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Simple Games

A simple voting game is a pair (N, v) where N = {1, ..., n} is
the set of voters and v is the valuation function
v : 2N → {0, 1}.
v has the properties that v(∅) = 0, v(N) = 1 and
v(S) ≤ v(T ) whenever S ⊆ T .

A coalition S ⊆ N is winning if v(S) = 1 and losing if
v(S) = 0.
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Simple Games

Background: Von Neumann and Morgenstern, Theory of Games
and Economic Behavior, 1944
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Simple Games

Reference: A. Taylor and W. Zwicker, Simple Games: Desirability
Relations, Trading, Pseudoweightings, New Jersey: Princeton
University Press, 1999.

...few structures arise in more contexts and lend
themselves to more diverse interpretations than do simple
games.
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Weighted Voting Games

Voters, V = {1, ..., n} with corresponding voting weights
{w1, ...,wn}
Quota, 0 ≤ q ≤

∑
1≤i≤n wi

A coalition of voters, S is winning ⇐⇒
∑

i∈S wi ≥ q

Notation: [q;w1, ...,wn]

WVGs are concise although not complete representations of simple
games.
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Weighted Voting Games - an example

Weighted Voting Game [51; 50, 49, 1] where V = {Germany,
UK, Luxemburg}

Winning Coalitions:{Germany, UK, Luxemburg},
{Germany,UK}, {Germany, Luxemburg}
UK and Luxemburg have the same power!

Voting Weight

0

10

20

30

40

50

60

Germany UK Luxemburg

`Critical' role in no. of 
coalitions

0
0.5

1
1.5

2
2.5

3
3.5

Germany UK Luxemburg
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Weighted Voting Games - Motivation

Application in political science (EU, IMF etc.)

Application in economics (shareholders)

Decision Theory (basic threshold models)

Multi agent systems

Neuroscience
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Concepts
Background

Key Concepts

Being critical for a coalition

A player, i is critical for a losing coalition C if the player’s
inclusion results in the coalition winning.

Banzhaf Value

Banzhaf Value, ηi of a player i is the number of coalitions for
which i is critical.

Banzhaf Index

Banzhaf Index, βi is the ratio of the Banzhaf value of the player i
to sum of the Banzhaf value of all players.
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Concepts
Background

Banzhaf Index-Example

Weighted Voting Game [51; 50, 49, 1] where V = {Germany, UK,
Luxemburg}

{Germany, UK}: critical members are Germany and UK

{Germany, Luxemburg}: critical members are Germany and
Luxemburg

{Germany, Luxemburg, UK}: critical member is Germany.
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Concepts
Background

Banzhaf Index-Example Continued

Number of coalitions in which Germany is critical: 3

Number of coalitions in which UK is critical: 1

Number of coalitions in which Luxemburg is critical: 1

Banzhaf index of Germany is 3/5, Banzhaf Index of UK is 1/5
and the Banzhaf Index of Luxemburg is 1/5.
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Concepts
Background

Shapley-Shubik index

Depends on permutations instead of coalitions.
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Concepts
Background

Motivation-manipulations in voting

Complexity of Manipulation in voting

Rochester Complexity Group: (E. Hemaspaandra, L.
Hemaspaandra, Faliszewski, Rothe)

Hebrew University Multiagent Systems Group (Jeffrey S.
Rosenschein, Bachrach, Procaccia )

Manipulation, Control or Bribery in election, auctions and
other social choice protocols.
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Concepts
Background

Complexity can be our friend!

Complexity can be our friend!

Bartholdi, Tovey and Trick. The computational difficulty of
manipulating an election. Social Choice and Welfare, 1989.

Bartholdi, Tovey and Trick. Voting schemes for which it can be
difficult to tell who won the election. Social Choice and Welfare,
1989.

Bartholdi, Tovey and Trick. How hard is it to control an election?
Mathematical and Computer Modeling, 1992.

“Would it then be possible to construct a hierarchy reflecting the
difficulty of benefiting from strategic behavior?” - Hannu Nurmi,
Behavioral Science (1984).
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Concepts
Background

WVGs in recent literature

Elkind et al., Computing the Nucleolus of weighted voting games.
SODA 2009

M. Zuckerman, P. Faliszewski, Y. Bachrach, and E. Elkind.
Manipulating the quota in weighted voting games. AAAI 2008

E. Elkind, L. Goldberg, P. Goldberg, and M. Wooldridge. On the
dimensionality of voting systems. AAAI 2008

E. Elkind, L. A. Goldberg, P. W. Goldberg, and M. Wooldridge.
Computational complexity of weighted threshold games. In AAAI,
pages 718723, 2007.

