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Théo Delemazure1, Jérôme Lang1, Grzegorz Pierczyński2
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Abstract

We give a quantitative analysis of the independence of irrele-
vant alternatives (IIA) axiom. IIA says that the society’s pref-
erence between x and y should depend only on individual
preferences between x and y: we show that, in several con-
texts, if the individuals express their preferences about addi-
tional (or “irrelevant”) alternatives, this information helps to
estimate better which of x and y has higher social welfare.
Our contribution is threefold: (1) we provide a new tool to
measure the impact of IIA on social welfare (pairwise distor-
tion), based on the well-established notion of voting distor-
tion, (2) we study the average impact of IIA in both general
and metric settings, with experiments on synthetic data, and
its impact with real datasets; and (3) we study the worst-case
impact of IIA in the 1D-Euclidean metric space.

Introduction
Independence of irrelevant alternatives (IIA) states that a so-
ciety’s preference between two alternatives x and y depends
only on how its individual members compare x and y (Arrow
1950), as opposed to taking into account the positions they
give to other alternatives. IIA is the key axiom of Arrow’s
impossibility theorem: in ordinal settings, with at least three
alternatives, IIA is incompatible with the unrestricted do-
main assumption, Pareto-efficiency, and non-dictatorship—
three properties that are hard to give up.

Arrow’s theorem has had, until today, a tremendous im-
portance in social choice. It is often seen as negative, since
there are many compelling arguments in favor of IIA (see for
instance (Maskin 2020)). Still, IIA has been criticized for not
taking into account preference intensities, and this may re-
sult in a loss of social welfare. To understand this argument,
consider the following example:

51% of voters: x ≻ y ≻ z1 ≻ . . . ≻ z100
49% of voters: y ≻ z1 ≻ . . . ≻ z100 ≻ x

What should be the collective preference between x and y
here? If we exclude “irrelevant” alternatives z1,. . . , z100,
then the rational choice seems to use majority and conclude
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x ≻ y.1 On the other hand, we may have a strong intuition
that it is not the right choice, because the additional alter-
natives provide us some implicit information: the preference
x ≻ y of the first group of voters is most probably much
weaker than the preference y ≻ x of the second group.

However this argument lacked until now a quantitative
analysis. We argue that a recent research trend, ordinal-
cardinal voting distortion, that aims at measuring the loss of
social welfare (sum of individual utilities) caused by the use
of ordinal instead of cardinal information, provides a suit-
able framework for quantifying the impact of IIA on social
welfare. In our example above, if we had access to informa-
tion about strength of preference, expressed as cardinal util-
ities, we would probably find that y has a higher social wel-
fare than x. By denying access to information about strength
of preference, IIA makes us choose x against y, which leads
to what we call a pairwise distortion relative to x and y.

This being said, there are various ways of exploiting the
additional information given by the irrelevant alternatives,
and the question of which ones actually help reducing the
loss of social welfare is not trivial. On the latter example,
using plurality scores to choose between x and y still leads to
choosing x; and using Copeland scores too. But using Borda
scores leads this time to choosing y.

For choosing between two alternatives given a profile, we
define pairwise voting rules. They take as input two alter-
natives (say, x and y) and a preference profile on a set of
alternatives containing x and y, and output either x or y.
Now the most natural pairwise voting rule satisfying IIA is
the pairwise majority rule, that outputs the result of majority
voting between x and y for each x and y (note that this is the
only pairwise rule satisfying IIA and extending the majority
rule for elections with two alternatives). Of course, apply-
ing pairwise majority to all pairs of alternatives sometimes
returns a nontransitive relation over alternatives.

On the other hand, any social welfare function mapping
a preference profile to a collective ranking of alternatives
induces a (transitive) pairwise voting rule, where the choice
between x and y is made by projecting the collective ranking
on {x, y}. Thus, pairwise voting rules are a common frame-

1As a consequence of May’s theorem (May 1952), IIA, together
with a set of very weak conditions (neutrality, anonymity, and posi-
tive responsiveness), implies that the collective preference between
x and y must be determined by majority voting between x and y.
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work capturing both pairwise majority, which satisfies IIA,
and (nondictatorial) social welfare functions, that do not.

Next, we define pairwise distortion of a pairwise voting
rule f relative to x, y and a profile, as the loss of social wel-
fare caused by choosing the alternative among {x, y} de-
termined by f . The details of the definition may vary—we
focus on the two following settings: (1) in the first one, we
consider average pairwise distortion, where the utilities or
costs of the alternatives follow a given distribution, or are
drawn from real datasets, (2) in the second one, we consider
worst-case pairwise distortion in metric domains (voters and
alternatives are located in a metric space and voters’ prefer-
ences decrease with distance).

