
Optimization for Machine Learning
Derivatives and differentiation

Clément Royer

CIMPA School “Control, Optimization and Model Reduction in Machine Learning”

February 27, 2025

C. W. Royer Optimization for ML CIMPA 1

Previously on...

Optimization problems in ML

minimize
w∈Rd

f (w) =
1
n

n∑
i=1

fi (w)

w : Model parameters
fi : Loss (w/o regularization) on ith data point.

Algorithm: (Batch) stochastic gradient

wk+1 = wk − αk
1

|Sk |
∑
i∈Sk

∇fi (wk)

Sk = {ik}: Vanilla stochastic gradient.
Sk = {1, . . . , n}: Gradient descent (“Full batch”).

C. W. Royer Optimization for ML CIMPA 2

Previously on...

Optimization problems in ML

minimize
w∈Rd

f (w) =
1
n

n∑
i=1

fi (w)

w : Model parameters
fi : Loss (w/o regularization) on ith data point.

Algorithm: (Batch) stochastic gradient

wk+1 = wk − αk
1

|Sk |
∑
i∈Sk

∇fi (wk)

Sk = {ik}: Vanilla stochastic gradient.
Sk = {1, . . . , n}: Gradient descent (“Full batch”).

C. W. Royer Optimization for ML CIMPA 2

A neural network problem

Fully connected, three-layer network:

x ∈ Rd0 7→ W 3 ReLU (W 2 ReLU (W 1x + b1) + b2) + b3.

where ReLU(v) = max(v , 0), W j ∈ Rdj×dj−1 , bj ∈ Rdj .

Parameters: (W 1,b1,W 2,b2,W 3,b3) → w ∈ Rd ,
d = d1d0 + d1 + d2d1 + d2 + d3d2 + d3.

Regression task (with squared loss)

Model: x 7→ NN(x ;w).
Data: {(x i , y i)}

n
i=1, x i ∈ Rd0 , y i ∈ Rd3 .

minimize
w∈Rd

1
n

n∑
i=1

∥NN(x i ;w)− y i∥
2
2

C. W. Royer Optimization for ML CIMPA 3

A neural network problem

Fully connected, three-layer network:

x ∈ Rd0 7→ W 3 ReLU (W 2 ReLU (W 1x + b1) + b2) + b3.

where ReLU(v) = max(v , 0), W j ∈ Rdj×dj−1 , bj ∈ Rdj .
Parameters: (W 1,b1,W 2,b2,W 3,b3) → w ∈ Rd ,
d = d1d0 + d1 + d2d1 + d2 + d3d2 + d3.

Regression task (with squared loss)

Model: x 7→ NN(x ;w).
Data: {(x i , y i)}

n
i=1, x i ∈ Rd0 , y i ∈ Rd3 .

minimize
w∈Rd

1
n

n∑
i=1

∥NN(x i ;w)− y i∥
2
2

C. W. Royer Optimization for ML CIMPA 3

A neural network problem

Fully connected, three-layer network:

x ∈ Rd0 7→ W 3 ReLU (W 2 ReLU (W 1x + b1) + b2) + b3.

where ReLU(v) = max(v , 0), W j ∈ Rdj×dj−1 , bj ∈ Rdj .
Parameters: (W 1,b1,W 2,b2,W 3,b3) → w ∈ Rd ,
d = d1d0 + d1 + d2d1 + d2 + d3d2 + d3.

Regression task (with squared loss)

Model: x 7→ NN(x ;w).
Data: {(x i , y i)}

n
i=1, x i ∈ Rd0 , y i ∈ Rd3 .

minimize
w∈Rd

1
n

n∑
i=1

∥NN(x i ;w)− y i∥
2
2

C. W. Royer Optimization for ML CIMPA 3

A neural network problem (’ed)

minimize
w∈Rd

f (w) =
1
n

n∑
i=1

∥NN(x i ;w)− y i∥
2
2︸ ︷︷ ︸

fi (w)

Applying stochastic gradient

Requires derivatives of fi (w), hence derivatives of

∥W 3 ReLU (W 2 ReLU (W 1x + b1) + b2) + b3∥2
2

with respect to W j ,bj .