Our aim

Analysis of limit of manipulation and complexity of manipulation in
WVGs.
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Split or not?
Bounds
Complexity of finding a beneficial split
Algorithm to manipulate

Beneficial?

Splitting can be disadvantageous:

Example

Disadvantageous splitting.

We take the WVG [5; 2, 2, 2] in which each player has a
Banzhaf index of 1/3.

If the last player splits up into two players, the new game is
[5; 2, 2, 1, 1].

In that case, the split-up players have a Banzhaf index of 1/8
each.
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Beneficial?

Splitting can be advantageous:

Example

Advantageous splitting.

We take the WVG [6; 2, 2, 2] in which each player has a
Banzhaf index of 1/3.

If the last player splits up into two players, the new game is
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Split or not?
Bounds
Complexity of finding a beneficial split
Algorithm to manipulate

Unanimity WVGs

Proposition

In a unanimity WVG with q = w(N), if Banzhaf indices are used
as imputations of agents in a WVG, then it is beneficial for an
agent to split up into agents.

Proof.

In a WVG with q = w(N), the Banzhaf index of each player is 1/n.

Let player i split up into m + 1 players.

In that case there is a total of n + m players and the Banzhaf index
of each player is 1/(n + m).

In that case the total Banzhaf index of the split up players is m+1
n+m ,

and for n > 1, m+1
n+m > 1

n .

An exactly similar analysis holds for Shapley-Shubik index.
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In that case there is a total of n + m players and the Banzhaf index
of each player is 1/(n + m).

In that case the total Banzhaf index of the split up players is m+1
n+m ,

and for n > 1, m+1
n+m > 1

n .

An exactly similar analysis holds for Shapley-Shubik index.
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Splitting

Proposition

Let WVG v be [q;w1, . . . ,wn]. If v transforms to v ′ by the
splitting of player i into i ′ and i ′′, then βi ′(v

′) + βi ′′(v
′) ≤ 2βi (v).

Proof: We assume that a player i splits up into i ′ and i ′′ and that
wi ′ ≤ wi ′′ . We consider a losing coalition C for which i is critical
in v . Then w(C ) < q ≤ w(C ) + wi = w(C ) + wi ′ + wi ′′ .

If q − w(C ) ≤ wi ′ , then i ′ and i ′′ are critical for C in v ′.

If wi ′ < q −w(C ) ≤ wi ′′ , then i ′ is critical for C ∪ {i ′′} and i ′′

is critical for C in v ′.

If q − w(C ) > wi ′′ , then i ′ is critical for C ∪ {i ′′} and i ′′ is
critical for C ∪ {i ′} in v ′.

Therefore we have ηi ′(v
′) + ηi ′′(v

′) = 2ηi (v) in each case.
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Splitting

C

}{ 'iC∪

}{ ''iC∪

},{ ''' iiC∪

Figure: Splitting of player i into i ′ and i ′′ .
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Splitting Proof

We have ηi ′(v
′) + ηi ′′(v

′) = 2ηi (v) in each case.
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Splitting Proof

Now we consider a player x in v which is other than player i . If x
is critical for a coalition C in v then x is also critical for the
corresponding coalition C ′ in v ′ where we replace {i} by {i ′, i ′′}.
Hence ηx(v) ≤ ηx(v

′).
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Splitting Proof

Moreover,

βi ′(v
′) + βi ′′(v

′) =
2ηi (v)

2ηi (v) +
∑

x∈N(v ′)\{i ′,i ′′} ηx(v ′)

≤ 2ηi (v)

2ηi (v) +
∑

x∈N(v)\{i} ηx(v)

≤ 2ηi (v)

ηi (v) +
∑

x∈N(v)\{i} ηx(v)
= 2βi (v)
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Tight bounds

Example

Advantageous splitting.

We take a WVG [n; 2, 1, . . . , 1] with n + 1 players.

We find that η1 = n +
(
n
2

)
and for all other x , ηx = 1 +

(
n−1

2

)
.

Therefore

β1 =
n +

(
n
2

)
n +

(
n
2

)
+ n(1 +

(
n−1

2

)
)

=
n + 1

(n − 2)2
∼ 1/n.

In case player 1 splits up into 1′ and 1′′ with weights 1 each, then
for all players j , βj = 1

n+2 .

Thus for large n, β1′ + β1′′ = 2
n+2 ∼ 2β1.
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Extreme example of disadvantageous split

Example

Take WVG v on n players where v = [3n/2; 2n, 1, . . . , 1] and n is
even. Then Player 1 is a dictator.

Consider the case where v changes into v ′ with player 1, splitting
up into 1′ and 1′′ with weight n each.

