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Previously on...

Optimization problems in ML

n
minimize f(w) = E Z fi(w)
n
i=1

weRd

o w: Model parameters

o fi: Loss (w/o regularization) on ith data point.

.
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Previously on...
Optimization problems in ML

n
minimize f(w) = E Z fi(w)
n
i=1

weRd

o w: Model parameters

o fi: Loss (w/o regularization) on ith data point.

Algorithm: (Batch) stochastic gradient

1
Wil = Wy — akm Z Vii(wy)
i€ESK

o Sk = {ix}: Vanilla stochastic gradient.
o S, ={1,...,n}: Gradient descent (“Full batch").
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A neural network problem

e Fully connected, three-layer network:
x € R% s W3 ReLU (W3 ReLU (W1x + by) + by) + bs.

where ReLU(v) = max(v,0), W, € R9>*d-1, b; € RY.

C. W. Royer Optimization for ML CIMPA 3



A neural network problem

e Fully connected, three-layer network:
x € R% s W3 ReLU (W3 ReLU (W1x + by) + by) + bs.

where ReLU(v) = max(v,0), W, € R9>*d-1, b; € RY.
o Parameters: (W1, by, Wy, by, W3, b3) — w € RY,
d = didy + di + dady + do + d3d> + ds.
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A neural network problem

e Fully connected, three-layer network:
x € R% s W3 ReLU (W3 ReLU (W1x + by) + by) + bs.

where ReLU(v) = max(v,0), W, € R9>*d-1, b; € RY.

o Parameters: (W1, by, Wy, by, W3, b3) — w € RY,
d = didg + di + dody + do + d3d> + ds.

Regression task (with squared loss)
o Model: x — NN(x; w).
o Data: {(x;,y;)}_;, xi € R%, y, € R%.

minimize — NNx —y.l?
inimi Zu w) — vl
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A neural network problem ('ed)

minimize f(w NN(x;;
R Z | i —Yi ”2

fi(w)
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A neural network problem ('ed)

minimize f(w NN(x;;
R Z | i —Yi ”2

fi(w)

Applying stochastic gradient

@ Requires derivatives of fj(w), hence derivatives of
|W3 RelLU (W5 RelLU (W1x + by) + by) + bs]|3

with respect to W, b;.

.
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A neural network problem ('ed)

minimize f(w NN(x;;
R Z | i —Yi ”2

fi(w)

Applying stochastic gradient

@ Requires derivatives of fj(w), hence derivatives of
|W3 RelLU (W5 RelLU (W1x + by) + by) + bs]|3

with respect to W, b;.
@ Issues:

e Hard to do/code by hand.
e The gradient does not always exist!

.
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© Subgradients

© Computing (sub)gradients
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© Subgradients
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Nonsmooth functions

Definition

A function f : R? — R is called nonsmooth if the gradient is not defined
at every point.
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Nonsmooth functions

Definition

A function f : R? — R is called nonsmooth if the gradient is not defined
at every point.

Examples of nonsmooth functions
o w i |w| from R to R;
o w+— ||w|; from R to R;
o RelLU: w — max{w,0} from RY to R.
e w— 1(w >0) from R to R.

NB: Nonsmooth # Discontinuous.
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Subgradients for nonsmooth convex problems

Focus: Nonsmooth convex (hence continuous) functions.
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Subgradients for nonsmooth convex problems

Focus: Nonsmooth convex (hence continuous) functions.

Definition

Let f : RY — R be a convex function. A vector g € RY is called a
subgradient of f at w € RY if

Vz e R", f(z) > f(w)+g (z—w).

The set of all subgradients of f at w is called the subdifferential of f at w,
and denoted by Of (w).

Subdifferentials and optimization

o If f differentiable at w, Of(w) = {Vf(w)};
e 0 € 9f(w) < w minimum of f!
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Subdifferential: Illustration

C. W. Royer

LS o [ He ey
5‘ t — ({( /\ /Eh>lk\ S
e

-1
1
{ [_17 1]

Optimization for ML

ift<O
ift >0
if t=0.

[@]\V/]27. 9



Subgradient method
Iteration for nonsmooth convex f

Wil = Wi — augy, gk € Of(wy).

@ Depends on the subgradient: a subgradient can be a direction of
increase!

@ Depends on «y: typically chosen constant or decreasing.

.
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Subgradient method

Iteration for nonsmooth convex f

Wil = Wi — augy, gk € Of(wy).

@ Depends on the subgradient: a subgradient can be a direction of
increase!

@ Depends on «y: typically chosen constant or decreasing.

Guarantees

Let wik = % Zsz_Ol axwy. Then,
o Qk

Do @
(W) — <O (&) .

Worst rate than gradient descent (%) but a lot more general!
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Subgradient algorithms

e Can define stochastic subgradient algorithms!
@ Allows to use nonsmooth losses/regularizers.

@ Guarantees even in the nonconvex setting (Davis, Drusvyatskiy '19).

How can | compute a subgradient of

|W3 RelLU (W5 ReLU (W1x + by) + by) + bs||3

w.r.t. bj or W;?
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© Computing (sub)gradients
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Derivatives in Deep Learning

What you do in PyTorch, JAX, etc

@ Encode a neural network using blocks=-Defines the parameters w!