Now, the main question is the following: which pairwise
rules give a lower pairwise distortion than pairwise major-
ity, and how can we compare these rules according to their
pairwise distortion? Our main findings are:
• When considering average distortion of synthetic data,

as well as empirical distortion of real datasets, the over-
all picture is that (i) pairwise rules based on Borda and
Copeland perform much better than pairwise majority,
and their pairwise distortion decreases with the number
of alternatives m; and (ii) the pairwise rule based on plu-
rality scoring performs worse than pairwise majority, and
its pairwise distortion increases with m.

• When considering worst-case, metric distortion, pairwise
majority has distortion 3; when additional alternatives
are placed by the election designer cooperatively, in the
1-dimensional (1D) Euclidean space, the plurality and
Copeland pairwise rules perform just like pairwise ma-
jority, while the Borda pairwise rule and one of its vari-
ants do much better.

In the full version of this paper, we consider more rules
and experiments. It also contains the proof of all our results.

Outline of the paper After discussing related work we
give the necessary background and notations. Then, build-
ing on the classical literature on distortion, we define pair-
wise distortion of pairwise voting rules. We start by explor-
ing the average pairwise distortion with experiments on real
and synthetic data, then we look into bounds of worst-case
pairwise distortion for the 1D-Euclidean metric space. We
conclude by discussing further issues.

Related Work
Distortion
Distortion has been introduced by Procaccia and Rosen-
schein (2006) as a means to evaluate whether it is reason-
able to make a collective decision after eliciting only ordinal
preferences. Assuming that cardinal preferences are repre-
sented by utilities, the social welfare of an alternative is the
sum of the utilities it provides to the agents. The distortion
of a voting rule f for a given profile is then defined as the
ratio between the maximum social welfare of an alternative,
and the social welfare of the alternative selected by f ; and
the distortion of f is the maximum, over all profiles, of the
distortion of f for that profile. Metric distortion (Anshele-
vich et al. 2018) aims at minimizing social cost instead of

maximizing social welfare: voters and alternatives belong to
a metric space, and the cost of an alternative to a voter is
the distance between them. Voting distortion (metric or non-
metric) has been the topic of a significant number of papers,
too many for us to cite them all (and most of them are only
moderately related to our concerns). See (Anshelevich et al.
2021) for an extensive survey of the literature until 2021.

Average-case analyses of distortion are far less com-
mon than worst-case analyses. For single-winner voting,
Boutilier et al. (2015) show that the Borda rule is optimal
for the uniform distribution, and Gonczarowski et al. (2023)
show that a suitable positional scoring rule (binomial vot-
ing) performs well for all distributions. Caragiannis et al.
(2017) consider average distortion for multi-winner rules,
Filos-Ratsikas, Micha, and Voudouris (2019) for district-
based elections and Benadè, Procaccia, and Qiao (2019) for
social welfare functions.

Independence of Irrelevant Alternatives
The primary reason why Arrow imposed IIA was to pre-
vent the implicit use of interpersonal comparisons (Arrow
1950). However, it also prevents the use of information
about intensities of preferences between two alternatives
revealed by the positions of thesealternatives with respect
to other (“irrelevant”) alternatives. This has been previ-
ously discussed(Coakley 2016; Pearce 2021; Maskin 2020;
Sen 1970; Osborne 1976; Hillinger 2005; Lehtinen 2011;
Maskin 2023), and examples such as the one presented in
our introduction highlight its practical negative implications.

Because Arrow’s theorem ruled out the existence of a so-
cial welfare function under “reasonable” conditions, it has
had a negative impact on welfare economics (Fleurbaey and
Mongin 2005; Pearce 2021; Igersheim 2019). As other prop-
erties stated in Arrow’s theorem can hardly be given up, IIA
is the most debatable of the conditions of Arrow’s theorem,
and is actually given up de facto when defining voting rules.
Still, IIA is considered attractive for several reasons, such as
avoiding vote splitting (Maskin 2020).

Pairwise Voting Rules
Let V be a set of n voters and A a set of m alternatives. A
ranking ≻ of A is a linear order (irreflexive, antisymmetric,
transitive and connected relation) of A. L(A) denotes the set
of all rankings over A. A preference profile is a collection of
rankings P = (≻1, . . . ,≻n). For a ranking ≻i, we denote
by σi the corresponding rank function: for each alternative
x ∈ A, σi(x) = |{y ∈ A | y ≻i x}|+ 1 the rank of x in ≻i.

