Optimization for Machine Learning Introduction and gradient descent

Clément Royer

CIMPA School "Control, Optimization and Model Reduction in Machine Learning"

February 24, 2025

 Dauphine
 PSL
 PR[AI]RIE

 Paris Artificial Intelligence Research Institute
 Paris Artificial Intelligence Research Institute

Who I am: Clément Royer

- Maître de conférences at Dauphine since 2019.
- Research topics: Optimization and applications.
- Email: clement.royer@lamsade.dauphine.fr
- Webpage: https://www.lamsade.dauphine.fr/~croyer

Repository: https://tinyurl.com/3etmd46y

Learning goals

- Have an optimization toolbox for ML;
- Know the theoretical underpinnings;
- Practical experience.

- Optimization problems in ML
- Optimization theory
- Gradient descent
- 4 Beyond gradient descent: Nonsmoothness
- 5 Beyond gradient descent: Regularization

Optimization problems in ML

- 2 Optimization theory
- 3 Gradient descent
- 4 Beyond gradient descent: Nonsmoothness
- 5 Beyond gradient descent: Regularization

- Operations research;
- Decision-making;
- Decision sciences;
- Mathematical programming;
- Mathematical optimization.
- \Rightarrow All of these can be considered as optimization.

- Operations research;
- Decision-making;
- Decision sciences;
- Mathematical programming;
- Mathematical optimization.
- \Rightarrow All of these can be considered as optimization.

My definition

The purpose of optimization is to make the best decision out of a set of alternatives.

Optimization $\not\subset$ Machine Learning

- Optimization is a mathematical tool;
- Used in many areas: Economics, Chemistry, Physics, Social sciences,...
- Appears in other branches of (applied) mathematics: Linear Algebra, PDEs, Statistics, etc.

Optimization ⊄ Machine Learning

- Optimization is a mathematical tool;
- Used in many areas: Economics, Chemistry, Physics, Social sciences,...
- Appears in other branches of (applied) mathematics: Linear Algebra, PDEs, Statistics, etc.

Machine Learning $\not\subset$ Optimization

- Optimization targets a certain problem;
- ML is not just about this problem;
- Other features of ML (data cleaning, hardware,...) will not appear in the optimization.

Formulation of an (unconstrained) optimization problem

Formulation of an (unconstrained) optimization problem

 $\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w})$

- w represents the optimization variable(s);
- d is the dimension of the problem (we will assume $d \ge 1$);
- $f(\cdot)$ is the objective/cost/loss function.

Formulation of an (unconstrained) optimization problem

 $\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w})$

- w represents the optimization variable(s);
- d is the dimension of the problem (we will assume $d \ge 1$);
- $f(\cdot)$ is the objective/cost/loss function.

Maximizing f is equivalent to minimizing -f.

Given: A dataset $\{(x_1, y_1), ..., (x_n, y_n)\}$.

- x_i is a feature vector in \mathbb{R}^d ;
- y_i is a label.

Given: A dataset
$$\{(x_1, y_1), ..., (x_n, y_n)\}$$
.

- x_i is a feature vector in \mathbb{R}^d ;
- y_i is a label.

Motivation: text classification

Using d words for classification:

• x_i represents the words contained in a text document:

$$[\mathbf{x}_i]_j = \begin{cases} 1 & \text{if word } j \text{ is in document } i, \\ 0 & \text{otherwise.} \end{cases}$$

• y_i is equal to +1 if the document addresses a certain topic of interest, to -1 otherwise.

Example: SVM Classification (2)

Learning process

- Given $\{(\mathbf{x}_i, y_i)\}_i$, discover a function $h : \mathbb{R}^d \to \mathbb{R}$ such that $h(\mathbf{x}_i) \approx y_i \ \forall i = 1, \dots, n$.
- Choose the predictor function h among a set \mathcal{H} parameterized by a vector $\boldsymbol{w} \in \mathbb{R}^d$: $\mathcal{H} = \left\{ h \mid h = h(\cdot; \boldsymbol{w}), \ \boldsymbol{w} \in \mathbb{R}^{\hat{d}} \right\}$;

Example: SVM Classification (2)

