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A divisible public resource is to be divided among projects. We study rules that decide on 
a distribution of the budget when voters have ordinal preference rankings over projects. 
Examples of such portioning problems are participatory budgeting, time shares, and 
parliament elections. We introduce a family of rules for portioning, inspired by positional 
scoring rules. Rules in this family are given by a scoring vector (such as plurality or Borda) 
associating a positive value with each rank in a vote, and an aggregation function such as 
leximin or the Nash product. Our family contains well-studied rules, but most are new. 
We discuss computational and normative properties of our rules. We focus on fairness, and 
introduce the SD-core, a group fairness notion. Our Nash rules are in the SD-core, and the 
leximin rules satisfy individual fairness properties. Both are Pareto-efficient.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

The members of an organization need to divide its budget among several projects. They have different opinions about 
the relative value of different projects, and would like to vote over the budget. What kind of voting rule could they use?

Some cities let citizens vote over the use of the city budget, giving rise to participatory budgeting (see Aziz and Shah [1],
De Vries et al. [31]). In deployed applications (such as in Paris, Madrid, and Warsaw), the projects are indivisible, and can 
be either fully funded or not at all, such as refurbishing a school or adding a bike lane. We focus on divisible projects on 
which an arbitrary fraction of the budget could be spent, such as ‘education’ or ‘transport’ or ‘parks’. The result of the vote 
can be visualized as a pie chart showing which percentage of the budget is spent on each expense. The ‘budget’ need not 
be monetary, and we refer to this general scheme as portioning. There are many applications:

• A conference board deciding how much time to assign to talks, poster sessions, invited talks, and coffee breaks.
• Coauthors deciding how much space to devote to various topics in a textbook or article with fixed total length.
• A parliamentary election deciding what percentage of parliament seats should go to each party (see Section 7).
• A company deciding which charities to direct its annual donations to, letting employees vote over which charities should 

receive a donation.

✩ This paper is an invited revision of a paper which first appeared at the 2019 International Joint Conference on Artificial Intelligence (IJCAI-19).
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Fig. 1. Distributions selected by five different rules on an example profile.

We ask voters to report their preferences over projects as rankings, the most common format considered in social choice. If 
a project is ranked more highly, the voter thinks it is more worthwhile and should receive a larger fraction of the budget. 
The rules we study in this paper make an important assumption: voters’ preferences over budget allocations are implicitly 
interpreted to be separable. Thus, a voter ranking project a above project b is assumed to prefer giving a larger share to a
than to b in all possible contexts. In particular, voters cannot express complementarity or supplementarity between projects, 
nor that they want the share of a to be 50%, or that projects a and b should ideally receive the same share. Of the four 
example applications we mentioned, separability is plausible for the latter two, but less plausible for the first two (since 
people typically want a varied conference program, and textbooks about more than one topic).1

The space of sensible aggregation rules is large, so let us illustrate some important design considerations by an example.

An example A company wants to decide about its annual donation to charities. Its five employees have different preferences 
about which ones should receive money. The charities under consideration are a, b, c, d, e. Frances, George and Helena all 
think a � b � c � d � e; Ingrid thinks e � b � c � d � a; and John thinks c � a � e � d � b.

One simple way to split the money is to allocate each person the same share of the total amount of the donation 
(20%) and let them decide which charity it should be given to (see Fig. 1(a)). To the social choice theorist, this rule sounds 
familiar: it is formally identical to Random Dictatorship, whose output is usually seen not as a division of a budget, but as a 
probability distribution. Indeed, any probabilistic social choice function can be repurposed to divide budgets; but these are 
often not attractive for portioning since many of them were designed as tie-breaking devices.

The output of random dictatorship can be a good choice, especially if our five employees strongly prefer their top choice 
to any other charity. But it is also plausible that Frances, George, Helena and Ingrid agree that b is good common ground. 
Random Dictatorship, using plurality scores, ignores this (plurality scores assign one point to the best alternative and zero 
to the other ones). Instead, we could impute Borda scores on our company. For m alternatives, Borda scores assign m − 1
points to the best alternative, m − 2 to the second best, and so on. For example, Frances, George, and Helena give 4 ‘utility’ 
points to a, 3 to b, 2 to c, 1 to d, and 0 to e. Proportional Borda then allocates money in proportion to the total Borda score 
of the charities (see Fig. 1(b)). This leads to a significant money share for b. On the other hand, the company now also 
donates to d, which is dominated: everyone agrees that c is better than d!

To be more efficient, it makes sense to maximize a notion of social welfare. Suppose the utility enjoyed by a company 
employee is the weighted average of the Borda scores of the charity the company donates to, where the weights come from 
the fraction of money spent on each charity. It remains to decide how to aggregate these utilities. Utilitarianism picks a 
distribution where the sum of utilities is greatest. In our example, Borda-utilitarianism — resulting from the choice of the 
Borda scoring vector and utilitarianism — gives 100% of the donation to a (see Fig. 1(c)).

This is Pareto-efficient: no other distribution is better for all agents. But it is unfair to Ingrid, who sees all the funding 
to her least-preferred choice. Many rules suffer from this phenomenon of overriding some voters’ preferences: For example, 
the ‘maximal lotteries’ rule (see the related work section) also only funds a since it is the Condorcet winner, that is, for any 
other candidate x, a majority of voters prefer a to x.

To avoid frustration, we may take a more egalitarian approach, and aim to give every company employee a significant 
share. Egalitarianism consists in picking the distribution maximizing the utility of the worst-off employee. In our example, 
Borda-egalitarianism — resulting from the choice of the Borda scoring vector and egalitarianism — gives every employee an 
average Borda-utility of 2.4. The outcome is represented in Fig. 1(d).

We can also maximize Nash social welfare, the product of utilities. This is often seen as a compromise between maxi-
mizing utilitarian and egalitarian welfare notions. While egalitarian rules perform well when we wish to be fair to each 
individual, Nash rules tend to be fair to groups. In our example, Frances, George and Helena form a large group with the 
same preferences, liking a most, and accordingly Borda-Nash gives almost half the budget to a (see Fig. 1(e)).

If there were more than those 3 employees with the same preferences in the company, Borda-Nash would increase the 
budget share of a. In contrast, Borda-egalitarianism avoids funding a to benefit Ingrid (who ranks a last), and the output 

1 If voters prefer mixtures, this could be accommodated by including projects that are themselves mixtures, so that the outcome is a “mixture of 
mixtures”, as discussed by Brandl and Brandt [18, p. 802].
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of egalitarian rules does not change with the number of employees with identical preferences. Depending on the context, 
either of these behaviors might be more appropriate.

Our contributions We introduce a class of aggregation rules called positional social decision schemes. Rules in this class first 
convert each input ranking into scores for the alternatives, using a scheme such as plurality or Borda scores. Then, these 
scores are lifted and used to score distributions (using a weighted average). Finally, the rules select a distribution of the 
budget maximizing social welfare given those scores, where different notions of welfare can be used; classically, we consider 
utilitarian, egalitarian (leximin), and Nash welfare. Our class contains known rules such as random dictatorship, but most 
have not been studied.

We begin by noting basic properties of the rules in our class, giving closed forms and equivalent definitions in some 
cases. We also show that the rules in this class can be calculated or approximated in polynomial time. For rules based on 
Nash welfare, we show that their output can involve irrational percentages; we prove that those rules are guaranteed to be 
rational if the scoring vector used is plurality or veto, but that no other scoring vector guarantees rational output.

We then formalize intuitive notions of fairness in the budgeting context. The axioms we propose require that procedures 
do not ignore individuals: every voter should have at least some of the budget allocated to favored causes. We also give 
some group fairness notions. Our strongest axiom is the SD-core which, roughly, requires that a group of α% of the voters 
can control what happens with α% of the budget. We show that the rules in our class based on Nash welfare satisfy the 
SD-core, while the egalitarian rules satisfy the individual fairness notions.

We study the performance of our rules on standard social choice properties, such as Pareto-efficiency, strategyproof-
ness, monotonicity, and participation. In the conclusion, a table summarizes which properties are satisfied by the various 
rules.

We close by giving a detailed example of applying our rules to the problem of allocating seats in a parliament under a 
party-list system.

Related work Bogomolnaia et al. [15] introduced the portioning problem, motivated by time-sharing. They assume dichoto-
mous preferences, and agents report a subset of the alternatives (an approval vote), rather than rankings. They study the 
compatibility of Pareto-efficiency and strategyproofness, with positive results (for example, spending the entire budget on 
the approval winner satisfies both requirements). However, after adding a fairness axiom, they get an impossibility result. 
Related impossibilities are proved by Duddy [32] and Brandl et al. [22]. Aziz et al. [7] introduce some new rules based 
on welfare maximization, and introduce new fairness axioms (including a core notion), and a weakened strategyproofness 
axiom. Guerdjikova and Nehring [44] give an axiomatic characterization of the Nash product rule. Michorzewski et al. [52]
study utilitarian welfare guarantees of various rules in this setting. Brandl et al. [23] study cases when the budget is owned 
by the voters. Freeman et al. [40] consider portioning when each agent has a preferred ideal distribution and wants the 
chosen distribution to be close to the ideal.

Fain et al. [34] study portioning in a cardinal model which allows agents to give a full utility function over alternatives 
(which may also feature decreasing returns). They study the core and connect it to the Lindahl equilibrium from the study 
of public goods, and prove that a core solution always exists. For a broad class of utility functions, they show that a core 
solution can be found in polynomial time by solving a suitable convex program. They also use differential privacy to design 
a mechanism for this setting which satisfies approximate versions of efficiency, truthfulness, and the core.

With rankings as input, this setting has been studied in the formally isomorphic guise of probabilistic social choice [see 
Brandt [25] for a recent survey]. In this literature, the outcome distribution is interpreted as a random device, which is 
used to eventually implement a single outcome. This makes notions of fairness and proportionality less relevant, and it is 
seen as desirable for a rule to randomize as little as possible. For example, the maximal lotteries rule [47,20], while attractive 
according to consistency axioms, spends the entire budget on the Condorcet winner if it exists. This is often undesirable in a 
budgeting context. Some papers on probabilistic social choice also discuss fairness concerns and the portioning application, 
e.g., Aziz et al. [6] and Aziz and Stursberg [2].

We can view positional decision schemes as choosing a utility function for each voter and then performing welfare 
maximization for different social welfare functions. Following the literature on implicit utilitarian voting [59,16], Ebadian 
et al. [33] take a different view. They assume that each voter has a true utility function that is unknown to the voting 
rule but that is compatible with the reported ranking. The goal is to find a portioning that approximately maximizes social 
welfare, no matter what the true utilities turn out to be. For utilitarian welfare, they show that an O (

√
m)-approximation is 

possible, and for Nash welfare, they show that an O (log m)-approximation is possible, where m is the number of alternatives. 
They also consider a notion of the core that is related to our SD-core; we could call their notion the strong SD-core. A 
distribution fails to be in the (weak) SD-core if a coalition of voters has a deviation that they all prefer for all possible 
utility functions compatible with the reported rankings. The latter is a difficult condition to satisfy, making the SD-core a 
somewhat weak property. For Ebadian et al. [33], a distribution fails to be in the strong SD-core if a coalition of voters has 
a deviation that they prefer with respect to some compatible utility functions. This is so strong that no distribution can be 
in the SD-core, except for trivial profiles. Thus, Ebadian et al. [33] study an approximation they call the α-core, and show 
that there always exists a distribution satisfying it for α = O (log m).

In a related setting, mirroring how many cities do participatory budgeting, projects are indivisible and come with a 
fixed cost; they can either be fully funded or not at all [42,13,1]. Several recent papers have studied fairness in this setting 
3
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[5,35,28,57,36,50]. It is related to multi-winner elections (which can be seen as the special case where all projects have the 
same cost), for which fairness and proportionality are well-studied [3,37,49]. The setting is also known as combinatorial 
public projects [56].

The literature on cake-cutting and item allocation is mostly unrelated to our work: in those settings, goods are allocated 
to agents for their exclusive use. In our setting, resources are spent on projects which can be enjoyed by all agents. On a 
technical level, the idea of scoring followed by aggregation has been explored in fair division [17,30,11], and work on the 
fair allocation of goods to several groups of agents raises similar issues [see, e.g., [51,8,60]].

2. Positional social decision schemes

Let X = {x1, . . . , xm} be a set of alternatives and N = {1, . . . , n} be a set of voters. Let L(X) be the set of linear orders 
over X . For � ∈ L(X), the rank of alternative x j is r(�, x j) = 1 + |{xi ∈ X : xi � x j}|. For example, if x j is the top-ranked 
alternative in � then r(�, x j) = 1. A profile P = (�1, . . . , �n) ∈ L(X)n is a collection of linear orders, one for each voter. 
We write abc as shorthand for a � b � c. Let �(X) = {p : X → [0, 1] : ∑x∈X px = 1} be the set of (probability) distributions 
over X . We use notation like 1

2 x1 + 1
2 x2 to specify a distribution, and write x j for the distribution with px j = 1. Given a 

distribution p, for brevity we sometimes write p j for px j . We say that z : X → [0, 1] is a partial distribution if 
∑

x∈X zx � 1. 
A social decision scheme (SDS) [41] is a function F assigning to each P ∈ L(X)n a nonempty subset of �(X) of selected 
distributions. Usually, this set is a singleton, but there can be several tied distributions.