A pairwise (voting) rule is a function f that, given a pref-
erence profile P over A and two alternatives x, y ∈ A, out-
puts f(P | x, y) ∈ {x, y}. Equivalently, f associates with
every preference profile P a tournament (an irreflexive, anti-
symmetric and connected relation, but not necessarily transi-
tive).2 A pairwise rule f satisfies IIA if f(P | x, y) = f(P ′ |
x, y) for all P = (≻1, . . . ,≻n) and P ′ = (≻′

1, . . . ,≻′
n)

such that for all voters i ∈ V , x ≻i y if and only if x ≻′
i y.

2Yet another interpretation: f(P |., .) is the restriction of a de-
terministic choice function (Sen 1971) on pairs of alternatives.
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Among pairwise rules that satisfy IIA, the canonical one
is the pairwise majority rule: fmaj(P | x, y) = x (resp. y) if
a majority of voters prefer x to y (resp. y to x). In case of a
tie, we use a tie-breaking priority relation over alternatives.
We will use such a tie-breaking mechanism more generally
for all pairwise rules. Note that except for the treatment of
ties, the graph induced from pairwise majority by x → y if
fmaj(P | x, y) = x is the majority graph associated with P .

Another prominent family of pairwise rules consists of
those that output transitive tournaments, that is, if f(P |
x, y) = x and f(P | y, z) = y then f(P | x, z) = x. In
this case, f corresponds to a social welfare function g map-
ping every profile P to a ranking g(P ) ∈ L(A) defined by
x ≻g(P ) y if and only if f(P | x, y) = x. Conversely, any
social welfare function g induces a pairwise rule gPW.

Among pairwise rules of this class, we will mostly fo-
cus on those that are based on a score function Sc that
maps every profile P and alternative x to a score Sc(x, P ).
The pairwise rule fSc is then defined by fSc(P |x, y) =
argmax(Sc(x, P ), Sc(y, P )).

We will make use of the following pairwise rules, all
based on some scoring function Sc. We include three po-
sitional scoring rules: Plurality because of its simplicity and
wide usage, Borda because of its central role in voting and
its optimal average distortion in some settings (Caragiannis
and Procaccia 2011), Half-approval as it was shown to have
a good average (classical) distortion for a large class of dis-
tributions (Gonczarowski et al. 2023); and one prominent
Condorcet rule (Copeland), which is known to have good
metric distortion guarantees.

Positional scoring rules Let s⃗ = (s1, s2, . . . , sm) be a
non-increasing vector. It is normalized if s1 = 1 and
sm = 0. Each x ∈ A gets sj points from each voter
i ∈ V who ranks x at position j. The score of x ∈ A for
profile P is:

Sc(x, P ) =
m∑
j=1

sj |{i ∈ V |σi(x) = j}|

We consider the following pairwise rules: BordaPW

(s⃗ = (m − 1,m − 2, . . . , 1, 0)), k-approvalPW (s⃗ =
(1, . . . , 1, 0, . . . , 0) with 1 in the first k positions), with
as special cases PluralityPW (k = 1) and Half-
approvalPW (k = ⌈m/2⌉).

CopelandPW For x, y ∈ A, we say that x dominates y if
a majority of voters prefer x to y. The Copeland score
Sc(x) is the number of alternatives y dominated by x.3

Pairwise Distortion
We now formally define pairwise distortion. Similarly as for
standard distortion, we consider unconstrained distortion in
which we assume voters gain unconstrained cardinal utilities
from alternatives, and metric distortion, in which voters and
alternatives are embedded in a metric space, and the cost of
an alternative for a voter is the distance between them.

3The version of Copeland we use here is Copeland0, where pair-
wise ties don’t give any points.

Unconstrained Pairwise Distortion
In the unconstrained distortion setting, every voter i ∈ V
receives a utility Ui(x) ∈ R≥0 from alternative x ∈ A. A
utility profile U is a collection U = (Ui)i∈V .4 We say that
a preference profile P and a utility profile U are consistent
with each other if for all x, y ∈ A and all voters i, if Ui(x) >
Ui(y), then x ≻i y in P and we denote it P ≈ U . The social
welfare of an alternative x ∈ A is SW (x) =

∑
i∈V Ui(x).

