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Previously on...

Optimization problems in ML

minimize
w∈Rd

f (w) =
1
n

n∑
i=1

fi (w)

w : Model parameters
fi : Loss (w/o regularization) on ith data point.

Algorithm: (Batch) stochastic gradient

wk+1 = wk − αk
1

|Sk |
∑
i∈Sk

∇fi (wk)

Sk = {ik}: Vanilla stochastic gradient.
Sk = {1, . . . , n}: Gradient descent (“Full batch”).
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A neural network problem

Fully connected, three-layer network:

x ∈ Rd0 7→ W 3 ReLU (W 2 ReLU (W 1x + b1) + b2) + b3.

where ReLU(v) = max(v , 0), W j ∈ Rdj×dj−1 , bj ∈ Rdj .

Parameters: (W 1,b1,W 2,b2,W 3,b3) → w ∈ Rd ,
d = d1d0 + d1 + d2d1 + d2 + d3d2 + d3.

Regression task (with squared loss)

Model: x 7→ NN(x ;w).
Data: {(x i , y i )}

n
i=1, x i ∈ Rd0 , y i ∈ Rd3 .

minimize
w∈Rd

1
n

n∑
i=1

∥NN(x i ;w)− y i∥
2
2
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A neural network problem (’ed)

minimize
w∈Rd

f (w) =
1
n

n∑
i=1

∥NN(x i ;w)− y i∥
2
2︸ ︷︷ ︸

fi (w)

Applying stochastic gradient

Requires derivatives of fi (w), hence derivatives of

∥W 3 ReLU (W 2 ReLU (W 1x + b1) + b2) + b3∥2
2

with respect to W j ,bj .

Issues:

Hard to do/code by hand.
The gradient does not always exist!
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Outline

1 Subgradients

2 Computing (sub)gradients
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Nonsmooth functions

Definition

A function f : Rd → R is called nonsmooth if the gradient is not defined
at every point.

Examples of nonsmooth functions

w 7→ |w | from R to R;
w 7→ ∥w∥1 from Rd to R;
ReLU: w 7→ max{w , 0} from Rd to R.
w 7→ 1(w ≥ 0) from R to R.

NB: Nonsmooth ̸= Discontinuous.
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Subgradients for nonsmooth convex problems

Focus: Nonsmooth convex (hence continuous) functions.

Definition

Let f : Rd → R be a convex function. A vector g ∈ Rd is called a
subgradient of f at w ∈ Rd if

∀z ∈ Rn, f (z) ≥ f (w) + gT(z − w).

The set of all subgradients of f at w is called the subdifferential of f at w ,
and denoted by ∂f (w).

Subdifferentials and optimization

If f differentiable at w , ∂f (w) = {∇f (w)};
0 ∈ ∂f (w) ⇔ w minimum of f !
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Subdifferential: Illustration

∂(| · |)(t) =


−1 if t < 0
1 if t > 0
[−1, 1] if t = 0.
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Subgradient method

Iteration for nonsmooth convex f

wk+1 = wk − αkgk , gk ∈ ∂f (wk).

Depends on the subgradient: a subgradient can be a direction of
increase!
Depends on αk : typically chosen constant or decreasing.

Guarantees

Let wK = 1∑K−1
k=0 αk

∑K−1
k=0 αkwk . Then,

f (wK )− f ∗ ≤ O
(

1√
K

)
.

Worst rate than gradient descent ( 1
K ) but a lot more general!
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Subgradient algorithms

Can define stochastic subgradient algorithms!
Allows to use nonsmooth losses/regularizers.
Guarantees even in the nonconvex setting (Davis, Drusvyatskiy ’19).

What’s next?
How can I compute a subgradient of

∥W 3 ReLU (W 2 ReLU (W 1x + b1) + b2) + b3∥2
2

w.r.t. bj or W j?
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Derivatives in Deep Learning

What you do in PyTorch, JAX, etc
Encode a neural network using blocks⇒Defines the parameters w !
Define a forward pass x 7→ NN(x ;w).

What happens next: Automatic differentiation
A computational graph is created.
Gradients w.r.t. any parameters can be computed through a backward
pass in the graph.

Key mathematical tool: The chain rule!
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The chain rule

The mathematical theorem

Let f = g ◦ h, h : Rn × Rℓ, g : Rℓ × Rm be smooth functions. Then, for
any x ∈ Rn,

Jx f (x)︸ ︷︷ ︸
m×n

= Jyg(h(x))︸ ︷︷ ︸
m×ℓ

× Jxh(x)︸ ︷︷ ︸
ℓ×n

where Jzϕ(z) is the Jacobian of ϕ w.r.t. z .

The practice

Functions from tensors to tensors: z ∈ Rn1×n2×···×np ,
f (z) ∈ Rm1×m2×···×mq .
Get Dzϕ(z) ∈ Rsize(z) from Jzϕ(z) ∈ Rsize(f (z))×size(z).
Nonsmooth calculus rules (Bolte & Pauwels ’20).
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Example: My 3-layer network (no bias for simplicity)

Let ϕ = ∥W 3 ReLU (W 2 ReLU (W 1x))∥2
2. Compute Jxϕ.

Decompose:

ϕ = ∥z5∥2
2

z5 = W 3z4
z4 = ReLU(z3)
z3 = W 2z2
z2 = ReLU(z1)
z1 = W 1z0
z0 = x .

Compute Jacobians:

Jz5ϕ = 2zT
5

Jz4z5 = W 3
Jz3z4 = Λ(z3), Λ(u) = diag(max( u i

|u i | , 0))
Jz2z3 = W 2
Jz1z2 = Λ(z1)
Jz0z1 = W 1
Jxz0 = I .

Chain rule: Jxϕ = Jz5ϕ Jz4z5 · · · Jz1z2 Jz0z1 Jxz0

= 2zT
5 W 3Λ(z3)W 2Λ(z1)W 1 ∈ R1×len(x).
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My 3 layer network (’ed)

Let ϕ = ∥W 3 ReLU (W 2 ReLU (W 1x))∥2
2. Compute JW 2ϕ.

Decompose:

ϕ = ∥W 3 ReLU(v2)∥2
2

z5 = W 3z4
z4 = ReLU(v2)
v2 = W 2v1
v1 = ReLU(W 1x).

Compute Jacobians:

Jz5ϕ = 2zT
5

Jz4z5 = W 3
Jv2z4 = Λ(v2)

JW 2v2 = T ∈ Rlen(v1)×size(W 2)

[T ]ijk = [v1]iδjk .

Chain rule: JW 2ϕ = Jz5ϕ Jz4z5 Jv2z4 JW 2v2

= 2zT
5 W 3Λ(v2)T ∈ R1×size(W 2).
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Summary

Gradients/Subgradients

Gradients needed for optimization!
Can be replaced by subgradients.

Computing derivatives
All you need is a code for the function!
Get (sub)gradients through automatic differentiation!
Efficient implementation in deep learning packages.
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