Title: Optimal Scheduling of Stochastically Independent Tests (joint work with Endre Boros) Abstract: For many situations of interest (disease, narcotics, steroid use, nuclear contraband) there are diverse tests that can be applied to any specific case. Each test has a cost of application, and a performance characteristic, compactly expressed by an ROC relation between false alarm rate and detection rate. In addition to costs of applying the tests, there may be collateral costs associated with false positives (e.g. biopsy costs and discomfort, in the case of cancer tests). The problem, under these conditions, can be formulated as a very large linear programming problem. With the additional assumption that the randomness in the performance of a test is due to the hidden variation in the cases themselves (rather than some randomness in the observational process), the problem can be dramatically reduced to a dynamic programming problem. The formulation, solution method, and a discussion of some implications and open problems will be presented. This research is supported in Part by the United States Department of Homeland Security administered through NSF Grant 0735910) by the United States Office of Naval Research under Grant Office of Naval Research (Grant N00014-05-1-0237), and U.S. Department of Homeland Security through the Center for Dynamic Data Analysis for Homeland Security administered through ONR grant number N00014-07-1-0150 to Rutgers University. Bio Note: Paul Kantor is Prof. of Information Science at Rutgers, the State University of New Jersey, where he is a member of the LIS department, of DIMACS, RUTCOR, and of the CS Graduate Faculty. http://scils.rutgers.edu/~kantor