The pairwise distortion of a pairwise rule f on a utility
profile U for two alternatives x, y ∈ A is the worst-case ratio
over all P ≈ U between the social welfare of the optimal
alternative and that of f(P | x, y):

dist(f, U | x, y) = max
P :P≈U

max(SWU (x), SWU (y))

SWU (f(P | x, y))

Metric Pairwise Distortion
In the metric distortion setting, we assume that both voters
and alternatives are points in some pseudometric space (V ∪
A, d) with d : (V ∪ A)2 → R≥0 a distance function, where
d(i, x) represents the cost of alternative x for voter i. The
social cost of an alternative x ∈ A for the pseudometric d
is SCd(x) =

∑
i∈V d(i, x). As in the general setting, we

can naturally induce a preference profile P based on d. We
denote P ≈ d if for all x, y ∈ A and all voters i, if d(x, i) <
d(y, i) then x ≻i y in P .

In the metric setting, the pairwise distortion of a pairwise
rule f on a metric d for two alternatives x, y ∈ A is the
worst-case ratio over all P ≈ d between the social cost of
f(P | x, y) and that of the optimal alternative:

dist(f, d | x, y) = max
P :P≈d

SCd(f(P | x, y))
min(SCd(x), SCd(y))

Average and Empirical Pairwise Distortion
We first focus on the average-case scenario, and define the
average pairwise distortion given a probability distribution
D over utility profiles U (for the unconstrained setting) or
over pseudometrics d (for the metric setting). When the dis-
tribution is sampled based on a real dataset, we refer to it as
empirical distortion.

Given a utility profile or a pseudometric, we obtain a pair-
wise distortion for each pair of alternatives, which we have
then to aggregate; for this we consider two possibilities: tak-
ing the maximum or the average over all pairs.

The average pairwise distortion for δ ∈ {avg,max} and
∆ ∈ {U, d} (respectively the unconstrained and the metric
settings) is defined as:

avg-dist(f, δ,D) = avg
∆∼D

δ
(x,y)∈A

dist(f,∆ | x, y)

Note that we use here two ways of averaging, which
should not be confused: averaging over profiles sampled
with D (for defining average pairwise distortion), and av-
eraging over pairs of alternatives (δ = avg).

4In the literature, it is often assumed that utilities are normalized
(for all i ∈ V ,

∑
x∈A Ui(x) = 1), as otherwise the worst-case

distortion is infinitely large. However, for the analysis of average
distortion, such an assumption is not required, as we are already
restricting ourselves to a probability distribution over utilities.
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Figure 1: Average pairwise distortion (over 100,000 profiles)
for m = 2 and several distributions. The x-axis corresponds
to the number of voters n.

Distributions
Our study of average pairwise distortion relies on experi-
ments. We first have to choose which probability distribu-
tions to use for generating profiles, with the aim of observ-
ing the behaviour of the rules when the parameters n and
m vary. We choose the following distributions, two standard
synthetic ones and one sampled from a real-world dataset.
Uniform In the unconstrained setting, we sample profiles

according to the uniform distribution of utilities over
[0, 1].

2D-Euclidean uniform In the metric setting, we sample
positions of voters and alternatives uniformly at random
in the 2-dimensions (2D) Euclidean space.

Bars In the unconstrained setting, we investigate the em-
pirical distortion of the Bars dataset (Lesser et al. 2017)
from the Preflib database (Mattei and Walsh 2013). It
contains ratings r ∈ {1, 2, 3, 4, 5} of bars. We interpret
these ratings as utilities, adding some small random noise
to the ratings in order to remove ties. Then, for a given
pair (n,m), profiles are sampled by selecting randomly
n voters and m alternatives from the dataset (which orig-
inally contains 95 voters and 16 alternatives).

Moreover, for the analysis of the case with m = 2 alter-
natives, we also consider the unit-sum uniform distribution
in the unconstrained setting: for each voter i ∈ V , the utility
of x is selected uniformly at random in [0, 1], and the utility
of y is Ui(y) = 1− Ui(x).

Two Alternatives
In this first experiment, we focus on the case of two alterna-
tives and investigate how the average distortion varies when
we increase the number of voters n. This case is of particular
interest, because it corresponds to the average distortion of
the pairwise majority rule (for which the presence of addi-
tional alternatives has no influence). Note that when m = 2,
the average pairwise distortion for δ = avg and δ = max
are the same as there is only one pair of alternatives.