A scoring vector for m alternatives is a vector s = (s1, . . . , sm) of numbers with s1 � s2 � · · · � sm and s1 > sm . We 
usually assume sm = 0. A scoring vector s is strictly decreasing if s j > s j+1 for all j < m. The Borda vector is sBorda =
(m − 1, m − 2, . . . , 0); the plurality vector is splurality = (1, 0, . . . , 0); the veto (or antiplurality) vector is sveto = (1, . . . , 1, 0).

For a fixed profile P , we write s[i, j] = sr(�i ,x j) for the s-score that voter i ∈ N assigns to alternative x j ∈ X . These scores 
can be lifted to (partial) distributions by taking a weighted average (i.e., taking the expected score): We say that the s-score 
of a distribution p for i is s[i, p] = ∑m

j=1 p js[i, j]. Finally, define the utility vector s[p] = (s[1, p], . . . , s[n, p]).
A welfare ordering is a weak order �W of utility vectors (α1, . . . , αn) ∈ Rn

�0. We denote by >W the strict part of �W . 
The most common choices for �W are:

• utilitarianism, which orders vectors by their sum;
• egalitarianism, which orders vectors by their minimum;
• leximin, which sorts the components of the utility vector increasingly and then orders sorted vectors lexicographically;
• the Nash product [55], which orders vectors by their product.

By combining a scoring vector and a welfare ordering, we can define a positional social decision scheme.

Definition 1 (Positional Social Decision Schemes). For a scoring vector s and a welfare ordering �W , define the social decision 
scheme Fs,�W so that for all profiles P ,

Fs,�W (P ) = {p ∈ �(X) : s[p] �W s[q] for all q ∈ �(X)}.

For the specific �W mentioned, we usually call these rules s-utilitarianism, s-egalitarianism, s-leximin, and s-Nash.

Example 1 (The case of two alternatives). Consider the profile P = (ab, ab, ba) over two alternatives, with s = (1, 0). For each 
r ∈ [0, 1], consider the distribution p(r) = ra + (1 − r)b, whose associated utility vector is (r, r, 1 − r).

• s-utilitarianism selects the distribution p(r) maximizing 
∑n

i=1 s[i, p(r)] = 1 + r, which is the deterministic distribution a.
• s-egalitarianism selects the distribution p(r) maximizing mini=1...n s[i, p(r)] = min(r, 1 − r), which is 1

2 a + 1
2 b. The same 

distribution is selected by s-leximin.
• s-Nash selects the distribution p(r) maximizing 

∏n
i=1 s[i, p(r)] = r2(1 − r), which is 2

3 a + 1
3 b.

More generally, if a profile consists of q votes for ab and n − q votes for ba, then: s-utilitarianism selects a if q > n − q and 
b if q < n − q, and selects all possible distributions if q = n − q; s-egalitarianism and s-leximin select 1

2 a + 1
2 b whenever 

1 � q < n; and s-Nash selects q
n a + (1 − q

n )b. �
For normative analysis, it is useful to extend voters’ rankings of the alternatives to (partial) preferences over distributions. 

We assume linear preferences: there is an unknown utility function ui : X →R consistent with �i such that i prefers those 
distributions p with higher expected utility 

∑
x∈X ui(x)px . A classical way of ranking distributions despite not knowing ui

uses stochastic dominance (SD): If p and q are (possibly partial) distributions, we write

p �SD q ⇐⇒ ∑
px �

∑
qx for all x j ∈ X .
i xk�i x j k xk�i x j k

4
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As usual, we then write p �SD
i q if p �SD

i q but q 	�SD
i p, and p ∼SD

i q if p �SD
i q and q �SD

i p.
If we label alternatives such that x1 �i x2 �i · · · �i xm , we can equivalently write this definition as

p �SD
i q ⇐⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p1 � q1, and

p1 + p2 � q1 + q2, and
...

p1 + · · · + pm−1 � q1 + · · · + qm−1.

Note carefully that our definition does not include the inequality p1 + · · · + pm � q1 + · · · + qm , which usually is part of 
the definition of SD. This inequality is trivially satisfied if both p and q are distributions summing to 1. But since we omit 
this inequality, we can SD-compare partial distributions. According to our definition of SD, each agent interprets a partial 
distribution z with 

∑
x∈X zx = α < 1 as if it was the full distribution z + (1 − α)xm , which places the remaining probability 

mass 1 −α on the agent’s least-preferred alternative. This extension to partial distributions will be crucial for the definition 
of the SD-core in Section 4. Here are some examples for an agent with x1 �i x2 �i x3 �i x4:

(0.8,0.1,0.1,0) �SD
i (0.7,0.2,0.1,0) �SD

i (0.7,0.2,0,0.1) �SD
i (0.7,0,0,0) ∼SD

i (0.7,0,0,0.3).

The definition of SD-preference is interesting due to the following standard equivalence [14]: distribution p is weakly SD-
preferred to q by voter i if and only if p gives i a weakly higher s-score than does q, for all scoring vectors s with sm = 0. 
(The condition that sm = 0 is necessary to implement our way of doing SD-comparisons of partial distributions: sm = 0
implies that voters are indifferent between not spending part of the budget or spending it on their worst alternative.) The 
equivalence is formalized in the following proposition.

Proposition 1. Let p and q be (possibly partial) distributions.

(a) p �SD
i q if and only if s[i, p] � s[i, q] for all scoring vectors s with sm = 0.

(b) If p �SD
i q then for each strictly decreasing scoring vector s with sm = 0, we have s[i, p] > s[i, q].

Proof. Label alternatives such that x1 �i x2 �i · · · �i xm .
Suppose p �SD

i q, and let s be a (weakly decreasing) scoring vector with sm = 0. Since p �SD
i q, we have p1 � q1, p1 +

p2 � q1 + q2, . . . , p1 + · · · + pm−1 � q1 + · · · + qm−1. Now

s[i, p] − s[i,q] =
m−1∑
j=1

s j(p j − q j)

=
m−1∑
j=1

s j((p1 + · · · + p j) − (q1 + · · · + q j)) − s j((p1 + · · · + p j−1) − (q1 + · · · + q j−1))

=
m−1∑
j=1

(s j − s j+1)((p1 + · · · + p j) − (q1 + · · · + q j)) � 0.

Here, the third equality uses that sm = 0. The inequality uses that s j − s j+1 � 0 since s is weakly decreasing. Hence, 
s[i, p] � s[i, q], showing one direction of (a). We can use the same calculation to show (b): the last sum in the calculation 
is strictly positive because (s j − s j+1) is positive by the assumption that s is strictly decreasing, and because p �SD

i q, at 
least one of the terms of the sum is strictly positive. For the converse direction of (a), assume s[i, p] � s[i, q] for all scoring 
vectors s with sm = 0. This applies in particular to the scoring vectors s = (1, 0, . . . , 0), (1, 1, 0, . . . , 0), . . . , (1, 1, . . . , 1, 0). 
Applying s[i, p] � s[i, q] to each of these vectors gives p1 � q1, p1 + p2 � q1 + q2, . . . , p1 + · · · + pm−1 � q1 + · · · + qm−1, 
that is, p �SD

i q. �
Thus, p is SD-preferred to q if p gives a higher expected score than q under all scoring vectors.

3. Computation and basic properties

In this section, we look at elementary properties of the family of rules we have defined. We will note that some of 
the rules are familiar from the probabilistic context. We also study the computational complexity of finding an optimal 
distribution.
5
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3.1. Utilitarianism

From a utilitarian perspective, it is never worth it to spend part of the budget on alternatives whose total s-score is not 
maximal: shifting that spending to an s-maximal alternative increases utilitarian welfare. Thus, up to ties, s-utilitarianism 
never mixes and spends all resources on an s-winner. Formally, s-utilitarianism selects those distributions p for which 
px j > 0 only if the score 

∑
i∈N s[i, j] is maximum.

Since the behavior of s-utilitarianism is familiar from work on scoring rules in voting [see, e.g., Zwicker [62]], we will 
not study it in much detail.

3.2. Egalitarianism

Plurality-egalitarianism is easy to understand: it returns the uniform distribution over all alternatives that are ranked 
top by at least one voter. In the probabilistic context, this rule coincides with the egalitarian simultaneous reservation rule 
of Aziz and Stursberg [2], designed more generally for preferences with possible indifferences. For other scoring vectors, 
s-egalitarianism is less simple, and it need not return a uniform distribution (see the example of Section 1). However, one 
can easily evaluate s-egalitarianism using linear programming:

maximize t∗ s.t.
∑m

j=1 s[i, j] · p j � t∗ for i ∈ N∑m
j=1 p j = 1, and p j � 0 for x j ∈ X

Now, s-egalitarianism is not very decisive, in the sense that many different distributions may maximize the s-egalitarian 
objective. For example, when P = (abcd, acbd, bdac), and s = (1, 1, 0, 0), it selects all distributions of the form

p · a + q · b + ( 1
2 − p) · c + ( 1

2 − q) · d

where 0 � p, q � 1
2 and 1

2 � p + q � 1. A standard way of making egalitarianism more decisive and more efficient is by 
using leximin instead. In the above example, s-leximin uniquely selects 1

2 a + 1
2 b.

It is still possible to evaluate s-leximin in polynomial time, by solving O (n2) linear programs successively. Our algorithm 
uses the convexity of the set �(X) of all distributions, which allows it to greedily fix the identity of the agent who is worst 
off in the current iteration. The algorithm is a special case of a scheme discussed by Nace and Orlin [54], and is similar to 
algorithms used by Kurokawa et al. [48].

Algorithm 1 Computing an s-leximin distribution.
Set N ′ ← ∅. For i ∈ N , we will set ti once i is added to N ′ .
while N ′ 	= N do

Using linear programming, find the maximum value t∗ such that there is a distribution (p1, . . . , pm) satisfying

∑m
j=1 s[i, j]p j � t∗ for i ∈ N \ N ′∑m
j=1 s[i, j]p j = ti for i ∈ N ′∑m
j=1 p j = 1

p1, . . . , pm � 0

for each i′ ∈ N \ N ′ do
Using linear programming, find the maximum ε such that there is a distribution (p1, . . . , pm) satisfying

∑m
j=1 s[i′, j]p j � t∗ + ε∑m
j=1 s[i, j]p j � t∗ for i ∈ N \ N ′∑m
j=1 s[i, j]p j = ti for i ∈ N ′∑m
j=1 p j = 1

p1, . . . , pm � 0

If ε = 0, add i′ to N ′ and set ti′ ← t∗ .
end for

end while
return the solution (p1, . . . , pm) of the last linear program solved

Theorem 1. For every s, one can compute a distribution selected by s-leximin in polynomial time.

Proof. The algorithm is specified as Algorithm 1. It requires solving at most n(n + 1)/2 linear programs.
First, we will prove by induction on k � 1 that at the start of the kth iteration of the while-loop, it is the case that every 

distribution p selected by s-leximin satisfies s[i, p] = ti for every i ∈ N . Second, we show that in each iteration, at least one 
agent gets added to N ′ . From the second claim it follows that the while-loop terminates after at most n iterations. From 
the first claim, it follows that upon termination, we know the values s[i, p] for every i ∈ N that must be attained by an 
6
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s-leximin distribution. We can then compute one such distribution by linear programming (or as stated in the algorithm, 
just reuse the most recent optimal solution we have computed because it satisfies the exact same constraints).

The inductive hypothesis holds vacuously at the start of iteration k = 1. Let k � 1. Denote by N ′
k and N ′

k+1 the sets N ′
at the start of the kth and the (k + 1)th iteration. Note N ′

k ⊆ N ′
k+1. Let p be a distribution selected by s-leximin. From the 

inductive hypothesis, s[i, p] = ti for all i ∈ N ′
k . Letting t∗ be the optimum value of the first linear program solved in the kth 

iteration, we know that s[i, p] � t∗ for all i ∈ N \ N ′
k . Let i′ ∈ N ′

k+1 \ N ′
k be an agent who is added to N ′ in the kth iteration. 

Note that the algorithm sets ti′ = t∗ . We claim that s[i′, p] = t∗ . We already know s[i′, p] � t∗ . For a contradiction suppose 
s[i′, p] > t∗ . Then in the iteration of the for-loop in which i′ was added to N ′ , the distribution p is a feasible solution to the 
linear program solved in that iteration. Because the solution has a strictly positive objective value, this is a contradiction to 
i′ being added then. Hence s[i′, p] = t∗ . Since our choice of p among distributions selected by s-leximin was arbitrary, this 
shows that the inductive hypothesis holds at the start of iteration k + 1.