Issues:

Hard to do/code by hand.
The gradient does not always exist!

C. W. Royer Optimization for ML CIMPA 4

A neural network problem (’ed)

minimize
w∈Rd

f (w) =
1
n

n∑
i=1

∥NN(x i ;w)− y i∥
2
2︸ ︷︷ ︸

fi (w)

Applying stochastic gradient

Requires derivatives of fi (w), hence derivatives of

∥W 3 ReLU (W 2 ReLU (W 1x + b1) + b2) + b3∥2
2

with respect to W j ,bj .

Issues:

Hard to do/code by hand.
The gradient does not always exist!

C. W. Royer Optimization for ML CIMPA 4

A neural network problem (’ed)

minimize
w∈Rd

f (w) =
1
n

n∑
i=1

∥NN(x i ;w)− y i∥
2
2︸ ︷︷ ︸

fi (w)

Applying stochastic gradient

Requires derivatives of fi (w), hence derivatives of

∥W 3 ReLU (W 2 ReLU (W 1x + b1) + b2) + b3∥2
2

with respect to W j ,bj .
Issues:

Hard to do/code by hand.
The gradient does not always exist!

C. W. Royer Optimization for ML CIMPA 4

Outline

1 Subgradients

2 Computing (sub)gradients

C. W. Royer Optimization for ML CIMPA 5

Outline

1 Subgradients

2 Computing (sub)gradients

C. W. Royer Optimization for ML CIMPA 6

Nonsmooth functions

Definition

A function f : Rd → R is called nonsmooth if the gradient is not defined
at every point.

Examples of nonsmooth functions

w 7→ |w | from R to R;
w 7→ ∥w∥1 from Rd to R;
ReLU: w 7→ max{w , 0} from Rd to R.
w 7→ 1(w ≥ 0) from R to R.

NB: Nonsmooth ̸= Discontinuous.

C. W. Royer Optimization for ML CIMPA 7

Nonsmooth functions

Definition

A function f : Rd → R is called nonsmooth if the gradient is not defined
at every point.

Examples of nonsmooth functions

w 7→ |w | from R to R;
w 7→ ∥w∥1 from Rd to R;
ReLU: w 7→ max{w , 0} from Rd to R.
w 7→ 1(w ≥ 0) from R to R.

NB: Nonsmooth ̸= Discontinuous.

C. W. Royer Optimization for ML CIMPA 7

Subgradients for nonsmooth convex problems

Focus: Nonsmooth convex (hence continuous) functions.

Definition

Let f : Rd → R be a convex function. A vector g ∈ Rd is called a
subgradient of f at w ∈ Rd if

∀z ∈ Rn, f (z) ≥ f (w) + gT(z − w).

The set of all subgradients of f at w is called the subdifferential of f at w ,
and denoted by ∂f (w).

Subdifferentials and optimization

If f differentiable at w , ∂f (w) = {∇f (w)};
0 ∈ ∂f (w) ⇔ w minimum of f !

C. W. Royer Optimization for ML CIMPA 8

Subgradients for nonsmooth convex problems

Focus: Nonsmooth convex (hence continuous) functions.

Definition

Let f : Rd → R be a convex function. A vector g ∈ Rd is called a
subgradient of f at w ∈ Rd if

∀z ∈ Rn, f (z) ≥ f (w) + gT(z − w).

The set of all subgradients of f at w is called the subdifferential of f at w ,
and denoted by ∂f (w).

Subdifferentials and optimization

If f differentiable at w , ∂f (w) = {∇f (w)};
0 ∈ ∂f (w) ⇔ w minimum of f !

C. W. Royer Optimization for ML CIMPA 8

Subdifferential: Illustration

∂(| · |)(t) =

−1 if t < 0
1 if t > 0
[−1, 1] if t = 0.

C. W. Royer Optimization for ML CIMPA 9

Subgradient method

Iteration for nonsmooth convex f

wk+1 = wk − αkgk , gk ∈ ∂f (wk).

Depends on the subgradient: a subgradient can be a direction of
increase!
Depends on αk : typically chosen constant or decreasing.

Guarantees

Let wK = 1∑K−1
k=0 αk

∑K−1
k=0 αkwk . Then,

f (wK)− f ∗ ≤ O
(

1√
K

)
.