Figure 1 shows the pairwise distortion for the different
distributions. Interestingly, the average pairwise distortion
is very close to 1. It reach its highest value for n = 2 and the
unit-sum uniform distribution, with an average (pairwise)
distortion of 5/2 − ln(4) ≈ 1.11. We also observe that
pairwise distortion gets asymptotically smaller (with some
parity effect due to tie-breaking) when the number of voters

n increases. This is not surprising: because of Hoeffding’s
inequality, the social welfare (or the social cost) of the two
alternatives get closer to each other when n increases, thus
reducing distortion. These observations suggest that the av-
erage distortion of the pairwise majority rule is usually very
far from its worst-case distortion (3 in the metric setting and
the normalized unconstrained setting)

Increasing the Number of Alternatives
In this section, we investigate how the average pairwise dis-
tortion varies with the number of alternatives m. For all ex-
periments, we use profiles of 30 voters and up to 15 alter-
natives. We compare distortion for pairwise majority (which
satisfies IIA) and four transitive pairwise rules: PluralityPW,
Half-approvalPW, BordaPW, and CopelandPW.

The first row of Figure 2 shows the average mean pair-
wise distortion (δ = avg). For the pairwise majority rule,
it remains constant with the number of alternatives m, as
it satisfies IIA. The transitive pairwise rules considered
here behave differently: the average pairwise distortion of
PluralityPW increases with m, as each voter gives informa-
tion about only one of the m alternatives (its preferred one).
On the opposite, BordaPW and CopelandPW both seem to
really take advantage of the extra information brought by
the additional alternatives, as their average pairwise distor-
tion decreases with m (and particularly quickly in the un-
constrained setting);5; Half-approvalPW lays in the middle,
and its distortion is not far from that of pairwise majority.
Note that the average pairwise distortion of pairwise major-
ity varies from one distribution to another. In particular, it
is higher for distributions in the unconstrained setting than
in the metric setting. This suggests that in the unconstrained
setting, using other pairwise rules already have more poten-
tial to do better than pairwise majority.

Our conclusion is that using information about additional
alternatives can help a lot, provided that the way to use it is
carefully chosen, and that BordaPW and CopelandPW seem
both to be good choices.

The second row of Figure 2 shows the variation with m
of the average max pairwise distortion (δ = max). It in-
creases with m for all distributions and all pairwise rules,
even pairwise majority. It is an intuitively expected behav-
ior: we consider all pairwise distortion values obtained for
each pair of alternatives, and keep only the largest value. The
more alternatives there are, the more pairs to be considered,
and the more likely a bad pair is sampled. However, the rela-
tive order between the curves is the same as for δ = avg. In
particular, BordaPW and CopelandPW always show a better
average max pairwise distortion than pairwise majority, and
the gap is wider than for δ = avg: that is, the average loss of
social welfare caused by IIA is even larger if we only look
at the worst pair of alternatives in the profile. These results
align with our theoretical findings of the next section.

5There is an exception however: with the 1D-Euclidean uni-
form distribution, BordaPW has higher average pairwise distortion
than pairwise majority. This can be explained by the specific struc-
ture of 1D preferences. (Still, average distortion decreases with the
number of alternatives.)
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Figure 2: Average mean pairwise distortion (δ = avg, first row) and average max pairwise distortion (δ = max, second row)
over 10,000 random profiles. The x-axis corresponds to the number of alternatives m.

Worst-Case Metric Pairwise Distortion
In this section we only consider the metric setting, since the
research on standard distortion suggests that it leads to more
positive results than the unconstrained setting (see, e.g., (An-
shelevich et al. 2021)). We consider worst-case pairwise dis-
tortion, by assuming that voters are placed in the metric
space so as to maximize the pairwise distortion of a spe-
cific pair of alternatives (x, y), given the positions of all the
alternatives.

A key question is how to choose the positions of the other
alternatives when determining the worst-case pairwise dis-
tortion of a pair (x, y). Our aim is to compute tight lower
and upper bounds of the worst-case distortion for each pair-
wise rule. This problem can be seen as a game: a first agent
selects the positions of the alternatives, and a second agent
responds in an adversarial manner by choosing the positions
of the voters that maximize pairwise distortion. A coopera-
tive (resp. adversarial) first agent that places the alternatives
so as to minimize (resp. maximize) the worst-case pairwise
distortion gives us a lower (resp. upper) bound.6

The intuition behind the lower bound with a cooperative
agent is that the designer of the game can choose the po-
sitions of alternatives so as to maximize the gain of infor-
mation obtained from voters’ rankings, and thus ease prefer-
ence elicitation. For instance, in a facility location context,
if the designer wants to know which of x and y is a better
collective choice (perhaps because they are the only possi-
ble choices), they can ask the voters to rank x, y, as well
as other carefully chosen additional fake alternatives, used
as reference points. The adversarial case may have less intu-

6 The terminology ‘cooperative/adversarial’ is consistent with
our game-theoretic abstract interpretation, but we do not mean
that the additional alternatives are chosen strategically. Instead we
could say ‘optimistic/pessimistic’; this decision-theoretic terminol-
ogy is not perfect either since it suggests a behaviour towards risk.

itive appeal but is in line with standard worst-case assump-
tions made when defining distortion in various settings.