Learning process

- Given $\{(\mathbf{x}_i, y_i)\}_i$, discover a function $h : \mathbb{R}^d \to \mathbb{R}$ such that $h(\mathbf{x}_i) \approx y_i \ \forall i = 1, \dots, n$.
- Choose the predictor function h among a set \mathcal{H} parameterized by a vector $\boldsymbol{w} \in \mathbb{R}^d$: $\mathcal{H} = \left\{ h \mid h = h(\cdot; \boldsymbol{w}), \ \boldsymbol{w} \in \mathbb{R}^{\hat{d}} \right\}$;

Linear model for text classification

- We seek a hyperplane in ℝ^d separating the feature vectors associated with y_i = +1 and those associated with y_i = −1;
- This corresponds to a linear model h(x) = x^T w, and we want to choose w such that:

$$\forall i = 1, \dots, n, \qquad \begin{cases} \mathbf{x}_i^{\mathrm{T}} \mathbf{w} \geq 1 & \text{if } y_i = +1 \\ \mathbf{x}_i^{\mathrm{T}} \mathbf{w} \leq -1 & \text{if } y_i = -1. \end{cases}$$

An objective to optimize over

- Our goal: penalize values of \boldsymbol{w} for which $h(\boldsymbol{x}_i)$ does not predict y_i well enough.
- We use the hinge loss function

$$orall (h,y)\in \mathbb{R}^2, \quad \ell(h,y)=\max\left\{1-yh,0
ight\}.$$

About the hinge loss

- hy > 1 ⇒ ℓ(h, y) = 0: h and y are of the same sign, |h| > 1 so good prediction;
- hy < −1 ⇒ ℓ(h, y) > 2: h and y are of opposite sign and |h| > 1 bad prediction);
- |hy| ≤ 1 ⇒ ℓ(h, y) ∈ [0, 2]: small penalty (value of |h| makes the prediction less certain).

An optimization problem

$$\underset{\boldsymbol{w}\in\mathbb{R}^{d}}{\text{minimize}} \frac{1}{n} \sum_{i=1}^{n} \max\left\{1 - y_{i}(\boldsymbol{x}_{i}^{\mathrm{T}}\boldsymbol{w}), 0\right\}$$

An optimization problem

$$\underset{\boldsymbol{w}\in\mathbb{R}^{d}}{\text{minimize}} \frac{1}{n} \sum_{i=1}^{n} \max\left\{1 - y_{i}(\boldsymbol{x}_{i}^{\mathrm{T}} \boldsymbol{w}), 0\right\}$$

• Minimize the sum of the losses for all examples;

An optimization problem

$$\underset{\boldsymbol{w}\in\mathbb{R}^{d}}{\text{minimize}} \frac{1}{n} \sum_{i=1}^{n} \max\left\{1 - y_{i}(\boldsymbol{x}_{i}^{\mathrm{T}}\boldsymbol{w}), 0\right\} + \frac{\lambda}{2} \|\boldsymbol{w}\|_{2}^{2}.$$

for $\lambda \geq 0$.

- Minimize the sum of the losses for all examples;
- Regularizing term to promote small-norm solutions (more on that later).



Source: S. J. Wright & B. Recht, Optimization for Data Analysis, 2022.

- Red/Blue dots: data points labeled +1/-1;
- Red/Blue clouds: distribution of the text documents;
- Two linear classifiers;
- Rightmost plot: maximal-margin solution.

Typical optimization problem for ML

- **Data**, e.g. $\{x_i, y_i\}_{i=1}^n$.
- Model class $\mathcal{H} = \{ \boldsymbol{h}(\cdot; \boldsymbol{w}), \boldsymbol{w} \in \mathbb{R}^d \}$
- Loss function ℓ .

Empirical risk minimization

$$\underset{\boldsymbol{w} \in \mathbb{R}^{d}}{\text{minimize}} \underbrace{\frac{1}{n} \sum_{i=1}^{n} \ell(\boldsymbol{h}(\boldsymbol{x}_{i}, \boldsymbol{w}), \boldsymbol{y}_{i})}_{f(\boldsymbol{w})} + \lambda \Omega(\boldsymbol{w})}_{f(\boldsymbol{w})}$$

- *f*: Data-fitting term.
- Ω: Regularization term.