Worst rate than gradient descent (1
K) but a lot more general!

C. W. Royer Optimization for ML CIMPA 10

Subgradient method

Iteration for nonsmooth convex f

wk+1 = wk − αkgk , gk ∈ ∂f (wk).

Depends on the subgradient: a subgradient can be a direction of
increase!
Depends on αk : typically chosen constant or decreasing.

Guarantees

Let wK = 1∑K−1
k=0 αk

∑K−1
k=0 αkwk . Then,

f (wK)− f ∗ ≤ O
(

1√
K

)
.

Worst rate than gradient descent (1
K) but a lot more general!

C. W. Royer Optimization for ML CIMPA 10

Subgradient algorithms

Can define stochastic subgradient algorithms!
Allows to use nonsmooth losses/regularizers.
Guarantees even in the nonconvex setting (Davis, Drusvyatskiy ’19).

What’s next?
How can I compute a subgradient of

∥W 3 ReLU (W 2 ReLU (W 1x + b1) + b2) + b3∥2
2

w.r.t. bj or W j?

C. W. Royer Optimization for ML CIMPA 11

Outline

1 Subgradients

2 Computing (sub)gradients

C. W. Royer Optimization for ML CIMPA 12

Derivatives in Deep Learning

What you do in PyTorch, JAX, etc
Encode a neural network using blocks⇒Defines the parameters w !
Define a forward pass x 7→ NN(x ;w).

What happens next: Automatic differentiation
A computational graph is created.
Gradients w.r.t. any parameters can be computed through a backward
pass in the graph.

Key mathematical tool: The chain rule!

C. W. Royer Optimization for ML CIMPA 13

Derivatives in Deep Learning

What you do in PyTorch, JAX, etc
Encode a neural network using blocks⇒Defines the parameters w !
Define a forward pass x 7→ NN(x ;w).

What happens next: Automatic differentiation
A computational graph is created.
Gradients w.r.t. any parameters can be computed through a backward
pass in the graph.

Key mathematical tool: The chain rule!

C. W. Royer Optimization for ML CIMPA 13

The chain rule

The mathematical theorem

Let f = g ◦ h, h : Rn × Rℓ, g : Rℓ × Rm be smooth functions. Then, for
any x ∈ Rn,

Jx f (x)︸ ︷︷ ︸
m×n

= Jyg(h(x))︸ ︷︷ ︸
m×ℓ

× Jxh(x)︸ ︷︷ ︸
ℓ×n

where Jzϕ(z) is the Jacobian of ϕ w.r.t. z .

The practice

Functions from tensors to tensors: z ∈ Rn1×n2×···×np ,
f (z) ∈ Rm1×m2×···×mq .
Get Dzϕ(z) ∈ Rsize(z) from Jzϕ(z) ∈ Rsize(f (z))×size(z).
Nonsmooth calculus rules (Bolte & Pauwels ’20).

C. W. Royer Optimization for ML CIMPA 14

The chain rule

The mathematical theorem

Let f = g ◦ h, h : Rn × Rℓ, g : Rℓ × Rm be smooth functions. Then, for
any x ∈ Rn,

Jx f (x)︸ ︷︷ ︸
m×n

= Jyg(h(x))︸ ︷︷ ︸
m×ℓ

× Jxh(x)︸ ︷︷ ︸
ℓ×n

where Jzϕ(z) is the Jacobian of ϕ w.r.t. z .

The practice

Functions from tensors to tensors: z ∈ Rn1×n2×···×np ,
f (z) ∈ Rm1×m2×···×mq .
Get Dzϕ(z) ∈ Rsize(z) from Jzϕ(z) ∈ Rsize(f (z))×size(z).
Nonsmooth calculus rules (Bolte & Pauwels ’20).

C. W. Royer Optimization for ML CIMPA 14

Example: My 3-layer network (no bias for simplicity)

Let ϕ = ∥W 3 ReLU (W 2 ReLU (W 1x))∥2
2. Compute Jxϕ.

Decompose:

ϕ = ∥z5∥2
2

z5 = W 3z4
z4 = ReLU(z3)
z3 = W 2z2
z2 = ReLU(z1)
z1 = W 1z0
z0 = x .