@ Define a forward pass x — NN(x; w).
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Derivatives in Deep Learning

What you do in PyTorch, JAX, etc

@ Encode a neural network using blocks=-Defines the parameters w!

@ Define a forward pass x — NN(x; w).

.

What happens next: Automatic differentiation

@ A computational graph is created.

@ Gradients w.r.t. any parameters can be computed through a backward
pass in the graph.

Key mathematical tool: The chain rule!
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The chain rule

The mathematical theorem

Let f =goh, h:R" xR, g : R x R™ be smooth functions. Then, for
any x € R",

Ixf(x) = Jyg(h(x)) x Jxh(x)
~—— — —— ~——

mxn mx/ £xn

where J,¢(z) is the Jacobian of ¢ w.r.t. z.
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The chain rule

The mathematical theorem

Let f =goh, h:R" xR, g : R x R™ be smooth functions. Then, for
any x € R",

Ixf(x) = Jyg(h(x)) x Jxh(x)
~—— — —— ~——

mxn mx/ £xn

where J,¢(z) is the Jacobian of ¢ w.r.t. z.

The practice

@ Functions from tensors to tensors;: z € R XM2XXnp
f‘(z) c lexmgx---xmq_

o Get ngb(z) c Rsize(z) from sz)(z) = Rsize(f(z))xsize(z)_

@ Nonsmooth calculus rules (Bolte & Pauwels '20).
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Example: My 3-layer network (no bias for simplicity)

Let ¢ = || W3 ReLU (W3 ReLU (W;x))|[3. Compute J,o. |
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Example: My 3-layer network (no bias for simplicity)

Let ¢ = || W3 ReLU (W3 ReLU (W;x))|[3. Compute J,o. |

Decompose:

¢ = lzsl3

Zy = W3Z4

z, = RelU(z3)

zZ3 = W222

z = RelU(zy)

z; = Wiz

zZyp = X.

C. W. Royer Optimization for ML CIMPA 15



Example: My 3-layer network (no bias for simplicity)

Let ¢ = || W3 ReLU (W3 ReLU (W;x))|[3. Compute J,o. |
Decompose: Compute Jacobians:
¢ = lzsl3 Jzs¢ = 2z5
Zy = W3Z4 JZ4Z5 = W3
z, = RelU(z3) Jzsza = N(z3), N(u)= diag,‘(max(lm| ,0))
z3 = Wosz Jz23 = wW->
z, = RelLU(z1) Jz,2z20 = N(z1)
z1 = Wiz Jznz1 = Wy
zp = X. Jxzg = I
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Example: My 3-layer network (no bias for simplicity)

Let ¢ = || W3 ReLU (W3 ReLU (W;x))|[3. Compute J,o. )

Decompose: Compute Jacobians:

¢ = lzsl3 Jzs¢ = 225

Zy = W3Z4 JZ4Z5 = W3

z, = RelU(z3) Jzsza = N(z3), N(u)= diag(max(ﬂ;l ,0))
z3 = Wosz Jz,23 = wW->

z, = RelLU(z1) Jz,z2 = N(z1)

z1 = Wiz Jznz1 = Wy

zZyp = X. JXZO = I

Chain rule: Jx¢

std) J2425 te lezZ Jzozl Jx2o

228 W3 (z3)Wal(z1) Wy € RYXlen(x),

C. W. Royer
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My 3 layer network (‘ed)

Let ¢ = || W3 ReLU (W3 ReLU (W;x))|[3. Compute Jyy,o. |
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My 3 layer network (‘ed)

Let ¢ = || W3 ReLU (W3 ReLU (W;x))|[3. Compute Jyy,o. |
Decompose:
¢ = |WsReLU(v2)|}3
Zy = W3Z4
Zy, = ReLU(Vz)
vy = W2V1

vi = ReLU(W;x).
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My 3 layer network (‘ed)

Let ¢ = || W3 ReLU (W3 ReLU (W;x))|[3. Compute Jyy,o. |
Decompose: Compute Jacobians:
¢ = |[[W; ReLU(V2)H% ) — Qz;f
Zy = W3Z4 Jz425 — W3
zs = RelLU(vy) Jv.za = Avo)
vo = Wav _ len(vy ) xsize(W>)

Jw,vo = T€R 4
vi = ReLU(W;x). [7_]2k — [l
ij 1=K
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My 3 layer network (‘ed)

Let ¢ = || W3 ReLU (W3 ReLU (W;x))|[3. Compute Jyy,o. |
Decompose: Compute Jacobians:
¢ = |[[W; ReLU(V2)H% ) — 2z;f
Zy = W3Z4 Jz425 — W3
Zy, = ReLU(vQ) Jv224 — A(VQ)
vo = Wav _ len(vy ) xsize(W>)
Jw.va = TeR 4
vi = ReLU(W;x). [7l4]/2k — [vilidi
ij 1=K
Chain rule: Jw,¢ = JzuodJzz5Jv,zaJw,vo
= 2ZE W3/\(V2)T e R1xsize(W2)
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Gradients/Subgradients

o Gradients needed for optimization!

@ Can be replaced by subgradients.

Computing derivatives

@ All you need is a code for the function!
o Get (sub)gradients through automatic differentiation!

o Efficient implementation in deep learning packages.
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