It is known that the classical worst-case (pairwise) distor-
tion for m = 2 alternatives {x, y} is 3, which can be seen on
this well-known instance: half of the voters prefer x and the
other half y. Assume the tie is broken in favor of x. The y-
voters are all located at the same position as y; the x-voters
are half-way between x and y. The (pairwise) distortion is
n/2·1+n/2·1/2
n/2·0+n/2·1/2 = 3. In this instance, adding alternatives looks
promising: if we add an alternative exactly between x and
y, we will be able to see that the voters who prefer x to y
only have a slight preference, while the others have a strong
preference for y. Now, how much can we improve pairwise
distortion from 3 (obtained with m = 2) when we increase
the number of alternatives with a cooperative agent? And
how bad can it get against an adversarial agent?

Clearly, for any pairwise rule satisfying IIA, pairwise dis-
tortion remains constant, independently from the number
and positions of other alternatives. In particular, the worst-
case pairwise distortion of pairwise majority is always 3.

Without loss of generality, fix two alternatives x, y ∈ A.
Denoting d|A the restriction of a pseudometric d to the set
of alternatives A, for γ ∈ {inf, sup} (respectively the coop-
erative and adversarial cases) we define

dist(f, γ,m) = γ
d|A

sup
d

dist(f, d | x, y)

which we call γ-pairwise distortion for m alternatives.
From now on, we focus on the case of a 1D-Euclidean

space: voters and alternatives are associated with positions
on a line. We make this choice as it is a natural setting to
start this study, and it is known to have a lot of practical
interpretations, such as facility location; we leave the study
of general metric spaces for further research.7 We denote

7Still, Theorems 5 and 6 can be generalized to any metric space.
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IIA (majorityPW) BordaPW OddBordaPW k-ApprovalPW PluralityPW

inf-pairwise distortion 3 m+1
m−1

2m−1
2m−3 2 3

sup-pairwise distortion 3 2m− 1 4m− 5 ∞ ∞

Table 1: γ-pairwise distortions of several pairwise voting rules in the 1d-Euclidean metric space.

p(e) ∈ R the position of e ∈ V ∪ A on the line. We will
assume without loss of generality that the positions of the
alternatives x and y with respect to which we study pairwise
distortion are p(x) = 0 and p(y) = 1.

With only two alternatives (A = {x, y}), all the rules
that we consider boil down to the majority rule, whose pair-
wise distortion is 3. From the well-known fact that the pair-
wise majority rule outputs a transitive order of alternatives
in a 1D-Euclidean space (because of single-peakedness), in
this setting CopelandPW is equivalent to pairwise majority.
Therefore, its inf-pairwise and sup-pairwise distortions are
3 for any m ≥ 2 in the 1D-Euclidean space.

In the remaining of this section, we compute the inf and
sup-pairwise distortion of various pairwise rules. Table 1
summarize our results.

Lower Bound
We first focus on the cooperative case: alternatives are po-
sitioned in order to minimize worst-case pairwise distortion
(however, recall that voters will still be positioned in an ad-
versarial way). The question is here whether the lower bound
of 3 obtained when we impose IIA can decrease if we use
some other pairwise rules.

Without much surprise, for PluralityPW we cannot obtain
a better pairwise distortion than 3, even if we can choose the
position of the alternatives.
Theorem 1. The inf-pairwise distortion of PluralityPW in
the 1D-Euclidean metric space is 3 for any m ≥ 2.

For k-approval with k /∈ {1,m − 1}, we get a better inf-
pairwise distortion, as we can reduce it from 3 to 2.
Theorem 2. For any m ≥ 4 and 2 ≤ k ≤ m − 2, the inf-
pairwise distortion of k-approvalPW in the 1D-Euclidean
metric space is 2.

The result for BordaPW is even more positive: the inf-
pairwise distortion quickly tends to 1 as we add alternatives.
Theorem 3. The inf-pairwise distortion of the BordaPW

pairwise rule in the 1D-Euclidean metric space is m+1/m−1

for any m ≥ 2.