A few more examples

Linear regression

$$\underset{\boldsymbol{w}\in\mathbb{R}^d}{\text{minimize}} \frac{1}{2n} \|\boldsymbol{X}\boldsymbol{w} - \boldsymbol{y}\|_2^2 = \frac{1}{2n} \sum_{i=1}^n (\boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{w} - y_i)^2.$$

- Simplest data analysis task possible.
- $\mathbf{x}_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$.
- Nontrivial to solve when $n, d \gg 1$.

A few more examples

Linear regression

$$\underset{\boldsymbol{w}\in\mathbb{R}^d}{\text{minimize}} \frac{1}{2n} \|\boldsymbol{X}\boldsymbol{w} - \boldsymbol{y}\|_2^2 = \frac{1}{2n} \sum_{i=1}^n (\boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{w} - y_i)^2.$$

• Simplest data analysis task possible.

•
$$\mathbf{x}_i \in \mathbb{R}^d$$
, $y_i \in \mathbb{R}$.

• Nontrivial to solve when $n, d \gg 1$.

Alternate losses for linear regression

•
$$\ell_1$$
 loss: $\|\boldsymbol{X}\boldsymbol{w} - \boldsymbol{y}\|_1 = \sum_{i=1}^n |\boldsymbol{x}_i^{\mathrm{T}}\boldsymbol{w} - y_i|$

• Chebyshev loss:
$$\|\boldsymbol{X}\boldsymbol{w} - \boldsymbol{y}\|_{\infty} = \max_{1 \le i \le n} |\boldsymbol{x}_i^{\mathrm{T}}\boldsymbol{w} - y_i|.$$

And more!

Binary classification (using CNNs)

$$\underset{\boldsymbol{w} \in \mathbb{R}^d}{\text{minimize}} \frac{1}{n} \sum_{i=1}^n \log(1 + \exp(-y_i \text{CNN}(\boldsymbol{x}_i)) + \lambda \|\boldsymbol{w}\|_1.$$

- Cross-entropy/Logistic loss.
- $\mathbf{x}_i \in \mathbb{R}^{d_0 \times d_0 \times c_0}$ (image), $y_i \in \{-1, 1\}$ (class).
- CNN : $\boldsymbol{x}_i = \boldsymbol{z}^{(0)} \mapsto \boldsymbol{z}^{(1)} \mapsto \cdots \mapsto \boldsymbol{z}^{(L)}$, where

$$\boldsymbol{z}_{ijk}^{(l)} = \phi \left(\sum_{m,n,p} \boldsymbol{W}_{m,n,p,k}^{(l-1)} \boldsymbol{z}_{i-m,j-n,p}^{(l-1)} + \boldsymbol{b}_{k}^{(l-1)} \right)$$

 $\phi(\mathbf{z}) = [\max(\mathbf{z}_i, 0)]_i$ (ReLU activation).

• \boldsymbol{w} concatenates all $(\boldsymbol{W}^{\prime}, \boldsymbol{b}^{\prime})_{I=0...(L-1)}$.

Generic form: minimize_{$\boldsymbol{w} \in \mathbb{R}^d$} $f(\boldsymbol{w}) + \lambda \Omega(\boldsymbol{w})$.

Common traits

- Defined based on data.
- Use continuous functions (linear, ReLU, log/exp).

Distinctive aspects

- Model complexity/Number of parameters.
- Nonlinearity of operations.
- Regularization/Lack thereof.

Optimization problems in ML

- Optimization theory
 - 3 Gradient descent
 - Beyond gradient descent: Nonsmoothness
- 5 Beyond gradient descent: Regularization

 $\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w})$

- $\operatorname{argmin}_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w})$: Set of solutions (can be empty).
- $\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w})$: Optimal value (can be infinite).

 $\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w})$

- $\operatorname{argmin}_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w})$: Set of solutions (can be empty).
- $\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w})$: Optimal value (can be infinite).

Global and local minima

- \boldsymbol{w}^* is a solution or a global minimum of f if $f(\boldsymbol{w}^*) \leq f(\boldsymbol{w}) \ \forall \boldsymbol{w} \in \mathbb{R}^d$.
- \boldsymbol{w}^* is a local minimum of f if $f(\boldsymbol{w}^*) \leq f(\boldsymbol{w}) \ \forall \boldsymbol{w}, \| \boldsymbol{w} - \boldsymbol{w}^* \|_2 \leq \epsilon$ for some $\epsilon > 0$.

