト ・ヨト・

-
Introduction Splitting Tolerance & Amplitude Conclusion

BCTCS

- British Colloquium for Theoretical Computer Science
- 6-9 April 2009
- University of Warwick.

Aziz and Paterson

Control and manipulation in weighted voting games