It remains to show that at least one agent is added to N ′ at each iteration. Suppose this is not the case for the kth 
iteration. Then the linear programs solved in each for-loop iteration have solutions with positive objective value. For each 
i′ ∈ N \ N ′

k , let p(i′) be the distribution found in its for-loop; note s[i′, p(i′)] > t∗ . Let p′ be the average of all these distribu-
tions, i.e., p′ = ∑

i′∈N\N ′
k

1
|N\N ′

k| p(i′) . Then we have s[i, p′] = ti for all i ∈ N ′
k , and s[i, p′] > t∗ for all i ∈ N \ N ′

k . This contradicts 
t∗ having been the optimum value of the first linear program solved in the kth iteration of the while-loop.

It is clear that Algorithm 1 proceeds in polynomial time, except that we need to prove that the values ti have polynomial 
size. This is shown by Nace and Orlin [54, Theorem 1]. �

Let us illustrate the ideas of Algorithm 1 using an example.

Example 2. Let P = (abcd, acbd, bdac), and s = (1, 1, 0, 0). We begin by finding an s-egalitarian distribution by solving the 
linear program

max t∗
s.t. pa + pb � t∗

pa + pc � t∗
pb + pd � t∗
pa + pb + pc + pd = 1
pa, pb, pc, pd � 0

with optimal solution t∗ = 1
2 . Thus, the best we can guarantee is that every voter receives an s-score of at least 1

2 . We now 
wish to identify voters who receive an s-score of exactly 1

2 in every s-egalitarian distribution. To do so, we solve the three 
linear programs

max ε

s.t. pa + pb � 1
2 + ε

pa + pc � 1
2

pb + pd � 1
2

pa + pb + pc + pd = 1
pa, pb, pc, pd � 0

max ε

s.t. pa + pb � 1
2

pa + pc � 1
2 + ε

pb + pd � 1
2

pa + pb + pc + pd = 1
pa, pb, pc, pd � 0

max ε

s.t. pa + pb � 1
2

pa + pc � 1
2

pb + pd � 1
2 + ε

pa + pb + pc + pd = 1
pa, pb, pc, pd � 0

whose optimal solutions are, respectively, ε = 1, ε = 0 and ε = 0. It follows that voters 2 and 3 receive s-score 1
2 in all 

s-egalitarian distributions. Thus, Algorithm 1 now sets N ′ = {2, 3} and t2 = t3 = 1
2 .

To obtain the s-leximin distribution, we now need to maximize the s-score of agent 1. For this, we solve the linear 
program

max t∗
s.t. pa + pb � t∗

pa + pc = 1
2

pb + pd = 1
2

pa + pb + pc + pd = 1
pa, pb, pc, pd � 0

with optimal solution t∗ = 1. The algorithm stops and outputs the distribution 1
2 a + 1

2 b. �
3.3. Nash product

The defining optimization problem

max
∑

i∈N log
(∑m

j=1 s[i, j] · p j

)

7
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s.t.
∑m

j=1 p j = 1, and p j � 0 for x j ∈ X

of s-Nash is a convex program that can be efficiently solved using standard convex programming solvers.2 However, writing 
down the optimal distribution precisely, in decimal expansion, is impossible, as there are instances where s-Nash uniquely 
returns a distribution with irrational fractions. For instance, for P = (abc, acb, cab, cab) and s = (2, 1, 0), s-Nash uniquely 
returns 1+√

33
8 a + 7−√

33
8 c. Still, one can approximate optimum Nash welfare up to an additive ε in time polynomial in n, 

m, and 1/ε, for example using the ellipsoid method [43, Sec. 4.2]. Thus, all the usual decision problems associated with 
computing s-Nash are easy.

We can analyze s-Nash using the first-order KKT conditions of the convex program. Let us first state a version of the 
KKT theorem.

Theorem 2 (e.g., [12], Theorem 11.16). Let f :Rm →R be a continuously differentiable convex function, and let g1, . . . , gr :Rn →R
and h1, . . . , hs :Rn →R be affine functions. Suppose that x∗ ∈Rn is an optimal solution to the following problem:

min f (x)

s.t. g j(x) = 0 for j = 1, . . . , r

hk(x) � 0 for k = 1, . . . , s

Then there exist multipliers λ1, . . . , λr ∈R and μ1, . . . , μs � 0 such that for all i = 1, . . . , m,

∂ f

∂xi
(x∗) +

r∑
j=1

λ j
∂ g j

∂xi
(x∗) +

s∑
k=1

μk
∂hk

∂xi
(x∗) = 0

and complementary slackness holds, that is, for all k = 1, . . . , s, we have

μkhk(x∗) = 0.

Analyzing the KKT condition of the Nash optimization problem yields the following important inequality, which we will 
repeatedly use to establish properties of the s-Nash rule.

Proposition 2. Let p be a distribution selected by s-Nash. Then for every j = 1, . . . , m,

n �
∑
i∈N

s[i, j]
s[i, p] , and if p j > 0 then equality holds. (∗)

Proof. Let p∗ be an optimal distribution selected by s-Nash. Because the quantity s[i, p∗] will appear in denominators, let 
us first note that s[i, p∗] > 0 for all i ∈ N , since s[i, p∗] = 0 for some i would imply 

∏
i∈N s[i, p∗] = 0, and for the uniform 

distribution puniform we have s[i, puniform] > 0 for all i, contradicting the optimality of p∗ .
Apply Theorem 2 with objective f (p) = − 

∑
i∈N log(

∑m
j=1 s[i, j] · p j), a single equality constraint g1(p) = ∑m

j=1 p j − 1, 
and with m inequality constraints hk(p) = −pk . Note that

∂ f

∂x j
(p) = −

∑
i∈N

s[i, j]
s[i, p] .

Since p∗ is an optimal solution, Theorem 2 implies that there are λ = λ1 ∈ R and μ1, . . . , μm � 0 such that for each 
j = 1, . . . , m, we have

−
∑
i∈N

s[i, j]
s[i, p∗] + λ − μ j = 0 ⇐⇒ λ − μ j =

∑
i∈N

s[i, j]
s[i, p∗] .

We have μ j � 0, and by complementary slackness, if p∗
j > 0 then μ j = 0. Thus for every j = 1, . . . , m, we have

λ �
∑
i∈N

s[i, j]
s[i, p∗] , with equality if p∗

j > 0. (1)

Multiplying both sides by p∗
j then gives λp∗

j = ∑
i∈N

s[i, j]
s[i,p∗] p∗

j (no matter whether p∗
j is positive or zero). Summing over all 

j, thus

2 An alternative method to compute s-Nash is via a proportional response dynamic that is known to converge to a Nash distribution [29,23].
8
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λ = λ(p∗
1 + · · · + p∗

m) = ∑m
j=1

∑
i∈N

s[i, j]
s[i,p∗] p∗

j = n,

since s[i, p∗] = ∑m
j=1 s[i, j] · p∗

j by definition. Plugging λ = n into (1) gives the desired result. �
Using (∗), we can characterize plurality-Nash [see also Moulin [53], Example 3.6]:

Theorem 3. Plurality-Nash selects p with p j = pl(x j)/n for all j, where pl(x j) is the number of voters placing x j top.

Proof. Let p be optimal for plurality-Nash. If some voter i puts x j top then p j > 0, or else s[i, p] = 0 and the Nash product 
equals 0. By (∗), we get n = ∑

i∈N
s[i, j]
s[i,p] = pl(x j)/p j , and so p j = pl(x j)/n. It follows that p j = 0 whenever no voter places 

x j top. �
Thus, we see that plurality-Nash is the same rule as random dictatorship, familiar from the probabilistic context.

The veto-Nash rule seems sensible when alternatives are nuisances, where each agent wants to minimize the amount 
spent on the worst option. In some sense, veto-Nash for nuisances is as relevant as plurality-Nash for goods, in the portion-
ing context. Mathematically, veto-Nash is also well-behaved. While we do not provide a closed formula, the following result 
shows that an exact optimum for veto-Nash can be found in polynomial time (and that it is rational). It gives a collection 
of at most m different explicit rational distributions, and guarantees that a veto-Nash optimum is among them.

Theorem 4. Let P be a profile, and let vt(x j) be the number of voters placing x j bottom. Relabel alternatives so that vt(x1) � · · · �
vt(xm). If vt(x j) = 0 for some x j , then veto-Nash selects all distributions over such alternatives. Otherwise, there is k ∈ [m] with 
(k − 1)vt(xk) <

∑k
j=1 vt(x j), such that veto-Nash selects the distribution p with

p j = 1 − (k − 1)vt(x j)∑k
�=1 vt(x�)

if j ∈ [k], and p j = 0 otherwise.

Proof. If vt(x j) = 0 for some x j , then the best-possible Nash product of 1 can be achieved, and is achieved precisely by 
distributions whose support consists of never-vetoed alternatives.

Now suppose that vt(x j) > 0 for all x j . Let p be a distribution selected by veto-Nash. We may assume that there is some 
k � m such that p1, . . . , pk are strictly positive and pk+1 = · · · = pm = 0. If p does not satisfy this, then there are j and �
with j < � (and thus vt(x j) � vt(x�)) such that p j = 0 and p� > 0. We claim that the distribution p′ obtained from q by 
swapping p j and p� has a Nash welfare at least as high as p. This is because

∏
i∈N s[i,q]∏
i∈N s[i, p] =

∏
xk∈X (1 − qk)

vt(xk)∏
xk∈X (1 − pk)

vt(xk)
= (1 − q j)

vt(x j)(1 − q�)
vt(x�)

(1 − p j)
vt(x j)(1 − p�)vt(x�)

= (1 − p�)
vt(x j)

(1 − p�)vt(x�)
� 1

where the last inequality follows because vt(x j) − vt(x�) � 0. Thus we can shift probability mass in p until p1, . . . , pk are 
strictly positive and pk+1 = · · · = pm = 0 for some k, without lowering Nash welfare, as desired. Note that k � 2, because 
otherwise p1 = 1 and voters who veto x1 get utility 0, leading to Nash welfare 0 (since vt(x1) > 0), contradicting optimality.

It follows that for j = 1, . . . , k, inequality (∗) of Proposition 2 holds with equality and can be written as

n =
∑
i∈N

s[i, j]
s[i, p] =

∑
�∈X\{ j}

vt(x�) · 1

1 − p�

.

Adding vt(x j)/(1 − p j) to both sides and rearranging, we get

vt(x j)

1 − p j
=

∑
�∈X

vt(x�)

1 − p�

− n.

Note that the right-hand side does not depend on j. Writing T for the value on the right-hand side, it follows that vt(x j) =
T (1 − p j), and hence that p j = 1 − 1

T vt(x j). Now we get

1 =
k∑

j=1

p j = k − 1

T

k∑
j=1

vt(x j) and hence T =
∑k

j=1 vt(x j)

k − 1
.

Plugging this into p j = 1 − 1
T vt(x j), we arrive at the conclusion that

p j = 1 − k − 1∑k vt(x )
vt(x j) for all j = 1, . . . ,k.
�=1 �

9
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These values sum to 1, and are positive provided that (k − 1)vt(xk) <
∑k

j=1 vt(x j). Thus, we have shown that there is a Nash 
optimal distribution p of the form promised by the theorem. �
This gives a polynomial-time algorithm for computing veto-Nash exactly: if some alternatives are never vetoed, return 
any distribution over these. Otherwise iterate over all k ∈ [m] satisfying the condition of the theorem and calculate the 
corresponding distribution, and return the one with highest Nash product.

Example 3. Assume 2, 3, 3 and 5 voters rank x1, x2, x3 and x4 last, respectively: vt(x1) = 2, vt(x2) = vt(x3) = 3, vt(x4) = 5. 
We have to identify the maximum integer k∗ such that (k∗ −1)vt(xk∗ ) <

∑k∗
j=1 vt(x j). From vt(x2) < vt(x1) +vt(x2), 2vt(x3) <

vt(x1) + vt(x2) + vt(x3) and 3vt(x4) > vt(x1) + vt(x2) + vt(x3) + vt(x4) we get k∗ = 3.
Now, k = 2 and k = 3 satisfy the condition of Theorem 4. The distributions corresponding to k = 2 and k = 3 are respec-

tively p = 3
5 x1 + 2

5 x2 and p′ = 1
2 x1 + 1

4 x2 + 1
4 x3, one of which is optimal. The Nash product of p and p′ is, respectively, 

( 2
5 )2( 3

5 )3 ≈ 0.035 and ( 1
2 )2( 3

4 )6 ≈ 0.045. As p′ has higher Nash social welfare, it is optimal. �
Theorems 3 and 4 show that both plurality-Nash and veto-Nash are rational. Are there any other score vectors s such 

that s-Nash is guaranteed to be rational? The answer is no: for every s other than plurality and veto, we can construct a 
profile where s-Nash uniquely returns an irrational distribution. This result suggests that a convex programming solver is 
the best way of computing s-Nash for s other than plurality and veto.