 $\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w})$

- $\operatorname{argmin}_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w})$: Set of solutions (can be empty).
- $\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w})$: Optimal value (can be infinite).

Global and local minima

- \boldsymbol{w}^* is a solution or a global minimum of f if $f(\boldsymbol{w}^*) \leq f(\boldsymbol{w}) \ \forall \boldsymbol{w} \in \mathbb{R}^d$.
- \boldsymbol{w}^* is a local minimum of f if $f(\boldsymbol{w}^*) \leq f(\boldsymbol{w}) \ \forall \boldsymbol{w}, \| \boldsymbol{w} - \boldsymbol{w}^* \|_2 \leq \epsilon$ for some $\epsilon > 0$.
- Finding global/local minima is hard in general!
- Regularity of *f* is needed.

Class of \mathcal{C}^1 functions

 $f: \mathbb{R}^d \to \mathbb{R}$ is continuously differentiable/ \mathcal{C}^1 if

- For any $\boldsymbol{w} \in \mathbb{R}^d$, the gradient $\nabla f(\boldsymbol{w})$ exists.
- $\nabla f : \mathbb{R}^d \to \mathbb{R}^d$ is continuous.

 $\Rightarrow f(\mathbf{v}) \approx f(\mathbf{w}) + \nabla f(\mathbf{w})^{\mathrm{T}}(\mathbf{v} - \mathbf{w}) \text{ for } \mathbf{v} \text{ close to } \mathbf{w}.$

Class of \mathcal{C}^1 functions

- $f: \mathbb{R}^d
 ightarrow \mathbb{R}$ is continuously differentiable/ \mathcal{C}^1 if
 - For any $\boldsymbol{w} \in \mathbb{R}^d$, the gradient $\nabla f(\boldsymbol{w})$ exists.
 - $\nabla f : \mathbb{R}^d \to \mathbb{R}^d$ is continuous.

 $\Rightarrow f(\mathbf{v}) \approx f(\mathbf{w}) + \nabla f(\mathbf{w})^{\mathrm{T}}(\mathbf{v} - \mathbf{w}) \text{ for } \mathbf{v} \text{ close to } \mathbf{w}.$

Class of $\mathcal{C}_{L}^{1,1}$ functions (L > 0)

f is $\mathcal{C}_{L}^{1,1}$ if it is \mathcal{C}^{1} and ∇f is L-Lipschitz continuous, i.e.

 $\forall (\mathbf{v}, \mathbf{w}) \in (\mathbb{R}^d)^2, \qquad \| \nabla f(\mathbf{v}) - \nabla f(\mathbf{w}) \| \leq L \| \mathbf{v} - \mathbf{w} \|.$

Ex) Linear regression, logistic regression, etc.

Smoothness and optimality conditions

Problem: minimize $_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w}), fC^1.$

First-order necessary condition

If w^* is a local minimum of the problem, then

$$\|\nabla f(\boldsymbol{w}^*)\|_2 = 0.$$

- This condition is only necessary;
- A point such that $\|\nabla f(\boldsymbol{w}^*)\| = 0$ can also be a local maximum or a saddle point.

Smoothness and optimality conditions

Problem: minimize $_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w})$, $f \mathcal{C}^1$.

First-order necessary condition

If w^* is a local minimum of the problem, then

$$\|\nabla f(\boldsymbol{w}^*)\|_2 = 0.$$

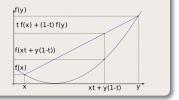
- This condition is only necessary;
- A point such that $\|\nabla f(\boldsymbol{w}^*)\| = 0$ can also be a local maximum or a saddle point.

Picture from (Wright and Ma '22).