To prove this, we first show that the inf-pairwise distor-
tion of most positional scoring rule for given positions of
alternatives between x and y can be computed easily. In
the following proposition, we assume that all alternatives
zj ∈ A are between x and y. We denote A = {z1, . . . , zm}
such that p(z1) ≤ p(z2) ≤ · · · ≤ p(zm−1) ≤ p(zm). We
naturally have x = z1, y = zm. For simplicity, the positions
of the alternatives are noted pj = p(zj) = d(x, zj) with
p1 = 0 and pm = 1.
Lemma 1. For the 1D-Euclidean metric space, the inf-
pairwise distortion of a positional scoring rule associated

with the normalized scoring vector s = (s1, . . . , sm) with
s1 = 1 and sm−1 > sm = 0, for fixed positions of the
alternatives p1, . . . , pm between x and y, is equal to

max

(
max

1≤i,j<m

Ki,j

1−Ki,j
, max
1≤i,j<m

K ′
i,j

1−K ′
i,j

)
where:

Ki,j =
pi+1 · sj + (1 + pm+1−j) · si

2(si + sj)

K ′
i,j =

(1− pm+1−(i+1)) · sj + (2− pj) · si
2(si + sj)

Note that when the positions of the alternatives are sym-
metrical (for all j, pj = 1−pm+1−j), we have Ki,j = K ′

i,j .
We now give a proof sketch of Theorem 3.

Proof sketch of Theorem 3. The normalized Borda scoring
vector is defined by sj = m−j

m−1 for all j. We first show
that there exist positions of the alternatives that achieve dis-
tortion m+1

m−1 . We place alternatives at equal distance from
each other, i.e., such that pj = j−1

m−1 . Note that these posi-
tions are symmetrical (for all j, pj = 1 − pm+1−j), thus,
K ′

i,j = Ki,j . Using values of the Borda vector and these
positions of the alternatives with Lemma 1, we can compute
the value of Ki,j for all i, j. Consider now the function h
defined by h(i, j) = Ki,j . By straightforward calculations
we can show that the partial derivative of h with respect to
i is always non-negative, while the one with respect to j is
always non-positive. It implies that h reaches its maximum
for i = m − 1 and j = 1, which corresponds to the case
Km−1,1, giving a distortion of m+1

m−1 .
Let us now prove that we cannot obtain a better worst-

case pairwise distortion. For this we consider the follow-
ing profile: a fraction m−1

m of voters are at distance 1
2 of

x and y and prefer x to y (x ≻i y), and the remaining
1
m fraction of voters are at the same position as y, and
obviously prefer y to x. Now, let m(1,2] be the number
of alternatives zj ∈ A with 1 < p(zj) ≤ 2 (they are
closer to y than x is), m>2 the number of alternatives with
p(zj) > 2 (x is closer to y than they are), and m<0 the
number of alternatives with p(zj) < 0. The normalized
score of x (i.e., its score divided by the number of voters)
is Sc(x) = 1

m · m>2+m<0

m−1 + m−1
m · m(1,2]+m>2+m<0+1

m−1 and

the one of y is Sc(y) = 1
m · 1 + m−1

m · m(1,2]+m>2+m<0

m−1 .
Thus Sc(x) − Sc(y) = m>2+m<0

m(m−1) ≥ 0, meaning w.l.o.g.
that BordaPW selects x. However, y is the better alternative
in this profile, which gives a distortion

m−1/m·1/2+1/m·1
m−1/m·1/2 =

m+1
m−1 . This shows that with this profile, any positions of the
alternatives leads to a worst-case distortion ≥ m+1

m−1 .
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One may wonder whether BordaPW is the optimal rule
for inf-pairwise distortion. It appears that a better bound
is obtained by a slightly different, yet very similar scoring
rule, defined by the scoring vector s⃗ = (. . . , 9, 7, 5, 3, 1, 0).
We call it Odd BordaPW, because (except for the last
position) it contains consecutive odd numbers. We prove
that in the 1D-Euclidean metric space, with m alterna-
tives, the OddBordaPW rule has a inf-pairwise distortion of
2m−1/2m−3. We also show that if we add the additional as-
sumption that all alternatives can be placed only between x
and y, this bound is tight among all positional scoring rules
and achievable only by OddBordaPW.

Theorem 4. The inf-pairwise distortion of OddBordaPW in
the 1D-Euclidean metric space is 2m−1/2m−3 for any m ≥
2. This is the lowest distortion among all positional scoring
rules if we assume that all alternatives are between x and y.

We conjecture that this bound remains tight without the
assumption that all alternatives are between x and y. An-
other question is whether this bound applies to rules besides
scoring rules. This can already be partly answered: for given
positions of the alternatives between x and y, we can com-
pute a lower bound on the worst-case pairwise distortion, in-
dependently of the rule used. We found that for m < 6, over
1, 000, 000 different positions of the alternatives, the lower
bound is always ≥ 2m−1

2m−3 , suggesting that OddBordaPW is
optimal when all alternatives are between x and y. However,
when m ≥ 6, we found that OddBordaPW is not the optimal
pairwise rule for the 1D-Euclidean metric space.

