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Sources

Github repository: https://tinyurl.com/3etmd46y
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Context: Finite sum problems

Data {(xi , yi )}ni=1, x i ∈ Rd , yi ∈ R, with an underlying distribution.
Predictor function/Model h such that h(x i ) ≈ yi ;
Model parameterized by w ∈ Rd ⇒ h(x i ) = h(w ; x i )

Accuracy of model on data measured through a loss ℓ.

Optimization problem

minimize
w∈Rd

f (w) =
1
n

n∑
i=1

ℓ(h(w ; x i ), yi )︸ ︷︷ ︸
fi (w)

=
1
n

n∑
i=1

fi (w).
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Applying gradient descent

Gradient descent for minimizew∈Rd
1
n

∑n
i=1 fi (w)

Assuming all fi s are differentiable, the gradient descent iteration is:

wk+1 = wk − αk∇f (wk) = wk −
αk

n

n∑
i=1

∇fi (wk).

Big data setting: n is very large and ∇f (wk) is very expensive to
compute;
One iteration of gradient descent involves looking at the entire
dataset.
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Stochastic gradient for minimizew∈Rd
1
n

∑n
i=1 fi(w)

Iteration

wk+1 = wk − αk∇fik (wk),

where ik is drawn randomly in {1, . . . , n}.

Use one (random) data point at a time ⇒ n times cheaper than a
full gradient calculation!
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Beyond Stochastic Gradient

Why just sample one data point?

SG: wk+1 = wk − αk∇fik (wk),
ik drawn at random;
Batch SG:

wk+1 = wk − αk
1

|Sk |
∑
i∈Sk

∇fi (wk)

where Sk ⊂ {1, . . . , n} is drawn at random.

Two batch regimes

|Sk | ≈ n: essentially equivalent to full gradient;
|Sk | = nb << n: mini-batching.
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Implementing batch stochastic gradient

Batch SG: wk+1 = wk − αk
1

|Sk |
∑

i∈Sk ∇fi (wk).

Hyperparameters

Stepsize/Learning rate αk .
Batch size |Sk |.

Rule of thumb (from Hardt and Recht ’22)

“Pick the largest constant value such that the method does not
diverge”.
“Pick the batch size according to your number of available processors” .
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Analyzing the behavior of Stochastic Gradient

Stochastic Gradient...Descent?
Commonly called SGD by analogy with GD...
...but SG is not a descent method in general!
It is however a descent method in expectation.

Key argument for the analysis when f ∈ C1,1
L

For Gradient Descent, the key lemma was

f (wk+1)− f (wk) ≤ ∇f (wk)
T(wk+1 − wk) +

L

2
∥wk+1 − wk∥2.

For Stochastic Gradient, the key lemma is

Eik [f (w k+1)]− f (w k) ≤ ∇f (w k)
T Eik [w k+1 − w k ] +

L

2
Eik

[
∥w k+1 − w k∥2] .

⇒ Decrease in expectation!
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Analysis in expectation

Assumptions on stochastic gradient
For every k , ik is drawn such that:

1 Eik [∇fik (wk)] = ∇f (wk):
On average, the stochastic gradient ∇fik (wk) is close to the true
gradient (unbiased estimate).

2 Varik [∥∇fik (wk)∥] ≤ σ2 with σ2 > 0:
Do not deviate too much from the mean value/the true gradient.

Uniform sampling satisfies those properties.

Under these assumptions, we can establish complexity results/convergence
rates for strongly convex/convex/nonconvex problems, that heavily depend
on the step size αk .
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Choosing the stepsize

Arguably the biggest issue in ML is tuning the learning rate, i.e.
choosing the stepsize;
We illustrate the arguments for constant and decreasing stepsize for
strongly convex functions.

Strongly convex
Assumption: f is µ-strongly convex;
Unique global minimizer: w∗, f ∗ = f (w∗).
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Choosing the stepsize (2)

Constant stepsize in the strongly convex case

If αk = α ∈ (0, 1
2µ)∀k , then

E [f (wk)− f ∗] ≤ αLσ2

4µ
+ (1 − 2αµ)k

[
αLσ2

2µ
+ f (w0)− f ∗

]
.

Convergence at a linear rate.
Reaches a neighborhood of the optimal value ⇒ effect of the noise,
illustrated by the αLσ2

µ terms.