For player 1′ to be critical for a losing coalition in v ′, the coalition
must exclude 1′′ and have from n/2 to n − 1 players with weight 1
or it must include 1′′ and have from 0 to (n/2)− 1 players with
weight 1. So η1′(v ′) = η1′′(v ′) =

∑n
i=0

(
n−1

i

)
= 2n−1.

For a smaller player x with weight 1 to be critical for a coalition in
v ′, the coalition must include only one of 1′ or 1′′ and (n − 2)/2 of
the n − 2 other smaller players. So,

ηx(v
′) = 2

(
n−2

(n−2)/2

)
≈

√
2

π(n−2)2
n−1.
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Example

βi ′(v
′) = βi ′′(v

′)

≈ 2n−1

2n−1 + 2n−1 + (n − 1)
√

2
π(n−2)2

n−1

=
1

2 + (n−1)√
n−2

√
2
π

∼
√

π

2n
.
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Complexity of finding a beneficial split

It is #P-hard for a manipulator to find the ideal splitting to
maximize his payoff.

An easier question is to check whether a beneficial splitting
exists or not.

We define a Banzhaf version of the BENEFICIAL SPLIT
problem:
Name: BENEFICIAL-BANZHAF-SPLIT
Instance: (v , i) where v is the WVG v = [q;w1, . . . ,wn] and
player i ∈ {1, . . . , n}
Question: Is there a way for player i to split his weight wi

between sub-players i1, . . . , im so in the new game v ′,∑k
j=1 βik (v

′) > βi (v)?
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Complexity of finding a beneficial split

Proposition

BENEFICIAL-BANZHAF-SPLIT is NP-hard even if a player can
only split into two players with equal weights.

We prove this by a reduction from an instance of the classical
NP-hard PARTITION problem to BENEFICIAL-BANZHAF-SPLIT.
Name: PARTITION
Instance: A set of k weights A = {a1, . . . , ak}
Question: Is it possible to partition A, into two subsets P1 ⊆ A,
P1 ⊆ A so that P1 ∩ P2 = ∅ and P1 ∪ P2 = A and∑

ai∈A1
ai =

∑
ai∈A2

ai .
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Proof (NP-hard to decide whether split beneficial)

Reduction

Given an instance of PARTITION {a1, . . . , ak}, we can transform it
to a WVG v = [q;w1, . . . ,wn] with n = k + 1 where wi = 8ai for

i = 1 to n − 1, wn = 2 and q = 4
∑k

i=1 ai + 2.

After that, we want to see whether it can be beneficial for player n
with weight 2 to split into two sub-players n and n + 1 each with
weight 1 to form a new WVG v ′ = [q;w1, . . . ,wn−1, 1, 1].

If A is a ‘no’ instance of PARTITION, then we see that no
subset of the weights {w1, . . . ,wn−1} can sum to 4

∑
i ai .

This implies that player n is a dummy.

Even after splitting, new players remain dummies.

Thus ‘no’ instance of PARTITION implies a ‘no’ instance of
BENEFICIAL-BANZHAF-SPLIT.
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Proof (NP-hard to decide whether split beneficial)

Now let us assume that A is a ‘yes’ instance of PARTITION.

Then after some technical work it can be shown that this
implies a ‘yes’ instance of BENEFICIAL-BANZHAF-SPLIT.

Aziz and Paterson Control and manipulation in weighted voting games



Introduction
Splitting

Tolerance & Amplitude
Conclusion

Split or not?
Bounds
Complexity of finding a beneficial split
Algorithm to manipulate

How to manipulate?

There are pseudo-polynomial time algorithms using dynamic
programming or generating function to compute Banzhaf
indices.

Let this pseudo-polynomial time algorithm be called
BanzhafIndex(v , i) which takes a WVG v and player indexed i
as input and returns βi (v), the Banzhaf index of player i in v .

We devise a polynomial time algorithm to find a beneficial
split if the weights of players are polynomial in n and the
player i in question can split into upto a constant k number of
sub-players.