Theorem 5. Let m � 3, and let s = (s1, . . . , sm) ∈ Qm be a score vector with sm = 0 and normalized so that s1 = 1. Unless s =
(1, 0, . . . , 0) or s = (1, . . . , 1, 0), there exists a profile P ∈ L(X)n for some n ∈ N such that s-Nash returns a unique distribution p
with p /∈Qm.

Proof sketch. We construct four infinite families of examples, for different shapes of score vectors s. Here, we give a detailed 
proof for the case m = 3. The other families require a more involved construction, but work using similar calculus. The 
details and a full proof appear in Appendix A.

Suppose m = 3, and let s = (1, rs , 0), where 0 < r
s < 1 and r

s is in lowest terms. Let D be a large-enough integer. Consider 
the following profile: D voters with abc, one voter with bac, and one voter with bca. Let p be the distribution selected by 
s-Nash. Note that b Pareto-dominates c, so that pc = 0. Hence p = (x, 1 − x, 0) for some x. One can show that 0 < x < 1 if D
is large enough (see the appendix). Now, the Nash product obtained by this distribution is (x + r

s (1 − x))D · ((1 − x) + r
s x) ·

(1 − x). By optimality, x must make the derivative d/dx vanish. After a calculation, canceling non-zero factors, this implies 
that [

(D + 2)(r − s)2
]
· x2 + [−(r − s)((D + 3)r − 2(D + 1)s)] · x +

[
r2 − 2rs − Drs + Ds2

]
= 0

This is a quadratic equation with integer coefficients. Solutions to the equation “ax2 + bx + c = 0” involve the term √
b2 − 4ac; thus, they are rational if and only if b2 − 4ac is a perfect square. (We are reusing the variable names a, 

b, c here to be consistent with the standard quadratic formula.) In our case, the term under the square root simplifies 
to

(D + 1)2r2 + 4(rs + s2).

The first summand is a large perfect square, and the second summand does not depend on D . Since the distance between 
consecutive perfect squares is large (in the sense that (z + 1)2 − z2 = 2z + 1 = �(z)), the discriminant cannot be a perfect 
square for large enough D . Hence, x is irrational. �

This irrationality result is in contrast to some other settings, notably Fisher markets, where maximizing the Nash product 
is guaranteed to yield a rational outcome [61].

4. Fairness

Usually, s-utilitarianism spends 100% on a single alternative. Some agents might rank this alternative in a very low 
position, or even in last place. In some contexts, this might be seen as unfair and thus might rule out s-utilitarianism as 
a desirable rule. In this section, we formalize several notions of fairness, and show that s-egalitarianism satisfies individual 
fairness, and that s-Nash satisfies group fairness. Our axioms are inspired by axioms introduced in a model with approval 
votes developed by Bogomolnaia et al. [15].

A minimal fairness axiom is positive share which requires that if voter i ranks x in last position, then px < 1. Hence, for 
every voter, a positive amount is spent on alternatives not ranked in last position. As suggested above, s-utilitarianism fails 
positive share for any s. However, provided that sm = 0, positive share is satisfied by s-egalitarianism, s-leximin, and s-Nash. 
10
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Fig. 2. The SD-core of the profile (abc, acb, bca) within the simplex of all distributions. The shaded area shows the distributions that are in the SD-core. 
Plurality-Nash selects 2

3 a + 1
3 b, Borda-Nash selects 1√

3
a + (1 − 1√

3
)b ≈ 0.58a + 0.42b, and veto-Nash selects 1

3 a + 1
3 b + 1

3 c. The thick line connecting these 
three distributions shows the output of s-Nash for all s = (1, q, 0) with q ∈ [0, 1].

To see this, note that the uniform distribution has positive egalitarian and Nash welfare, whereas a distribution violating 
positive share has zero egalitarian and Nash welfare.

We can strengthen positive share to individual fair share, requiring that if voter i ranks x in last position, then px �
1 − 1

n . Thus, for each voter, at least 1
n is spent on alternatives not ranked last. Note that the distribution identified by 

random dictatorship satisfies this condition and has egalitarian welfare at least 1
n , normalizing s1 = 1. Thus, the optimum s-

egalitarian welfare is at least 1
n , and hence s-egalitarianism and s-leximin satisfy individual fair share (recalling that sm = 0). 

In Theorem 6 below, we show that s-Nash also satisfies it.
Consider X = {a, b}, with 9 voters ab and 1 voter ba. Then s-egalitarianism returns 1

2 a + 1
2 b. While this is individually 

fair, the group of 9 voters is underrepresented. If we desire fairness to groups, we need a stronger axiom. Let us say that a 
distribution p satisfies group fair share if whenever k out of n voters rank x last, then px � 1 − k

n , so at least k
n is spent on 

alternatives other than x. This condition is failed by s-egalitarianism and s-leximin, but s-Nash satisfies it. In our example, 
s-Nash picks 9

10 a + 1
10 b (which is the only distribution satisfying group fair share).

All the notions above focus on avoiding voters’ last-ranked alternative. Despite working in an ordinal setting, using the 
SD-extension, we can define a group fairness notion that uses more than just the last-ranked alternative. An important 
underlying intuition is that each agent is “entitled” to 1/n of the budget, and this share should be spent in accordance to 
the agent’s preferences. Similarly, a group S ⊆ N of k agents could pool together and be entitled to k/n of the budget.

The intuitive notion of entitlement can be formalized using a core-style concept. A coalition S ⊆ N of voters is supposed 
to be able to ‘control’ a fraction of |S|/n of the entire budget. The notion of control is ambiguous since coalitions may 
overlap and each share of the budget is simultaneously ‘controlled’ by several coalitions. However, the entitlement of S is 
certainly violated under p if S can come up with a way of using only its entitlement |S|/n which all members prefer to the 
way that p uses the entire budget.

Definition 2 (SD-core). A coalition S ⊆ N SD-blocks a distribution p if there exists a partial distribution z (called a deviation) 
with 

∑
x∈X zx = |S|/n such that z �SD

i p for all i ∈ S , and z �SD
j p for some j ∈ S . A distribution p is in the SD-core if no 

coalition SD-blocks p.

The SD-core is stronger than group fair share (and hence also individual fair share and positive share).

Proposition 3. If p is in the SD-core then p satisfies group fair share.

Proof. Suppose that p fails group fair share. Thus, there is a coalition S of voters that rank x last but px > 1 −|S|/n. Then S
can SD-block p: Write ε = px −(1 −|S|/n) > 0 and define a deviation z with zy = p y +ε/(m −1) for all y ∈ X \ {x}, and zx =
0. Then 

∑
y∈X zy = zx + ∑

y∈X\{x} zy = ∑
y∈X\{x}

(
p y + ε/(m − 1)

) = ε + ∑
y∈X\{x} p y = ε + (1 − px) = |S|/n, so that z has 

the required total weight. It is easy to check that z �SD
i p for all i ∈ S . Thus, p is not in the SD-core. �

For an example, take the profile with voters abc, acb, bca. Which distributions p are in the SD-core? First, singleton 
coalitions {i} block p if px > 2

3 for i’s bottom alternative x, using z = 1
3 y where y is i’s top alternative. The coalition of abc

and acb blocks all p with pa + pb � 2
3 and pa + pc � 2

3 (one inequality strict), using z = 2
3 a. All other distributions are in 

the SD-core. Fig. 2 shows the simplex of all distributions, with the SD-core shaded (non-convex in this example).
Fig. 2 shows the outputs of s-Nash for all s as a thick line within the simplex. The line is entirely contained in the 

SD-core. In fact, s-Nash is always in the SD-core. We give a direct argument using equation (∗), which we derived in 
Proposition 2. The result can also be obtained via the theory of Lindahl equilibrium [34,39].

Theorem 6. For any strictly decreasing s with sm = 0, any distribution selected by s-Nash is in the SD-core.
11
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Proof. Suppose p is selected by s-Nash. For a contradiction, assume that S ⊆ N is a blocking coalition of agents. Suppose 
they deviate using (z1, . . . , zm) ∈ [0, 1]m with 

∑m
j=1 z j = |S|/n, such that z �SD

i p for all i ∈ S , and z �SD
j p for some j ∈ S . 

Now, s satisfies the conditions of Proposition 1(b), and thus we have s[i, z] � s[i, p] for all i ∈ S , and s[ j, z] > s[ j, p] for 
some j ∈ S . (This is where we use our definition of SD-comparisons between partial distributions.) Then

|S| = n ·
m∑

j=1

z j =
m∑

j=1

nz j

(∗)
�

m∑
j=1

z j

∑
i∈N

s[i, j]
s[i, p] (from Proposition 2)

=
∑
i∈N

m∑
j=1

z j
s[i, j]
s[i, p]

=
∑
i∈N

∑m
j=1 z js[i, j]

s[i, p]

=
∑
i∈N

s[i, z]
s[i, p]

�
∑
i∈S

s[i, z]
s[i, p] (since all summands are non-negative)

>
∑
i∈S

1 = |S|. (S blocks)

The last inequality follows because the sum contains |S| terms, each of which is at least 1, and at least one of which is 
strictly larger than 1. This is a contradiction. �

Thus, the s-Nash rules are particularly fair to groups. The SD-core can also be seen as a proportionality requirement: the 
common resource should be divided so that the share of an alternative is proportional to its support. For example, this is of 
interest in politics, to divide parliament seats among parties.

Theorem 6 only applies to strictly decreasing vectors s, and it might fail otherwise. For example, veto-Nash is not always 
in the SD-core.

Example 4. Let m = 4, s = (1, 1, 1, 0) and P = (abcd, abcd, abdc, abdc, acdb, acdb, bcda). Then s-Nash uniquely selects p =
4
7 a + 1

7 b + 1
7 c + 1

7 d. But then the first 7 voters who all rank a top can deviate using z = 6
7 a, because z �SD p for each of 

those 7 voters.

On the other hand, one can check that plurality-Nash is always in the SD-core despite not satisfying the conditions of 
Theorem 6.

5. Efficiency

We study the efficiency of our rules. A weak version of Pareto efficiency for our context is known as ex post efficiency
(with terminology taken from the probabilistic interpretation of social decision schemes) and requires that dominated alter-
natives must be assigned probability 0.

Definition 3 (ex post efficiency; e.g. [41]). Given a profile P , an alternative y ∈ X is dominated if there is another alternative 
x ∈ X such that x �i y for all i ∈ N and x �i y for some i ∈ N . A social decision scheme F is ex post efficient if for all profiles 
P and all distributions p ∈ F (P ), we have p y = 0 for all y ∈ X that are dominated in P .

There are a variety of stronger definitions of the Pareto principle for social decision schemes [24]. They do not just reason 
about dominated alternatives but about dominated distributions. A particularly natural definition uses the SD extension.

Definition 4 (SD-efficiency; e.g. [14]). Given a profile P , a distribution q SD-dominates p if q �SD
i p for all i ∈ N , and q �SD

j p
for some j ∈ N . A distribution p is SD-efficient if no distribution dominates it. A social decision scheme F is SD-efficient if 
for all profiles P , every distribution p ∈ F (P ) is SD-efficient.
12
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One can check that SD-efficiency implies ex post efficiency. Also, SD-core implies SD-efficiency, because a distribution is 
SD-dominated if and only if the grand coalition S = N SD-blocks it. Thus, by Theorem 6, all s-Nash rules are SD-efficient 
provided that s is strictly decreasing and sm = 0.

More generally, which rules of our family are SD-efficient? Let us say that a welfare ordering �W is weakly monotonic if 
for every two utility vectors α, β ∈Rn

�0 with αi > βi for all i ∈ N , we have α >W β . We can show that any positional social 
decision scheme based on a strictly decreasing scoring vector and a weakly monotonic welfare ordering is SD-efficient. This 
result is slightly surprising because it only requires that �W is weakly monotonic. On first sight, we would require strict 
monotonicity (defined like weak monotonicity but with the premise “αi � βi for all i ∈ N and αi > βi for some i ∈ N”). 
Because our result does not need strict monotonicity, it applies even to s-egalitarianism, not just to s-leximin.

Proposition 4. If s is strictly decreasing with sm = 0, and �W is weakly monotonic, then Fs,�W (P ) is SD-efficient.

Proof. Let us begin by noting that if � is any linear order and p and q are distributions such that both p �SD q and q �SD p, 
then p = q.3 To see this, label alternatives so that x1 � x2 � · · · � xm . Since we have an SD-indifference between p and q, 
the definition of SD implies that p1 = q1, p1 + p2 = q1 + q2, . . . , p1 + · · · + pm = q1 + · · · + qm . Hence by induction p j = q j
for each j = 1, . . . , m, and so p = q.