Upper Bound
We now focus on the pessimistic case, in which both alter-
natives and voters are placed in an adversarial way.

For PluralityPW, and more generally k-approvalPW for
any k, this upper bound is infinitely large when m > 2. We
saw earlier that these rules (especially PluralityPW) do not
use enough information to take advantage of the additional
alternatives, we now know that they might actually lose all
important information if we add alternatives.

Theorem 5. The sup-pairwise distortion of PluralityPW

and more generally k-approvalPW for all k ≤ n, in the
1D-Euclidean metric space, is +∞ for any m ≥ 3.

The results are slightly better for BordaPW and
OddBordaPW.

Theorem 6. The sup-pairwise distortion of BordaPW

(resp. OddBordaPW) in the 1D-Euclidean metric space is
equal to 2m− 1 (resp. 4m− 5) for all m ≥ 2.

Proof. We show the bound for BordaPW. We divide voters
into two groups: those who prefer x to y, and those who
prefer y to x. We assume without loss of generality that
BordaPW selects y but x has a lower social cost. Observe
that every voter who prefers x to y gives at least one more
point to x than to y, and every voter who prefers y to x gives
at most m − 1 more points to y than to x. Therefore, if we
denote α ∈ [0, 1] the proportion of voters who prefer x to
y, we have Sc(x) ≥ nα and Sc(y) ≤ n(1 − α)(m − 1).
To have Sc(y) ≥ Sc(x) (as y is preferred), we need α ≤

(1−α)(m−1), which implies α ≤ m−1
m . Now, observe that

voters preferring x to y maximize distortion by being at the
same position as x if they could, and voters preferring y to
x can maximize distortion by being exactly between x and
y (1/2 of both). Therefore, distortion cannot be higher than

α+ (1− α) 12
(1− α) 12

=
1 + α

1− α
≤

1 + m−1
m

1− m−1
m

= 2m− 1

Moreover, this bound is reached. Let 1/4 > ε > 0 and
consider the profile in which all alternatives zj ̸= x, y are at
position p(zj) = ε. Set m− 1 voters at position 2ε, ranking
y last and x second last, and one voter at position 1/2 + ε,
ranking y first and x last. In this profile Sc(x) = Sc(y) =
m − 1 and assume w.l.o.g. that ties are broken in favor of
y. The distortion for this profile is (m−1)(1−2ε)+1/2−ε

1/2+ε and it
tends to 2m− 1 when ε tends to 0.

This implies that for these two rules, if distortion quickly
gets close to 1 in the best case, it also quickly becomes very
large in the worst case. However, by comparing the proofs
of the inf-pairwise and sup-pairwise distortions, we notice
that the positions of alternatives in the best-case scenario
(equidistant alternatives) seems more natural than the po-
sitions of alternatives in the worst-case scenario (almost all
alternatives at the same position). In particular, the equidis-
tant positions of alternatives are their expected positions if
they are uniformly distributed on the line. This uniformity
of the positions partly explains why average distortion de-
creases with the number of alternatives, but also with the
dimension. This intuition that pairwise distortion is in aver-
age closer to the best case and decreases with the number of
alternatives is also supported by the experiments reported in
the previous section.

Conclusion
We have introduced pairwise distortion as a tool for the
quantitative analysis of the impact on social welfare of the
Independence of Irrelevant Alternatives (IIA) axiom. Our
conclusions are mixed:
• using information about additional alternatives may help

reducing average distortion, but it crucially depends on
the choice of the pairwise voting rule used. We found out
that — among the rules we studied — the Copeland and
Borda pairwise rules are particularly good at decreasing
average distortion, but the Plurality pairwise rule has the
opposite effect and leads to a larger distortion than stick-
ing to IIA and using pairwise majority.

• when it comes to worst-case distortion, a crucial parame-
ter is the origin of additional alternatives. If they are cho-
sen by the election designer, then the Borda pairwise rule
is quite good, and its variant OddBorda (a rule that may
be interesting on its own) is even better. However, if they
are chosen adversarily, then better stick to IIA.

Among further issues, it is worth looking at average pair-
wise distortion under distributions in which votes are corre-
lated (such as Mallows or mixtures thereof), and proving or
disproving our conjecture about the optimality of OddBorda
in the 1D-Euclidean space.
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