Whenever player i in WVG v splits up according to a split s,
we denote the new game by vi ,s .
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Algorithm 1 BeneficialSplitInWVG
Input: (v, i) where v = [q; w1, . . . , wn ] and i is the player which wants to split into maximum of k sub-players.
Output: Returns NO if there is no beneficial split. Otherwise returns the optimal split (wi1

, . . . , wi
k′

) where

k′ ≤ k, and
∑k′

j=1 wij
= wi

1: BeneficialSplitExists = false; BestSplit = ∅; BestSplitValue = −∞
2: βi = BanzhafIndex(v, i)

3: for j = 2 to k do

4: for Each possible split s where wi = wi1
+ . . . + wij

do

5: SplitValue =
∑j

a=1 BanzhafIndex(vi,s , ia)

6: if SplitValue > βi then

7: BeneficialSplitExists = true

8: if SplitValue > BestSplitValue then

9: BestSplit = s; BestSplitValue = SplitValue

10: end if
11: end if
12: end for
13: end for
14: if BeneficialSplitExists = false then

15: return false
16: else
17: return BestSplit

18: end if
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Proposition

Algorithm 1 has computational complexity which is
pseudo-polynomial in n

Proof.

It is clear that for a constant k, the number of splits of player i is
less than (wi )

k which is a polynomial in n. Since the computational
complexity for each split is also a polynomial in n, therefore
Algorithm 1 is polynomial in n if weights are polynomial in n.
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Varation in parameters of WVGs

f(λ1,...,λn),Λ : [q;w1, . . . ,wn] 7→ [q′;w1
′, . . . ,wn

′]

wi
′ = (1 + λi )wi

q′ = (1 + Λ)q.

If the quota q′ of v ′ is such that for all S ⊆ N,
∑

i∈S wi
′ 6= q′,

then v ′ is called a strict representation of v .
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Tolerance

Let A be the maximum of w(S) for all {S |v(S) = 0}.

let B be the minimum of w(S) for all {S |v(S) = 1}.
Then A < q ≤ B (and q < B if the representation is strict).

Moreover, let m = Min(q − A,B − q) and M = q + w(N).

Tolerance

(Hu + Freixas & Puente) If for all 1 ≤ i ≤ n, |λi | < m/M and
|Λ| < m/M, then v ′ is just another representation of v .

They defined τ [q;w1, . . . ,wn] = m/M as the tolerance of the
system.
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Amplitude

Amplitude

(Freixas and Puente): amplitude is the maximum µ such that
f(λ1,...,λn),Λ is a representation of v whenever
Max(|λ1|, . . . , |λn|, |Λ|) < µ(v).

For a strict representation of a WVG [q;w1, . . . ,wn], for each
coalition S ⊆ N, let a(S) = |w(S)− q| and b(S) = q + w(S).

Amplitude of a WVG is µ(v) = Inf
S⊆N

a(S)
b(S) .

The amplitude is a more precise and accurate indicator of the
maximum possible variation than tolerance.
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Amplitude

We let WVG-STRICT be the problem of checking whether a WVG
v = [q;w1, . . . ,wn] is strict or not, i.e., WVG-STRICT = {v : v is strict}.

Proposition

WVG-STRICT is co-NP-complete

Proof.

WVG-NOT-STRICT is in NP since a certificate of weights can be
added in linear time to confirm that they sum up to q.

Moreover v is not strict if and only if there is a subset of weights
which sum up to q.

Therefore the NP-complete problem SUBSET-SUM reduces to
WVG-NOT-STRICT.

Hence WVG-NOT-STRICT is NP-complete and WVG-STRICT is
co-NP-complete.
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Amplitude

Corollary

The problem of checking whether the amplitude of a WVG is 0 is
NP-hard.
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Amplitude

Proposition

The problem of computing the amplitude of a WVG v is NP-hard,
even for integer WVGs.

Proof.

Let us assume that weights in v are even integers whereas the quota q is
an odd integer 2k − 1 where k ∈ N.

Then the minimum possible difference between q and A, the weight of
the maximal losing coalition, or q and B, the weight of minimal winning
coalition is 1.

So A ≤ 2k − 2 and B ≥ 2k.

We see that µ(v) ≤ 1/2k if and only if there exists a coalition C such
that w(C) = 2k.

Thus the problem of computing µ(v) of a WVG is NP-hard by a
reduction from the SUBSET-SUM problem.
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Amplitude

A similar proof can be used to prove the following proposition:

Proposition

The problem of computing the tolerance of a strict WVG is
NP-hard.
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Uniform WVGs

Proposition

For a strict representation of a proper uniform WVG v = [q;w , . . . ,w︸ ︷︷ ︸
n

],

τ(v) ≤ 1
3n .

Proof:

Since q−A
q+w(N) = 1− w(N)+A

q+w(N) is an increasing function of q and
B−q

q+w(N) is a decreasing function of q, the tolerance reaches its

maximum when q − A = B − q, i.e. when q is the arithmetic mean
A+B

2 .