Now, suppose for a contradiction that a distribution p SD-dominates q, where q ∈ Fs,�W (P ). Thus, p �SD
i q for all i ∈

N . Because p SD-dominates q, we have p 	= q and so by the above argument we in fact have p �SD
i q for all i ∈ N . By 

Proposition 1(b), since s is strictly decreasing, this implies that s[i, p] > s[i, q] for all i ∈ N . Since �W is weakly monotonic, 
we have that s[p] >W s[q], contradicting that q ∈ Fs,�W (P ). �

As a corollary, s-utilitarianism, s-egalitarianism, s-leximin, and s-Nash are all SD-efficient provided that s is strictly 
decreasing and sm = 0.

There are positional social decision schemes that violate the assumptions of Proposition 4 yet are still SD-efficient. For 
example, plurality-Nash and plurality-egalitarianism are both SD-efficient [2] even though the plurality scoring vector is 
not strictly decreasing. However, Proposition 4 does not hold if we only assume that s is weakly decreasing. For example, 
any positional social decision scheme based on s = (1, 1, 0) cannot even be ex post efficient: consider the one-voter profile 
P = (abc). The only ex post efficient distribution is the distribution p that places all weight on a. But the distribution q that 
places all weight on b induces the same s-scores: s[1, p] = s[1, q]. Hence for any �W , if F(1,1,0),�W contains the distribution 
p, then it also contains q. Hence F(1,1,0),�W is not ex post efficient. In particular, veto-Nash is not ex post efficient.

6. Incentive properties

We study incentive properties of our rules, including participation, strategyproofness, and monotonicity.

6.1. Participation

Typically, participation in a voting process is voluntary, and voters can decide whether they wish to abstain or to cast 
their ballot. Thus, it is desirable to be able to guarantee that participating is never detrimental to the voter. This is the 
motivation of the participation axiom, which we again phrase based on the SD-extension. To use participation axioms, 
we need to move to a variable electorate setting, i.e., allow social decision schemes to take as input profiles with varying 
numbers of voters.

Definition 5 (Weak SD-participation). A social decision scheme F satisfies weak SD-participation if for any set N of voters, any 
profile P defined on N , and any i ∈ N , we do not have q �SD

i p for any p ∈ F (P ) and q ∈ F (P−i), where P−i is the profile 
obtained from P by deleting voter i’s report.

In other words, if voter i abstains, the rule must yield a distribution that is no better under some utility function con-
sistent with �i . We can also define a stronger version, which requires abstaining to be (weakly) worse under all consistent 
utility functions.

Definition 6 (Strong SD-participation). A social decision scheme F satisfies strong SD-participation if for any set N of voters, 
any profile P defined on N , and any i ∈ N , we have p �SD

i q for all p ∈ F (P ) and q ∈ F (P−i), where P−i is the profile 
obtained from P by deleting voter i’s report.

Both weak SD-participation and strong SD-participation were introduced by Brandl et al. [19]. We will see that many 
positional social decision schemes satisfy weak SD-participation. The strong version, however, is satisfied by many fewer 

3 We thank Patrick Lederer for pointing this fact out to us.
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rules. Note that the specific classes of positional social decision schemes we have studied (s-utilitarianism, s-egalitarianism, 
s-leximin, s-Nash) all give rise to variable-electorate rules in an obvious way.

Proposition 5. For any strictly decreasing scoring vector s with sm = 0, s-Nash satisfies weak SD-participation.

Proof. Let s be strictly decreasing, and let F denote the s-Nash rule. For a contradiction assume that there are p ∈ F (P )

and q ∈ F (P−i) such that q �SD
i p, for some profile P and some voter i ∈ N . As s is strictly decreasing, by Proposition 1(b), 

we have that s[i, q] > s[i, p] > 0, where the last part holds because the Nash product of p must be positive. Because p
is an outcome of s-Nash at profile P , we have 

∏
j∈N s[ j, p] � ∏

j∈N s[ j, q]. Combining these inequalities, and noting that ∏
j∈N s[ j, p] > 0, we find that

∏
j∈N\{i} s[ j, p] =

∏
j∈N s[ j, p]
s[i, p] >

∏
j∈N s[ j, p]
s[i,q] �

∏
j∈N s[ j,q]
s[i,q] = ∏

j∈N\{i} s[ j,q].

This contradicts that q is an outcome of s-Nash on profile P−i . �
Proposition 6. For any strictly decreasing scoring vector s with sm = 0, s-leximin satisfies weak SD-participation.

Proof. Let s be strictly decreasing, and let F denote the s-leximin rule. For a contradiction assume that there are p ∈ F (P )

and q ∈ F (P−i) such that q �SD
i p, for some profile P and some voter i ∈ N . As s is strictly decreasing, by Proposition 1(b), 

we have that s[i, q] > s[i, p] for all i ∈ N . For a vector α = (α1, . . . , αk) ∈ Rk , write α↑ ∈ Rk for the vector obtained from 
α by reordering its entries in non-decreasing order. Let (x1, . . . , xn) = s[q]↑ and let (y1, . . . , yn) = s[p]↑ . Because p is an 
outcome of s-leximin for the voter set N , we have

(y1, . . . , yn) �L (x1, . . . , xn) (2)

where �L denotes lexicographic comparison. Suppose s[i, q] = xr and s[i, p] = ys . Since s[i, q] > s[i, p], we have xr > ys . As 
q is the s-leximin outcome for voter set N \ {i}, it follows that

(x1, . . . , xr−1, xr+1, . . . , xn) �L (y1, . . . , ys−1, ys+1, . . . , yn) (3)

Write y′ for the vector obtained from (y1, . . . , ys−1, ys+1, . . . , yn) by inserting xr in the rth position and write y′′ for the 
vector obtained from y′ by replacing xr with ys in the rth position. Then we have

(x1, . . . , xn) �L y′ (insert xr in rth position in both sides of (3))

>L y′′ (y′ and y′′ are equal before rth position, then xr > ys)

�L (y′′)↑ (since α �L α↑ for all α ∈Rn)

= (y1, . . . , yn),

which is a contradiction to (2). �
On the other hand, s-egalitarian rules may fail SD-participation.

Example 5. Let m = 4 and consider the profiles P1 = (abcd, cbad) and P2 = (abcd, cbad, cadb) which obtained from P1 by 
adding a new voter cadb. At P1, Borda-egalitarianism can select 0.5a + 0.5c, and at P2 it can select 0.4a + 0.2b + 0.4c which 
is SD-worse for the new voter. (Borda-leximin selects 0.5a + 0.5c at both profiles.)

Similarly, at P1, veto-egalitarianism can select c and at P2 it can select a, which is SD-worse for the new voter. (Veto-
leximin selects b at P1 and a at P2.)

Strong SD-participation is much more difficult to attain. Brandl et al. [19] show that for any strictly decreasing scor-
ing vector s, s-utilitarianism satisfies strong SD-participation. However, this is not true for s-Nash and s-leximin. Ex-
amples 6 and 7 show respectively that Borda-leximin (and Borda-egalitarianism) and Borda-Nash do not satisfy strong 
SD-participation.

Example 6. Consider the profile where voter 1 has preferences abcd, voter 2 has preferences cbda and voter 3 has prefer-
ences cdba. When only voters 1 and 2 participate, the unique outcome of Borda-egalitarianism is the distribution where b
has probability 1 (giving both voters a Borda score of 2). If voter 3 participates, the unique outcome for Borda-egalitarianism 
is 0.4a + 0.6c (giving all three voters a Borda score of 1.8). But this distribution is not SD-better than the first according to 
voter 3’s preferences. It follows that Borda-leximin and Borda-egalitarianism fail strong SD-participation.
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Example 7. Consider the profile where voter 1 has preferences abcdef gh, voter 2 has preferences f gchabde and voter 3 has 
preferences f ghcabde. If only voters 1 and 2 participate, the (unique) outcome is the distribution where c has probability 1. 
If all three voters participate, we have a mixture between a and f (namely 19

60 a + 41
60 f ), which is not SD-better for voter 3. 

It follows that Borda-Nash does not satisfy strong SD-participation.

6.2. Strategyproofness

Next, we briefly discuss strategyproofness of our rules, that is, robustness to strategic misrepresentation of voters’ pref-
erences. A social decision scheme is resolute if, for every profile P , it returns a unique distribution.4

Definition 7 (SD-strategyproofness). A resolute social decision scheme F is SD-strategyproof if for all profiles P , all voters 
i ∈ N , and all linear orders �′

i , we have that

F (P ) �SD
i F (P−i,�′

i),

where (P−i, �′
i) denotes the profile obtained from P by replacing i’s preference report �i by �′

i .

One can check that plurality-Nash (that is, random dictatorship) is SD-strategyproof. In fact, a well-known result of 
Gibbard [41] shows that random dictatorship is the only social decision scheme that is anonymous, ex post efficient, and 
SD-strategyproof. Hence, all other ex post efficient rules in our class, after making them resolute by tie-breaking, are ma-
nipulable.5 (Outside of our class of rules, Barberà [10] shows that proportional Borda, mentioned in the Introduction, is 
SD-strategyproof, but it is not ex post efficient.)

One can also define a weak version of SD-strategyproofness, that requires that a manipulation does not lead to an 
outcome that is SD-better for the manipulator [58,14], that is, that F (P−i, �′

i) �
SD
i F (P ), rather than requiring that it must 

be weakly SD-worse. These two notions are different because SD-preferences over distributions are not complete. We leave 
a characterization of which positional social decision schemes satisfy this weak version for future work, but many of these 
rules fail it (and so far we do not know a rule in our family that satisfies it, besides random dictatorship).

Example 8. Let m = 3 and consider the profiles P1 = (abc, abc, abc, bac) and P2 = (abc, abc, abc, bca).

• On P1, Borda-Nash selects a and on P2, Borda-Nash selects 0.5a + 0.5b. Thus the fourth voter can manipulate from P1
to P2 and get a strictly SD-better outcome.

• On P1, veto-Nash may select 0.5a + 0.5b6 and on P2, veto-Nash selects b. Again the fourth voter can manipulate.
• On P1, Borda-leximin selects 0.5a + 0.5b and on P2, Borda-leximin selects 1

3 a + 2
3 b. Again, the fourth voter can manip-

ulate.

6.3. Monotonicity

A social decision scheme is monotonic if whenever we move up an alternative in a voter’s ranking, the share of that al-
ternative in the output distribution does not decrease. Formally, given profiles P and P ′ , we say that P ′ is an x-improvement
of P if P ′ is obtained from P by moving up an alternative x in some voter’s ranking, everything else being unchanged. A 
social decision scheme F is monotonic if for all profiles P and P ′ such that P ′ is an x-improvement of P , for all p ∈ F (P ), 
there exists q ∈ F (P ′) such that qx � px .7

Monotonicity is clearly satisfied by s-utilitarianism. It is also satisfied by plurality-Nash (i.e., random dictatorship), as 
well as plurality-egalitarianism [2, Thm. 5]. However, other s-Nash, s-leximin and s-egalitarian rules may fail it:

Example 9. Consider first Borda-Nash. Let m = 3, s = (2, 1, 0) and P = (abc, abc, abc, acb, bac, cba), then s-Nash selects 
an irrational distribution which rounds to 0.642a + 0.333b + 0.024c. Let P ′ = (abc, abc, abc, acb, bca, cba). P ′ is a c-
improvement of P (the bac voter moves c up one place). For P ′ , s-Nash selects 0.5a + 0.5b. Thus, c’s share has strictly 
decreased.

4 We need to assume resoluteness to avoid having to compare sets of distributions, and to be consistent with prior work: the characterization of 
strategyproof randomized rules by Gibbard [41] requires it. All our rules can be made resolute by applying a tie-breaking mechanism based on a fixed 
priority relation between distributions.

5 It remains to check that other positional social decision schemes that fail ex post efficiency also fail SD-strategyproofness, such as rules based on 
s = (1, 1, 0, 0). We leave this for future work.

6 This depends on tie-breaking, since all distributions xa + (1 − x)b are optimal for veto-Nash. It is easy to check that manipulations exist under other 
tie-breakings.

7 Alternatively, one could require that qx � px for all q ∈ F (P ′). This stronger version is still satisfied by s-utilitarianism.
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Table 1
The result of applying portioning rules to the list-based election.

LFI PS LRM LR RN
∑

ui
∏

ui min ui

Borda-Nash 0.00 0.27 0.27 0.46 0.00 52.5 83.1 1.0
PS LRM LR

Borda-egalitarianism 0.12 0.38 0.00 0.37 0.13 45.8 9.5 2.0
LFI PS LR RN

Borda-utilitarianism 0.00 0.00 1.00 0.00 0.00 56.0 0.0 0.0
LRM

Plurality-Nash 0.18 0.14 0.27 0.18 0.23 44.3 4.6 1.8
LFI PS LRM LR RN

Proportional Borda 0.15 0.22 0.25 0.24 0.14 46.5 13.1 1.7
LFI PS LRM LR RN

Actual seat distribution 0.05 0.08 0.60 0.23 0.01 53.1 51.2 0.6
PS LRM LR

Example 10. Consider now Borda-egalitarianism. Let m = 3, s = (2, 1, 0) and P = (cba, abc). Then s-egalitarianism selects 
the set of all distributions of the form (α,1 − 2α,α); it contains in particular the deterministic distribution b. The profile 
P ′ = (bca, abc) is a b-improvement of P . But on P ′ , s-egalitarianism selects only the distribution 

(
1
3 , 2

3 ,0
)

.