Compute Jacobians:

Jz5ϕ = 2zT
5

Jz4z5 = W 3
Jz3z4 = Λ(z3), Λ(u) = diag(max(u i

|u i | , 0))
Jz2z3 = W 2
Jz1z2 = Λ(z1)
Jz0z1 = W 1
Jxz0 = I .

Chain rule: Jxϕ = Jz5ϕ Jz4z5 · · · Jz1z2 Jz0z1 Jxz0

= 2zT
5 W 3Λ(z3)W 2Λ(z1)W 1 ∈ R1×len(x).

C. W. Royer Optimization for ML CIMPA 15

Example: My 3-layer network (no bias for simplicity)

Let ϕ = ∥W 3 ReLU (W 2 ReLU (W 1x))∥2
2. Compute Jxϕ.

Decompose:

ϕ = ∥z5∥2
2

z5 = W 3z4
z4 = ReLU(z3)
z3 = W 2z2
z2 = ReLU(z1)
z1 = W 1z0
z0 = x .

Compute Jacobians:

Jz5ϕ = 2zT
5

Jz4z5 = W 3
Jz3z4 = Λ(z3), Λ(u) = diag(max(u i

|u i | , 0))
Jz2z3 = W 2
Jz1z2 = Λ(z1)
Jz0z1 = W 1
Jxz0 = I .

Chain rule: Jxϕ = Jz5ϕ Jz4z5 · · · Jz1z2 Jz0z1 Jxz0

= 2zT
5 W 3Λ(z3)W 2Λ(z1)W 1 ∈ R1×len(x).

C. W. Royer Optimization for ML CIMPA 15

Example: My 3-layer network (no bias for simplicity)

Let ϕ = ∥W 3 ReLU (W 2 ReLU (W 1x))∥2
2. Compute Jxϕ.

Decompose:

ϕ = ∥z5∥2
2

z5 = W 3z4
z4 = ReLU(z3)
z3 = W 2z2
z2 = ReLU(z1)
z1 = W 1z0
z0 = x .

Compute Jacobians:

Jz5ϕ = 2zT
5

Jz4z5 = W 3
Jz3z4 = Λ(z3), Λ(u) = diag(max(u i

|u i | , 0))
Jz2z3 = W 2
Jz1z2 = Λ(z1)
Jz0z1 = W 1
Jxz0 = I .

Chain rule: Jxϕ = Jz5ϕ Jz4z5 · · · Jz1z2 Jz0z1 Jxz0

= 2zT
5 W 3Λ(z3)W 2Λ(z1)W 1 ∈ R1×len(x).

C. W. Royer Optimization for ML CIMPA 15

Example: My 3-layer network (no bias for simplicity)

Let ϕ = ∥W 3 ReLU (W 2 ReLU (W 1x))∥2
2. Compute Jxϕ.

Decompose:

ϕ = ∥z5∥2
2

z5 = W 3z4
z4 = ReLU(z3)
z3 = W 2z2
z2 = ReLU(z1)
z1 = W 1z0
z0 = x .

Compute Jacobians:

Jz5ϕ = 2zT
5

Jz4z5 = W 3
Jz3z4 = Λ(z3), Λ(u) = diag(max(u i

|u i | , 0))
Jz2z3 = W 2
Jz1z2 = Λ(z1)
Jz0z1 = W 1
Jxz0 = I .

Chain rule: Jxϕ = Jz5ϕ Jz4z5 · · · Jz1z2 Jz0z1 Jxz0

= 2zT
5 W 3Λ(z3)W 2Λ(z1)W 1 ∈ R1×len(x).

C. W. Royer Optimization for ML CIMPA 15

My 3 layer network (’ed)

Let ϕ = ∥W 3 ReLU (W 2 ReLU (W 1x))∥2
2. Compute JW 2ϕ.

Decompose:

ϕ = ∥W 3 ReLU(v2)∥2
2

z5 = W 3z4
z4 = ReLU(v2)
v2 = W 2v1
v1 = ReLU(W 1x).