Pro: Can take long steps.
Con: Converges to a neighborhood of f ∗.
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Choosing the stepsize (3)

A practical constant stepsize approach
In ML, common to run the algorithm with α until it stalls, then use
α/2 until it starts stalling again, then α/4, etc;
Guaranteed convergence, but at a sublinear rate:
E [f (wk)− f ∗] ≤ O

( 1
k

)
Pro: Adapts the stepsize to reach closer neighborhoods;
Con: Convergence can be slow.
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Choosing the stepsize (4)

Decreasing stepsizes for strongly convex problems

Original SG algorithm: choose {αk} such that

∞∑
k=0

αk = ∞,

∞∑
k=0

α2
k < ∞.

Typical choice: αk = c
k+1 , c > 1

µ , α0 ≤ µ
L ⇒ leads to

E [f (wk)− f ∗] ≤ O
(

1
k+1

)
.

Pro: Choice less sensitive to parameter values;
Con: Forced to decrease at every iteration.
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Stepsizes in the nonconvex case

In the nonconvex setting, we get guarantees

On E
[

1
K

∑K
i=1 ∥∇f (wk)∥2

]
for constant stepsizes;

On E
[

1∑K
i=1 αk

∑K
i=1 αk∥∇f (wk)∥2

]
for decreasing stepsizes.

⇒ Similarly to the strongly convex case, get the usual bound+residual
term, resulting in worse rates.
Ex) E

[
1
K

∑K
i=1 ∥∇f (wk)∥2

]
≤ ϵ in at most O(ϵ−4) iterations.
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Mini-batch Stochastic Gradient

Property of mini-batch SG

If |Sk | = nb ∀k , with the same stepsize, mini-batch SG requires nb less
iterations than SG.

Pros: Parallelization of the nb stochastic gradients possible, variance
improved:

Varik [∥∇fik (wk)∥2] ≤ σ2, VarSk

∥∥∥∥∥∥ 1
|Sk |

∑
i∈Sk

∇fi (wk)

∥∥∥∥∥∥
2

 ≤ σ2

nb
.

Cons: Still more expensive than SG, more sensitive to redundancies in
the data.
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Batch stochastic gradient and run variance
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Diagonal scaling

Basic SG: wk+1 = wk − αkgk .

Scaling idea
Use one stepsize per coordinate!
Equivalent to

[wk+1]j = [wk ]j − αk
[gk ]j
[vk ]j

∀j = 1, . . . , d for some vk ∈ Rd .

Key variants

[vk ]j =
√

[rk ]j + ϵ (ϵ > 0 numerical tolerance).
Adagrad: [rk ]j = [rk−1]j + [gk ]

2
j

RMSProp:
[vk ]j = β [vk−1]

2
j + (1 − β) [gk ]

2
j

for β ∈ (0, 1) (PyTorch: 0.99, JAX: 0.9).
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Momentum-based methods

Basic SG: wk+1 = wk − αkgk .

Momentum techniques

Augment gradient step with previous/momentum step.
Written as

wk+1 = wk − αkmk

where mk depends on gk and mk−1 for k ≥ 1.

Important variant: SGD with momentum

mk = βmk−1 + (1 − β)gk ,

where β ∈ [0, 1) (PyTorch: 0, JAX: 0.9).
Full batch: Variant of the Heavy-ball method.
Philosophy: Good directions accumulate, bad directions cancel out.
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Adam (Kingma, Ba ’15)

∀j = 1, . . . , d , [wk+1]j = [wk ]j − αk
[mk ]j
[vk ]j

.

mk = 1−β1
1−βk+1

1

∑k
i=0 β

k−i
1 g i .

[vk ]j =
√

1−β2
1−βk+1

2

∑k
i=0 β

k−i
2 [g i ]

2
j .

Geometric averages of stochastic gradients/their coordinates.
PyTorch/JAX/Original paper: β1 = 0.9, β2 = 0.999.
THE method of choice to train neural networks today.
Most cited optimization paper (most cited CS paper?).
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Conclusions: Stochastic optimization methods

Stochastic gradient
Motivation: Data!
Gain because of per-iteration cost.
Stepsize/Batch size can be tuned (see lab).

Main variants
Diagonal scaling (Adagrad).
Momentum (Adam).
Advice (Hardt & Recht): The β parameters should not be tuned too
much.
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