In computational experiments, veto-Nash appears to satisfy monotonicity, but we did not prove this.
How bad is it if a rule fails monotonicity? It depends on the context. Monotonicity can be interpreted as fairness to 

alternatives: alternative x should get more if it performs better. However, rules like s-Nash and s-egalitarianism principally 
aim to be fair to voters. In Example 10, while b’s share has decreased, the utility vector moves from (1, 1) to ( 4

3 , 43 ) while 
the deterministic distribution b for P ′ would lead to utility vector (2, 1).

7. Application to seat apportionment in party-list elections

Suppose that a number of seats (of a parliament or of the board of some organization) have to be filled. In list-based 
elections, the candidates are partitioned into lists, where a list is a linearly ordered set of candidates. In political elections, 
lists are typically associated with parties and called party lists. The election proceeds as follows:

1. each voter votes for one of the lists;
2. the score of each list is the fraction of votes it receives;
3. these fractional scores are then mapped into an integral distribution of seats;
4. each list fills its assigned seats with candidates in the order of the list.

Step 3 is known as apportionment, and its formal study has a long history [9]. There is a variety of apportionment rules, 
including the two families of largest remainder and largest average rules, and the advantages and disadvantages of different 
rules are well understood. On the other hand, steps 1 and 2 are rarely critically examined. This is surprising because in 
settings where voters express preferences directly over candidates, social choice theorists commonly criticize systems in 
which voters only report their top choice. They argue that not enough information is transmitted to arrive at a high-quality 
social decision. For list-based elections, similar arguments suggest that we should elicit more detailed preferences over lists. 
Recently, Brill et al. [26] explored this idea. They studied a model where voters are allowed to approve several lists instead 
of just one. In place of step 2, they then use a portioning method defined for approval voting. Instead of approval votes, it is 
a natural idea to allow inputs consisting of rankings over lists. We can then use a social decision scheme (i.e., a portioning 
method for rankings) to obtain a method to elect seats with this input format.

France elects its parliament (Assemblée nationale) using district-based elections, where each district elects one deputy 
using two-round plurality with runoff. Similar to first-past-the-post systems, this fails to provide proportional representation, 
and is biased towards the largest parties. To address this, there have been calls for some of the seats of the assembly to be 
elected via a list-based system [27]. As a case study, we apply our rules on a hypothetical profile that is roughly consistent 
with survey data from the French 2017 presidential and parliamentary elections. While such survey data reports preferences 
over candidates (party leaders), it seems reasonable to also interpret them as preferences over parties. The main 5 parties 
participating were La France Insoumise (LFI, left), Parti Socialiste (PS, center-left), La République en Marche / Modem (LRM, 
center-right), Les Républicains (LR, right), Rassemblement National (RN, extreme-right nationalist).

We believe that our profile is reasonably realistic. First, the fraction of first positions is consistent with the actual out-
come of the presidential election,8 except for PS whose unusually low score is thought to have been due to a form of 
strategic voting induced by plurality with runoff. (Polls show that many PS voters of the prior election chose to support 

8 The parties’ actual first-round scores (after discounting blank and null votes) were 25% LRM, 22% RN, 20% LR, 20% LFI, and 7% PS (plus 7% in total for 
the other 6 candidates). In the same order, the fraction of votes in our profile with the respective parties on top are 27%, 23%, 18%, 18% and 14%.
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another candidate in 2017 [45].) Second, in accordance with standard assumptions, the profile is single-peaked along a 
left-right axis {LFI, PS, LRM, LR, RN}, except that we added a 9% fraction of “anti-system votes” ranking LFI–RN or RN–LFI 
first and second, and LRM last. (Polls show that some voters switched from one extreme to the other in the second round 
[46].)

3 voters LFI � PS � LRM � LR � RN
2 voters PS � LFI � LRM � LR � RN
1 voter PS � LRM � LFI � LR � RN
2 voters LRM � PS � LR � LFI � RN
2 voters LRM � LR � PS � LFI � RN
2 voters LRM � LR � PS � RN � LFI
1 voter LR � LRM � RN � PS � LFI
2 voters LR � LRM � PS � LFI � RN
1 voter LR � RN � LRM � PS � LFI
4 voters RN � LR � LRM � PS � LFI
1 voter RN � LFI � LR � PS � LRM
1 voter LFI � RN � PS � LR � LRM

Table 1 shows the outcomes of several of our rules applied to this profile. We also consider proportional Borda (discussed 
in Section 1) for comparison. We did not include veto-Nash because it is not a very interesting rule in the context of party-
list elections: since we seek to represent voters, we should pay more attention to candidates ranked near the top of votes.9

Finally, for comparison, we include the actual seat distribution of the assembly, which gives many seats to LRM.
Borda-Nash gives zero support to the two extreme parties, and gives moderate support to the dominant party LRM. The 

outcome of Borda-egalitarianism is slightly surprising: it gives zero support to the dominant party LRM, whose supporters 
are well enough represented by the two parties immediately to its left (PS) and to its right (LR). As expected, Borda-
utilitarianism gives all its support to the dominant centrist party.10 The rule that is most often used for party-list elections 
in the real world, Plurality-Nash, gives much more support to the extremes than the other rules, because those parties often 
appear in top position. None of the rules is clearly best. Intuitively, Borda-Nash looks like a good compromise, but extreme 
parties are not represented. This can be corrected either by taking a scoring vector between plurality and Borda, or an 
aggregation function between Nash and utilitarianism.

8. Conclusions

We have introduced a class of aggregation rules which can be used to split a budget or another continuous resource 
(such as time) between different uses. When combined with an apportionment step, the rules can also be used to select 
an outcome in a discrete space such as an allocation of seats to parties. While a sizeable literature has considered the 
portioning problem in a model with approval input, we have provided the first systematic study of portioning rules based 
on ordinal input given as rankings.

Portioning rules are formally equivalent to probabilistic social choice functions which have received significant attention 
in the literature. However, since their uses are quite different from portioning, many results from that literature are of 
limited interest for portioning (for example axioms such as Condorcet consistency). Indeed, rules that are deemed interesting 
for randomized voting are often not interesting for portioning. Informally, the discrepancy between randomized voting and 
portioning is that the final outcome in randomized voting is obtained by sampling one winner according to the output 
distribution, while in portioning the final outcome is the distribution itself. This explains why ex-post notions make sense for 
randomized voting but are meaningless for portioning. For example, when there is an alternative that satisfies some quality 
criterion (like Condorcet) then selecting this alternative with probability 1 makes sense in randomized voting: admittedly, 
there will be unhappy voters in the end, but that is unavoidable since a single alternative will be selected ex post. In 
portioning, such an argument no longer makes sense, and selecting an alternative with probability 1 should be done only 
in cases where the agreement for an alternative is extremely strong; selecting a Condorcet winner with probability 1 would 
be extremely unfair to some voters (see our introductory example). Therefore, randomized voting rules that are designed so 
as to satisfy one of these properties (such as the Maximal Lottery rule) are unnecessarily unfair when applied to portioning. 
The reverse direction is less clear: our rules may be of interest to randomized voting. More generally, the connections and 
differences between randomization and splitting a common resource need to be discussed further.

Table 2 gives a summary of properties satisfied by some typical SDSs that belong to the family defined in this paper (the 
first seven), together with two other SDSs that are not part of the family (the last two); for these two, references to existing 

9 In our profile, veto-Nash selects all distribution whose support contains only PS and LR, since those lists were not vetoed by any voter in the profile 
(see Theorem 4).
10 Note that the 2017-2022 assembly (elected using district-based plurality with runoff) had more than 50% of its seats taken by LRM, and very few seats 

by the extreme parties (around 4% for LFI and 2% for RN).
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Table 2
Summary of normative and computational results.

ind. fair share SD-core SD-efficient polynomial time strategyproof monotonic

Plurality-Utilitarianism – – � � – �
Borda-Utilitarianism – – � � – �
Plurality-Egalitarianism � – � � – �
Borda-Egalitarianism � – � � – –
Borda-Leximin � – � � – –
Plurality-Nash � � � � � �
Borda-Nash � � � approx. – –
Veto-Nash � – – � – open

Maximal Lotteries – – � � – –
Proportional Borda � – – � � �

results as well as proofs of novel results are in Appendix B. As we discussed, plurality-egalitarianism was previously studied 
as egalitarian simultaneous reservation, and plurality-Nash is commonly known as random dictatorship.

Anyone wanting to implement positional social decision schemes will need to choose a scoring vector, and the ‘right’ 
choice is underdetermined from a theory perspective. This issue is similar to the choice of a positional scoring rule in 
deterministic voting. Based on the axioms we have considered, plurality-Nash (i.e., random dictatorship) is in a distinguished 
position. It is the only rule that satisfies all the axioms. (In particular it is provably the only one that satisfies ex post 
efficiency and SD-strategyproofness, see Section 6.2.) However, random dictatorship has a major drawback: it ignores voters’ 
preferences except for their top alternative. This makes trade-offs impossible (as the rule is unable to distinguish between 
someone’s second-best alternative and their worst alternative), and explains why in Section 7 the outcome of random 
dictatorship is biased towards the extremes. This drawback is difficult to formalize convincingly, and a successful axiomatic 
criticism of plurality-Nash would be interesting future work.

Using positional scores is certainly not the only way to do portioning based on ordinal profiles. Other voting rules or 
social welfare functions that are defined by maximizing scores may also be adapted towards this aim; further exploration 
of this topic, especially with a view towards fairness, is needed.

Finally, it is natural to enrich our setting by allowing ties in the input rankings, i.e., to allow voters to submit weak 
orders. One could certainly generalize positional scoring rules to this input, which would provide for interesting future work. 
For randomized social choice, weak orders have been considered [2,4,15], for example in the context of strategyproofness. 
Notably, random dictatorship is not well-defined anymore if voters do not have a unique top alternative, making the search 
for good strategyproof rules rather more difficult or impossible [21].
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Appendix A. Proof of Theorem 5

We will construct, for each scoring vector s different from (1, 0, . . . , 0) and (1, . . . , 1, 0), a profile for which s-Nash 
returns a distribution which is irrational. To establish irrationality of a distribution, we show that the probabilities in the 
output distribution are solutions to a quadratic equation which only has irrational solutions. We recall some elementary 
facts about square roots and quadratic equations:

• If n ∈N is an integer, then 
√

n ∈Q if and only if n = z2 for some z ∈N .
• Suppose a, b, c ∈Z, a 	= 0, and suppose x ∈R satisfies ax2 + bx + c = 0. Then

x = (2a)−1(−b +
√

b2 − 4ac) or x = (2a)−1(−b −
√

b2 − 4ac).

Hence, x ∈Q if and only if the integer b2 − 4ac � 0 is a perfect square.
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• If a, b ∈N \ {0} and a > b, then a2 < a2 + b < (a + 1)2, and thus a2 + b is not a perfect square.

We will also use the following two facts about an s-Nash distribution p. Both facts use sm = 0.

• Positive share: we have s[i, p] > 0 for all i ∈ N , because otherwise the Nash product is 0 while a positive Nash product 
is possible (e.g. uniform distribution) contradicting optimality of p.

• s-core: For any S ⊆ N , there does not exist a partial distribution z with 
∑

x∈X zx = |S|/n such that s[i, z] > s[i, p] for all 
i ∈ S . This is implicitly proven in the proof of Theorem 6 that s-Nash satisfies SD-core.

We only consider rational vectors s, and assume that they are non-increasing. We assume that sm = 0. Without loss of 
generality (by rescaling), we may assume that s1 = 1. We distinguish four cases:

1. s1 = · · · = sk = 1 and sk+1 = · · · = sm = 0 for some k � 2 and m � k + 2;
2. s1 = 1 and 0 < s2 < 1;
3. s1 = s2 = 1 and 0 < s3 < 1;
4. s1 = · · · = sk = 1 and 0 < sk+1 < 1 for some k � 3.

In the latter three cases, we call the first non-1 entry q ∈Q and write q = r/s for r, s ∈N .

A.1. k-approval

Suppose s = (1, . . . , 1, 0, 0), where m = k + 2 and k � 2. We extend the argument to m > k + 2 later; note that we are 
only interested in the case with at least two zeros at the end of the score vector, since otherwise s is veto.

Write X = {a1, . . . , ak, x, y}. Consider the following profile, which we can specify by just listing voters’ k-approval sets.

• One voter approving {a1, . . . , ak}.
• For each i ∈ [k], one voter approving {x, a1, . . . , ai−1, ai+1, . . . , ak}.
• For each i ∈ [k], one voter approving {x, y, a1, . . . , ai−1, ai+2, . . . , ak}, with subscripts mod k.