Compute Jacobians:

Jz5ϕ = 2zT
5

Jz4z5 = W 3
Jv2z4 = Λ(v2)

JW 2v2 = T ∈ Rlen(v1)×size(W 2)

[T]ijk = [v1]iδjk .

Chain rule: JW 2ϕ = Jz5ϕ Jz4z5 Jv2z4 JW 2v2

= 2zT
5 W 3Λ(v2)T ∈ R1×size(W 2).

C. W. Royer Optimization for ML CIMPA 16

My 3 layer network (’ed)

Let ϕ = ∥W 3 ReLU (W 2 ReLU (W 1x))∥2
2. Compute JW 2ϕ.

Decompose:

ϕ = ∥W 3 ReLU(v2)∥2
2

z5 = W 3z4
z4 = ReLU(v2)
v2 = W 2v1
v1 = ReLU(W 1x).

Compute Jacobians:

Jz5ϕ = 2zT
5

Jz4z5 = W 3
Jv2z4 = Λ(v2)

JW 2v2 = T ∈ Rlen(v1)×size(W 2)

[T]ijk = [v1]iδjk .

Chain rule: JW 2ϕ = Jz5ϕ Jz4z5 Jv2z4 JW 2v2

= 2zT
5 W 3Λ(v2)T ∈ R1×size(W 2).

C. W. Royer Optimization for ML CIMPA 16

My 3 layer network (’ed)

Let ϕ = ∥W 3 ReLU (W 2 ReLU (W 1x))∥2
2. Compute JW 2ϕ.

Decompose:

ϕ = ∥W 3 ReLU(v2)∥2
2

z5 = W 3z4
z4 = ReLU(v2)
v2 = W 2v1
v1 = ReLU(W 1x).

Compute Jacobians:

Jz5ϕ = 2zT
5

Jz4z5 = W 3
Jv2z4 = Λ(v2)

JW 2v2 = T ∈ Rlen(v1)×size(W 2)

[T]ijk = [v1]iδjk .

Chain rule: JW 2ϕ = Jz5ϕ Jz4z5 Jv2z4 JW 2v2

= 2zT
5 W 3Λ(v2)T ∈ R1×size(W 2).

C. W. Royer Optimization for ML CIMPA 16

My 3 layer network (’ed)

Let ϕ = ∥W 3 ReLU (W 2 ReLU (W 1x))∥2
2. Compute JW 2ϕ.

Decompose:

ϕ = ∥W 3 ReLU(v2)∥2
2

z5 = W 3z4
z4 = ReLU(v2)
v2 = W 2v1
v1 = ReLU(W 1x).

Compute Jacobians:

Jz5ϕ = 2zT
5

Jz4z5 = W 3
Jv2z4 = Λ(v2)

JW 2v2 = T ∈ Rlen(v1)×size(W 2)

[T]ijk = [v1]iδjk .

Chain rule: JW 2ϕ = Jz5ϕ Jz4z5 Jv2z4 JW 2v2

= 2zT
5 W 3Λ(v2)T ∈ R1×size(W 2).

C. W. Royer Optimization for ML CIMPA 16

Summary

Gradients/Subgradients

Gradients needed for optimization!
Can be replaced by subgradients.

Computing derivatives
All you need is a code for the function!
Get (sub)gradients through automatic differentiation!
Efficient implementation in deep learning packages.

C. W. Royer Optimization for ML CIMPA 17

References

J. C. Duchi, Introductory lectures on stochastic optimization. In The
Mathematics of Data, AMS, 2018.
⇒ Lecture notes on stochastic subgradient methods.
M. Hardt & B. Recht, Patterns, predictions and actions, Princeton
University Press, 2022.
⇒ Chapter 7: Presentation of automatic differentiation.

For (even) more math:
D. Davis & D. Drusvyatskiy, Subgradient methods under weak
convexity and tame geometry, SIAG/OPT Views and News, 2020.
⇒ Theory of subgradient methods for a broad audience.
J. Bolte & E. Pauwels, Conservative set valued fields, automatic
differentiation, stochastic gradient methods and deep learning,
Mathematical Programming, 2021.
⇒ A rigorous subdifferential theory for neural networks.

C. W. Royer Optimization for ML CIMPA 18

	Introduction
	Subgradients
	Computing (sub)gradients
	Conclusion