We let the size of the maximal losing coalition be r and the size of
the minimal winning coalition be r + 1.
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Uniform WVGs

Then the weight of a maximal losing coalition is rw and the weight
of the minimal winning coalition is (r + 1)w and m = w/2. Since v
is proper, q ≥ 1

2 (nw), and M = q + w(N) ≥ 3nw
2

Then,

τ(v) = m/M ≤ 1

3n
.
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Uniform WVGs

Proposition

For a uniform WVG v = [q;w , . . . ,w︸ ︷︷ ︸
n

], we have B = wd q
w e and

A = B − w. Then,

µ(v) =

{
q−A
A+q , if q ≤

√
AB

B−q
B+q , otherwise.
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Uniform WVGs

Proof.

It is clear that B, the weight of the minimal winning coalition
is wd q

w e and A, the weight of the maximal losing coalition is
B − w .

If q−A
q+a ≤

B−q
q+B , then q ≤

√
AB.

For losing coalitions with weight w , q−w
q+w is a decreasing

function for w .

For winning coalitions with weight w , w−q
q+w = 1− 2q

q+w is an
increasing function for w .

Thus if q ≤
√

AB, µ(v) = q−A
A+q .

Otherwise, µ(v) = B−q
B+q .

Aziz and Paterson Control and manipulation in weighted voting games



Introduction
Splitting

Tolerance & Amplitude
Conclusion

Background
Complexity results
Uniform and unanimity WVGs

Uniform WVGs

Proof.

It is clear that B, the weight of the minimal winning coalition
is wd q

w e and A, the weight of the maximal losing coalition is
B − w .

If q−A
q+a ≤

B−q
q+B , then q ≤

√
AB.

For losing coalitions with weight w , q−w
q+w is a decreasing

function for w .

For winning coalitions with weight w , w−q
q+w = 1− 2q

q+w is an
increasing function for w .

Thus if q ≤
√

AB, µ(v) = q−A
A+q .

Otherwise, µ(v) = B−q
B+q .

Aziz and Paterson Control and manipulation in weighted voting games



Introduction
Splitting

Tolerance & Amplitude
Conclusion

Background
Complexity results
Uniform and unanimity WVGs

Uniform WVGs

Proof.

It is clear that B, the weight of the minimal winning coalition
is wd q

w e and A, the weight of the maximal losing coalition is
B − w .

If q−A
q+a ≤

B−q
q+B , then q ≤

√
AB.

For losing coalitions with weight w , q−w
q+w is a decreasing

function for w .

For winning coalitions with weight w , w−q
q+w = 1− 2q

q+w is an
increasing function for w .

Thus if q ≤
√

AB, µ(v) = q−A
A+q .

Otherwise, µ(v) = B−q
B+q .

Aziz and Paterson Control and manipulation in weighted voting games



Introduction
Splitting

Tolerance & Amplitude
Conclusion

Background
Complexity results
Uniform and unanimity WVGs

Uniform WVGs

Proof.

It is clear that B, the weight of the minimal winning coalition
is wd q

w e and A, the weight of the maximal losing coalition is
B − w .

If q−A
q+a ≤

B−q
q+B , then q ≤

√
AB.

For losing coalitions with weight w , q−w
q+w is a decreasing

function for w .

For winning coalitions with weight w , w−q
q+w = 1− 2q

q+w is an
increasing function for w .

Thus if q ≤
√

AB, µ(v) = q−A
A+q .

Otherwise, µ(v) = B−q
B+q .
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Uniform WVGs

Corollary

The amplitude µ(v) of a uniform WVG v can be found in O(1),
i.e., constant time.
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Unanimity WVGs

Proposition

For a unanimity WVG v = [q;w1, . . . ,wn], τ(v) ≤ wn

4w(N)−wn
≤ 1

4n−1 .

Proof.

We know that B = w(N) and A = w(N)− wn which means that
w(N)− wn < q ≤ w(N).

For maximum tolerance, q = A+B
2 = w(N)− wn

2 .

Therefore m = wn/2 and M = w(N)− wn

2 + w(N).

Then the tolerance of v satisfies:

τ(v) ≤ m

M
=

wn

4w(N)− wn
≤ 1

4n − 1
,

since wn ≤ w(N)/n.
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Summary

Analysis and Complexity of splitting in WVG.

Analysis and Complexity of amplitude/tolerance in WVG.
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Future Work

Analyze other kinds of manipulations: merging and
annexation.

There is more scope to analyse ‘splitting ’situations with
respect to other cooperative game theoretic solutions.

Amplitude and tolerance motivates the formulation of an
overall framework to check the ‘sensitivity’ of voting games
under fluctuations.

It will be interesting to analyze power index solutions in other
domains.
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Thank You

Thank you for your attention. If you are interested in my work,
please feel free to email to haris.aziz@warwick.ac.uk
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