In this profile, y is dominated by x, so in a Nash outcome, y gets probability 0. Further, all the ai are symmetric, so by 
neutrality of Nash they all get the same probability. Hence, there exists some number x ∈ [0, 1] (abusing notation) such that 
the Nash outcome p satisfies

px = x, p y = 0, pa1 = · · · = pak = (1 − x)/k.

Now, if x = 1, then the first voter approving {a1, . . . , ak} gets utility 0, giving Nash product 0. So x = 1 is not optimal. If x = 0, 
then consider the coalition of the 2k voters approving x. If x = 0, they all obtain utility at most (k − 1)/k under p (some 
voters only get (k − 2)/k). Note that this coalition can propose the partial distribution z with ‖z‖ = (2k)/(2k + 1) putting all 
its weight on alternative x. Under z, every member of the coalition obtains utility (2k)/(2k + 1). An easy calculation shows 
that, since k � 2,

2k

2k + 1
>

k − 1

k
.

Hence, z is an s-core deviation, contradicting optimality of p.
It follows that 0 < x < 1. Now, the Nash product of p as a function of x is

f (x) = (1 − x) ·
(

x + k − 1

k
(1 − x)

)k

·
(

x + k − 2

k
(1 − x)

)k

= (1 − x) ·
(

k + x − 1

k

)k

·
(

k + 2x − 2

k

)k

= (1 − x) · k−2k · (k + x − 1)k · (k + 2x − 2)k.

By optimality of p, and since 0 < x < 1, we must have ∂ f (x)/∂x = 0. Now, by the product rule:

k2k · ∂ f (x)/∂x = −(k + x − 1)k · (k + 2x − 2)k + (1 − x) · ∂
∂x

[
(k + x − 1)k · (k + 2x − 2)k

]
.

By the product rule, we have

∂
∂x

[
(k + x − 1)k · (k + 2x − 2)k

]
= k · (k + x − 1)k−1 · (k + 2x − 2)k

+ (k + x − 1)k · k · (k + 2x − 2)k−1 · 2.
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Inserting and factoring, we get

k2k · ∂ f (x)/∂x = (k + x − 1)k−1 · (k + 2x − 2)k−1 ·
[
− (k + x − 1) · (k + 2x − 2)

+ (1 − x) · k · (k + 2x − 2)

+ (1 − x) · 2k · (k + x − 1)
]

The first two factors are positive (since k � 2 and x > 0). Thus, for ∂ f (x)/∂x = 0 to be the case, the part in square bracket 
must be zero. Thus,

0 = −(k + x − 1) · (k + 2x − 2) + (1 − x) · k · (k + 2x − 2) + (1 − x) · 2k · (k + x − 1)

= (−4k − 2) x2 + (−3k2 + 5k + 4) x + (2k2 − k − 2).

Calculating “b2 − 4ac”, we get

(−3k2 + 5k + 4)2 − 4 · (2k2 − k − 2) · (−4k − 2) = k2 · (9k2 + 2k + 1)

= k2 · 1
9 · ((9k + 1)2 + 8)

The square root of this quantity is rational if and only if (9k + 1)2 + 8 is a perfect square, but this is never true for k � 2. 
Thus, none of the solutions for x is rational.

To extend the argument to m > k + 2, add extra alternatives to the profile constructed above which no voter approves. 
Then any Nash solution places 0 on those extra alternatives, and the argument as above establishes that Nash chooses an 
irrational distribution.

A.2. s = (1, q = r
s , 0, . . . , 0)

We start by considering s = (1, q, 0) and later show how to extend the argument to all vectors s with s1 = 1 and 
0 < s2 < 1. Write X = {a, x, y}, and consider the following profile:

• c voters: a, x, y
• 1 voter: x, a, y
• 1 voter: x, y, a

Note that x dominates y, so y gets probability 0 in Nash-optimum.
Thus, for some a ∈ [0, 1], the Nash optimum p satisfies pa = a, px = 1 − a, and p y = 0. Note that a < 1 by positive share 

for the last voter, and a > 0 for large c since p is in the s-core.
The Nash product of p, as a function of a, is

f (a) =
(

a + r

s
(1 − a)

)c ·
(

1 − a + r

s
a
)

· (1 − a)

= s−c−1 · (sa + r(1 − a))c · (s − sa + ra) · (1 − a).

Since p is optimal, we must have ∂ f (a)/∂a = 0. Using the product rule twice, we get

sc+1 · ∂ f (a)/∂a = (1 − a) ·
[

c · (sa + r(1 − a))c−1 · (s − r) · (s − sa + ra)

+ (sa + r(1 − a))c · (r − s)
]

− (sa + r(1 − a))c · (s − sa + ra)

Since ∂ f (a)/∂a = 0, factoring out the positive factor (sa + r(1 − a))c−1, we obtain

0 = (1 − a) · c · (s − r) · (s − sa + ra) + (1 − a) · (sa + r(1 − a)) · (r − s)

− (sa + r(1 − a)) · (s − sa + ra)

= a2 · ((r − s)2(c + 2)
) + a · ( − (r − s)((c + 3)r − 2s(c + 1))

) + (
(r2 − 2rs − crs + cs2)

)
Calculating “b2 − 4ac” of this quadratic equation, we get

( − (r − s)((c + 3)r − 2s(c + 1))
)2 − 4

(
(r − s)2(c + 2)

)(
(r2 − 2rs − crs + cs2)

)
= (r − s)2((c + 1)2r2 + 4rs + 4s2)
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The square root of this quantity is rational if and only if (c + 1)2r2 + 4rs + 4s2 is a perfect square, which is not true for large 
c.

For |X | > 3 and a score vector s = (1, q, . . . , 0), take the profile constructed above and add extra alternatives z1, . . . , z f
in penultimate position, i.e.,

• c voters: a, x, z1, . . . , z f , y
• 1 voter: x, a, z1, . . . , z f , y
• 1 voter: x, y, z1, . . . , z f , a

In this profile, x dominates the extra alternatives, so the extra alternatives get probability 0 in the Nash outcome. Hence the 
argument above implies that Nash selects an irrational distribution.

A.3. s = (1, 1, q = r
s , 0, . . . , 0)

We start by considering s = (1, 1, q, 0) and later show how to extend the argument to all vectors s with s1 = s2 = 1 and 
0 < s3 < 1. Write X = {a, b, x, y}, and consider the following profile:

• c/2 voters: x ∼ a, b, y
• c/2 voters: x ∼ b, a, y
• 1 voter: a ∼ b, y, x
• 1 voter: a ∼ b, x, y

We have written “∼” for an implicit indifference, because the score vector is 1 in both the first and second position.
Then y is dominated by a and b, so gets probability 0. Also, a and b are symmetric (in the sense that after permuting 

them, every permuted distribution has the same Nash product as before) so they get the same probability. The probability 
of x cannot be 1 (by positive share), and it cannot be 0 if c is large, since otherwise the c voters ranking x first have an 
s-core deviation.

Writing x for the probability put on x, we see that the optimum p satisfies px = x, p y = 0, pa = pb = (1 − x)/2. Thus, 
the Nash product is

f (x) =
(

x + 1 − x

2
+ r

s

1 − x

2

)c

· (1 − x) ·
(

1 − x + r

s
x
)

= 2−c · s−c−1 · (2sx + s(1 − x) + r(1 − x))c · (1 − x) · (s − sx + rx)

= 2−c · s−c−1 · (s + r + (s − r)x)c · (1 − x) · (s + (r − s)x).

Next, we have, using the product rule twice,

2c · sc+1 · ∂ f (x)/∂x = (1 − x) ·
[

c · (s + r + (s − r)x)c−1 · (s − r) · (s + (r − s)x)

+ (s + r + (s − r)x)c · (r − s)
]

− (s + r + (s − r)x)c · (s + (r − s)x).

In optimum, we must have ∂ f (x)/∂x = 0. Thus, factoring out the positive factor (s + r + (s − r)x)c−1, this implies

0 = (1 − x) ·
[

c · (s − r) · (s + (r − s)x) + (s + r + (s − r)x) · (r − s)
]

− (s + r + (s − r)x) · (s + (r − s)x)

= x2 · ( − (c + 2)(r − s)2)
+ x · ((r − s)((c + 3)r − 2sc)

)
+ ( − r2 + (c + 1)rs − (c − 2)s2).

Calculating “b2 − 4ac” of this quadratic equation, we get
(
(r − s)((c + 3)r − 2sc)

)2 − 4 · ( − (c + 2)(r − s)2) · ( − r2 + (c + 1)rs − (c − 2)s2)
= (r − s)2

(
(c + 1)2r2 + 8rs + 16s2

)

The square root of this quantity is rational if and only if (c + 1)2r2 + 8rs + 16s2 is a perfect square, and this is not true for 
large c.

For |X | > 4 and a score vector s = (1, 1, q, . . . , 0), take the profile constructed above and add extra alternatives z1, . . . , z f
in penultimate position, i.e.,
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• c/2 voters: x ∼ a, b, z1, . . . , z f , y
• c/2 voters: x ∼ b, a, z1, . . . , z f , y
• 1 voter: a ∼ b, y, z1, . . . , z f , x
• 1 voter: a ∼ b, x, z1, . . . , z f , y

In this profile, a dominates the extra alternatives, so the extra alternatives get probability 0 in the Nash outcome. Hence the 
argument above implies that Nash selects an irrational distribution.

A.4. s = (1, 1, . . . , 1, q = r
s , 0, . . . , 0)

Like in the other cases, we explicitly handle the case where s = (1, 1, . . . , 1, q = r
s , 0). The argument can be extended to 

all s with s1 = s2 = · · · = sk = 1 and 0 < sk+1 < 1 by adding extra alternatives to the constructed profile in the penultimate 
position, noting that alternative b1 dominates the extra alternatives.

Write X = {a, b1, . . . , bk−1, x, y}, and consider the following profile:

• one voter: b1, . . . , bk−1, x, y, a
• one voter: b1, . . . , bk−1, x, a, y
• c/(k − 1) voters: a, b2, . . . , bk−1, x, b1, y
• for i = 2, . . . , k − 1, c/(k − 1) voters: a, b1, . . . , bi−1, bi+1, . . . , bk−1, y, bi, x

Note that b1 dominates y and that b2 dominates x, so both x and y get probability 0. Further, once we restrict attention to 
distributions that put 0 on both x and y, we see that b1, . . . , bk−1 are symmetric, in the sense that the Nash product does 
not change when we permute these alternatives in input and output. Thus, they all get the same probability. Alternative 
a cannot get probability 1 by positive share, and it cannot get probability 0 or else the bottom c voters have an s-core 
deviation. Thus, the Nash product as a function of the probability put on a is

f (a) =
(

a + k − 2

k − 1
(1 − a) + 1

k − 1

r

s
(1 − a)

)c

· (1 − a) ·
(

1 − a + a
r

s

)

= (k − 1)−c · s−c−1 · (s(k − 1)a + s(k − 2)(1 − a) + r(1 − a))c · (1 − a) · (s − sa + ra)

Applying the product rule twice, we get

(k − 1)c · sc+1 · ∂ f (a)/∂a

= (1 − a) ·
[

c · (s(k − 1) − s(k − 2) − r) · (s(k − 1)a + s(k − 2)(1 − a) + r(1 − a))c−1 · (s − sa + ra)

+ (s(k − 1)a + s(k − 2)(1 − a) + r(1 − a))c · (r − s)
]

− (s(k − 1)a + s(k − 2)(1 − a) + r(1 − a))c · (s − sa + ra)

In optimum, we must have ∂ f (a)/∂a = 0. Thus, factoring out the positive factor (s(k − 1)a + s(k − 2)(1 − a) + r(1 − a))c−1, 
this implies

0 = (1 − a) ·
[

c · (s(k − 1) − s(k − 2) − r) · (s − sa + ra)

+ (s(k − 1)a + s(k − 2)(1 − a) + r(1 − a)) · (r − s)
]

− (s(k − 1)a + s(k − 2)(1 − a) + r(1 − a)) · (s − sa + ra)

= a2 · ((c + 2)(r − s)2)
+ a · ((r − s)((c + 3)r − 2s(c + 3 − k))

)
+ (

r2 + (−4 − c + k)rs + (4 + c − 2k)s2).
Calculating the discriminant and simplifying, we get

(r − s)2((c + 1)2r2 + 4(k − 1)rs + 4(k − 1)2s2)

The square root of this quantity is rational if and only if ((c + 1)2r2 + 4(k − 1)rs + 4(k − 1)2s2) is a perfect square, which is 
not the case for large c.
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Appendix B. Additional details for Table 2

Maximal lotteries

On profile (a � b, a � b, b � a), the maximal lottery is the deterministic distribution a, henceforth the maximal lottery 
rule violates individual fair share, and thus also the SD-core. The violation of monotonicity is known from Fishburn [38]. 
Maximal lotteries can be computed by linear programming, and thus in polynomial time. For the satisfaction of SD-efficiency 
and the violation of strategyproofness see Aziz et al. [4].

Proportional Borda

Polynomial-time computability and monotonicity are straightforward. For strategyproofness see the discussion by Bar-
berà [10]. The violation of SD-core and ex-post efficiency can be seen on the one-voter profile (a � b � c), which outputs 
2
3 a + 1

3 b. For the satisfaction of individual fair share, we give a proof by case analysis. Let pbx be the proportional Borda 
score of x for a given profile.

1. m � 4 and n � 2. If x is ranked last by at least one voter then its Borda score is at most (n − 1)(m − 1), hence pbx �
(n−1)(m−1)

nm(m−1)
2

= 2(n−1)
nm < 2

m � 1
2 � 1 − 1

n .

2. m � 3 and n � 3. If x is ranked last by at least one voter then pbx � 2(n−1)
3n < 2

3 � 1 − 1
n .

3. m = 3 and n = 2. If x is ranked last by at least one voter then pbx � 0+2
6 = 1

3 < 1 − 1
n .

4. m = 2. If x is ranked last by at least one voter then pbx � n−1
n = 1 − 1

n .
5. n = 1. If the voter ranks x last then pbx = 0 = 1 − 1

n .

References

[1] H. Aziz, N. Shah, Participatory budgeting: models and approaches, in: Rudas, Gábor (Eds.), Pathways Between Social Science and Computational Social 
Science: Theories, Methods and Interpretations, Springer, 2021, pp. 215–236.

[2] H. Aziz, P. Stursberg, A generalization of probabilistic serial to randomized social choice, in: Proceedings of the 28th AAAI Conference on Artificial 
Intelligence (AAAI), 2014, pp. 559–565.

[3] H. Aziz, M. Brill, V. Conitzer, E. Elkind, R. Freeman, T. Walsh, Justified representation in approval-based committee voting, Soc. Choice Welf. 48 (2) 
(2017) 461–485.

[4] H. Aziz, F. Brandl, F. Brandt, M. Brill, On the tradeoff between efficiency and strategyproofness, Games Econ. Behav. 110 (2018) 1–18.
[5] H. Aziz, B.E. Lee, N. Talmon, Proportionally representative participatory budgeting: axioms and algorithms, in: Proceedings of the 17th International 

Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2018, pp. 23–31.
[6] H. Aziz, P. Luo, C. Rizkallah, Rank maximal equal contribution: a probabilistic social choice function, in: Proceedings of the 32nd AAAI Conference on 

Artificial Intelligence (AAAI), 2018, pp. 910–916.
[7] H. Aziz, A. Bogomolnaia, H. Moulin, Fair mixing: the case of dichotomous preferences, ACM Trans. Econ. Comput. 8 (4) (2020) 18:1–18:27.
[8] S. Bade, E. Segal-Halevi, Fair and efficient division among families, arXiv:1811.06684, 2018.
[9] M. Balinski, H.P. Young, Fair Representation: Meeting the Ideal of One Man, One Vote, 2nd edition, Brookings Institution Press, 2001.

[10] S. Barberà, Majority and positional voting in a probabilistic framework, Rev. Econ. Stud. 46 (2) (1979) 379–389.
[11] D. Baumeister, S. Bouveret, J. Lang, N.-T. Nguyen, T.T. Nguyen, J. Rothe, A. Saffidine, Positional scoring-based allocation of indivisible goods, Auton. 

Agents Multi-Agent Syst. (2016) 1–28.
[12] A. Beck, Introduction to Nonlinear Optimization: Theory, Algorithms, and Applications with MATLAB, SIAM, 2014.
[13] G. Benade, S. Nath, A.D. Procaccia, N. Shah, Preference elicitation for participatory budgeting, Manag. Sci. 67 (5) (2021) 2813–2827.
[14] A. Bogomolnaia, H. Moulin, A new solution to the random assignment problem, J. Econ. Theory 100 (2) (2001) 295–328.
[15] A. Bogomolnaia, H. Moulin, R. Stong, Collective choice under dichotomous preferences, J. Econ. Theory 122 (2) (2005) 165–184.
[16] C. Boutilier, I. Caragiannis, S. Haber, T. Lu, A.D. Procaccia, O. Sheffet, Optimal social choice functions: a utilitarian view, Artif. Intell. 227 (2015) 190–213.
[17] S.J. Brams, D.L. King, Efficient fair division: help the worst off or avoid envy?, Ration. Soc. 17 (4) (2005) 387–421.
[18] F. Brandl, F. Brandt, Arrovian aggregation of convex preferences, Econometrica 88 (2) (2020) 799–844.
[19] F. Brandl, F. Brandt, J. Hofbauer, Incentives for participation and abstention in probabilistic social choice, in: Proceedings of the 14th International 

Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2015, pp. 1411–1419.
[20] F. Brandl, F. Brandt, H.G. Seedig, Consistent probabilistic social choice, Econometrica 84 (5) (2016) 1839–1880.
[21] F. Brandl, F. Brandt, M. Eberl, C. Geist, Proving the incompatibility of efficiency and strategyproofness via SMT solving, J. ACM 65 (2) (2018).
[22] F. Brandl, F. Brandt, D. Peters, C. Stricker, Distribution rules under dichotomous preferences: two out of three ain’t bad, in: Proceedings of the 22nd 

ACM Conference on Economics and Computation (ACM EC), 2021, pp. 158–179.
[23] F. Brandl, F. Brandt, M. Greger, D. Peters, C. Stricker, W. Suksompong, Funding public projects: a case for the Nash product rule, J. Math. Econ. 99 (2022) 

102585.
[24] F. Brandt, Rolling the dice: recent results in probabilistic social choice, in: U. Endriss (Ed.), Trends in Computational Social Choice, AI Access, 2017, 

pp. 3–26, chapter 1.
[25] F. Brandt, Collective choice lotteries: dealing with randomization in economic design, in: J.-F. Laslier, H. Moulin, R. Sanver, W.S. Zwicker (Eds.), The 

Future of Economic Design, Springer, 2019.
[26] M. Brill, P. Gölz, D. Peters, U. Schmidt-Kraepelin, K. Wilker, Approval-based apportionment, in: Proceedings of the 34th AAAI Conference on Artificial 

Intelligence (AAAI), 2020, pp. 1854–1861.
[27] M.-A. Cohendet, J. Lang, J.-F. Laslier, T. Pech, F. Sawicki, Une « dose de proportionnelle » : pourquoi, comment, laquelle ?, Terra Nova (2018), https://

tnova .fr /democratie /politique -institutions /une -dose -de -proportionnelle -pourquoi -comment -laquelle/.
[28] V. Conitzer, R. Freeman, N. Shah, Fair public decision making, in: Proceedings of the 18th ACM Conference on Economics and Computation (ACM EC), 

2017, pp. 629–646.
[29] T.M. Cover, An algorithm for maximizing expected log investment return, IEEE Trans. Inf. Theory 30 (2) (1984) 369–373.
[30] A. Darmann, J. Schauer, Maximizing Nash product social welfare in allocating indivisible goods, Eur. J. Oper. Res. 247 (2) (2015) 548–559.
23

http://refhub.elsevier.com/S0004-3702(22)00149-7/bibC43860FAB53B76D113B04419CC26F7E8s1
http://refhub.elsevier.com/S0004-3702(22)00149-7/bibC43860FAB53B76D113B04419CC26F7E8s1
http://refhub.elsevier.com/S0004-3702(22)00149-7/bib67E0B466687A6F4D8AD055134FB23BD0s1
http://refhub.elsevier.com/S0004-3702(22)00149-7/bib67E0B466687A6F4D8AD055134FB23BD0s1
http://refhub.elsevier.com/S0004-3702(22)00149-7/bib03B2AA518F1ADD2A4AAD827BE1276F83s1
http://refhub.elsevier.com/S0004-3702(22)00149-7/bib03B2AA518F1ADD2A4AAD827BE1276F83s1
http://refhub.elsevier.com/S0004-3702(22)00149-7/bib88C4E33F30C955FA3078EB2092F22488s1
http://refhub.elsevier.com/S0004-3702(22)00149-7/bib9841E56F9E9725E6B277F9752B16CE59s1
http://refhub.elsevier.com/S0004-3702(22)00149-7/bib9841E56F9E9725E6B277F9752B16CE59s1
http://refhub.elsevier.com/S0004-3702(22)00149-7/bib9C74B26C1CAA45E3D43EBAD9628C5CCFs1
http://refhub.elsevier.com/S0004-3702(22)00149-7/bib9C74B26C1CAA45E3D43EBAD9628C5CCFs1
http://refhub.elsevier.com/S0004-3702(22)00149-7/bib2EBA108390CA3D577DFED9A9591D85FCs1
http://refhub.elsevier.com/S0004-3702(22)00149-7/bib6E6220946D27D3B29E6303B3B241706Ds1
http://refhub.elsevier.com/S0004-3702(22)00149-7/bibD8B843424AC11D02A377E0509352F1C4s1
http://refhub.elsevier.com/S0004-3702(22)00149-7/bib2327F8CE26206CEAD4192039D9132503s1
http://refhub.elsevier.com/S0004-3702(22)00149-7/bib5402A9AD0DE00D3289A822AD087A4781s1
http://refhub.elsevier.com/S0004-3702(22)00149-7/bib5402A9AD0DE00D3289A822AD087A4781s1
http://refhub.elsevier.com/S0004-3702(22)00149-7/bibA5AEB940E1C1FA5B34C6CFC68CCD30C5s1
http://refhub.elsevier.com/S0004-3702(22)00149-7/bib10FDFE2467719EFD0556B2D3F9C8371Ds1
http://refhub.elsevier.com/S0004-3702(22)00149-7/bibB800FAB7B930782B07B202698D514680s1
http://refhub.elsevier.com/S0004-3702(22)00149-7/bibEC08F3B082792287F453E3ADED9B8ABDs1
http://refhub.elsevier.com/S0004-3702(22)00149-7/bib0E8279B4F25200921D3FCCD4056C7DB5s1
http://refhub.elsevier.com/S0004-3702(22)00149-7/bibCE5F5368A5F04C3F684CC3E1DA5357A6s1
http://refhub.elsevier.com/S0004-3702(22)00149-7/bib3DFE7D56CAF302689D2AD277CE26F318s1
http://refhub.elsevier.com/S0004-3702(22)00149-7/bibE3A0C7C8DE9F760EB01EBD81AC5A583Es1
http://refhub.elsevier.com/S0004-3702(22)00149-7/bibE3A0C7C8DE9F760EB01EBD81AC5A583Es1
http://refhub.elsevier.com/S0004-3702(22)00149-7/bibC4EA658D37B084558C23A3271E40B7B3s1
http://refhub.elsevier.com/S0004-3702(22)00149-7/bib535D65F69F64BF8EF9B9C0E0F95C7A02s1
http://refhub.elsevier.com/S0004-3702(22)00149-7/bibA70F4311F2E266B4CB04A59F0781DD99s1
http://refhub.elsevier.com/S0004-3702(22)00149-7/bibA70F4311F2E266B4CB04A59F0781DD99s1
http://refhub.elsevier.com/S0004-3702(22)00149-7/bib0983E09D85A6320E2DDD1644EA9BB8C7s1
http://refhub.elsevier.com/S0004-3702(22)00149-7/bib0983E09D85A6320E2DDD1644EA9BB8C7s1
http://refhub.elsevier.com/S0004-3702(22)00149-7/bibD00394838FD4BC983BA1F28A8FEDFC9Ds1
http://refhub.elsevier.com/S0004-3702(22)00149-7/bibD00394838FD4BC983BA1F28A8FEDFC9Ds1
http://refhub.elsevier.com/S0004-3702(22)00149-7/bib1319E802BB38B89A54E9F1F2895FFB4Ds1
http://refhub.elsevier.com/S0004-3702(22)00149-7/bib1319E802BB38B89A54E9F1F2895FFB4Ds1
http://refhub.elsevier.com/S0004-3702(22)00149-7/bibFE56A300D1326198E22FE3046483C07Ds1
http://refhub.elsevier.com/S0004-3702(22)00149-7/bibFE56A300D1326198E22FE3046483C07Ds1
https://tnova.fr/democratie/politique-institutions/une-dose-de-proportionnelle-pourquoi-comment-laquelle/
https://tnova.fr/democratie/politique-institutions/une-dose-de-proportionnelle-pourquoi-comment-laquelle/
http://refhub.elsevier.com/S0004-3702(22)00149-7/bib55B0CF7601A791FEAEEA3CB41116E13Cs1
http://refhub.elsevier.com/S0004-3702(22)00149-7/bib55B0CF7601A791FEAEEA3CB41116E13Cs1
http://refhub.elsevier.com/S0004-3702(22)00149-7/bib01CCE0884A9FA9F45F7F8B6F81F5A9D9s1
http://refhub.elsevier.com/S0004-3702(22)00149-7/bib847702B822FB95593E8BA6EE7E5BC6D9s1


S. Airiau, H. Aziz, I. Caragiannis et al. Artificial Intelligence 314 (2023) 103809
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