Generic definition (+Wikicommons picture)

A function $f : \mathbb{R}^d \to \mathbb{R}$ is **convex** if

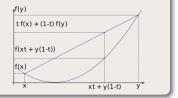
 $\begin{aligned} \forall (\boldsymbol{u}, \boldsymbol{v}) \in (\mathbb{R}^d)^2, \ \forall t \in [0, 1], \\ f(t\boldsymbol{u} + (1-t)\boldsymbol{v}) \leq t f(\boldsymbol{u}) + (1-t) f(\boldsymbol{v}). \end{aligned}$



Generic definition (+Wikicommons picture)

A function $f : \mathbb{R}^d \to \mathbb{R}$ is **convex** if

 $\forall (\boldsymbol{u}, \boldsymbol{v}) \in (\mathbb{R}^d)^2, \ \forall t \in [0, 1], \\ f(t\boldsymbol{u} + (1-t)\boldsymbol{v}) \leq t f(\boldsymbol{u}) + (1-t) f(\boldsymbol{v}).$



Examples in ML

- Linear function $\boldsymbol{w} \mapsto \boldsymbol{a}^{\mathrm{T}} \boldsymbol{w} + b$
- Norms $||\boldsymbol{w}||_2$, $||\boldsymbol{w}||_1$, $||\boldsymbol{w}||_2^2$.
- Logistic loss.

Convexity and gradient

A continuously differentiable function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if and only if

$$orall oldsymbol{u},oldsymbol{v}\in\mathbb{R}^d,\quad f(oldsymbol{v})\geq f(oldsymbol{u})+
abla f(oldsymbol{u})^{\mathrm{T}}(oldsymbol{v}-oldsymbol{u}).$$

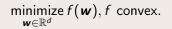
Convexity and gradient

A continuously differentiable function $f:\mathbb{R}^d
ightarrow \mathbb{R}$ is convex if and only if

$$orall oldsymbol{u},oldsymbol{v}\in\mathbb{R}^d, \quad f(oldsymbol{v})\geq f(oldsymbol{u})+
abla f(oldsymbol{u})^{\mathrm{T}}(oldsymbol{v}-oldsymbol{u}).$$

A key inequality in optimization.

Convex optimization problem



Convex optimization problem

$$\underset{\boldsymbol{w}\in\mathbb{R}^d}{\text{minimize } f(\boldsymbol{w}), f \text{ convex.}}$$

Theorem

Every local minimum of f is a global minimum.

Convex optimization problem

$$\underset{\boldsymbol{w}\in\mathbb{R}^d}{\text{minimize } f(\boldsymbol{w}), f \text{ convex.}}$$

Theorem

Every local minimum of f is a global minimum.

Corollary

If f is \mathcal{C}^1 ,

$$\underset{\boldsymbol{w}\in\mathbb{R}^d}{\operatorname{argmin}} f(\boldsymbol{w}) = \left\{ \begin{array}{c} \bar{\boldsymbol{w}} \mid \|\nabla f(\bar{\boldsymbol{w}})\|_2 = 0 \end{array} \right\}.$$

Any point with a zero gradient is a global minimum!

Definition

A function $f : \mathbb{R}^d \to \mathbb{R}$ in \mathcal{C}^1 is μ -strongly convex (or strongly convex of modulus $\mu > 0$) if for all $(\boldsymbol{u}, \boldsymbol{v}) \in (\mathbb{R}^d)^2$ and $t \in [0, 1]$,

$$f(t \boldsymbol{u} + (1-t)\boldsymbol{v}) \leq t f(\boldsymbol{u}) + (1-t)f(\boldsymbol{v}) - \frac{\mu}{2}t(1-t)\|\boldsymbol{v} - \boldsymbol{u}\|_2^2.$$

Definition

A function $f : \mathbb{R}^d \to \mathbb{R}$ in C^1 is μ -strongly convex (or strongly convex of modulus $\mu > 0$) if for all $(\boldsymbol{u}, \boldsymbol{v}) \in (\mathbb{R}^d)^2$ and $t \in [0, 1]$,

$$f(t\boldsymbol{u}+(1-t)\boldsymbol{v}) \leq t f(\boldsymbol{u})+(1-t)f(\boldsymbol{v})-\frac{\mu}{2}t(1-t)\|\boldsymbol{v}-\boldsymbol{u}\|_2^2.$$

Theorem

Any strongly convex function in C^1 has a unique global minimizer.

Gradient and strong convexity

Let $f : \mathbb{R}^d \to \mathbb{R}, f \in \mathcal{C}^1$. Then,

$$orall oldsymbol{u},oldsymbol{v}\in\mathbb{R}^d, \quad f(oldsymbol{v})\geq f(oldsymbol{u})+
abla f(oldsymbol{u})^{ ext{T}}(oldsymbol{v}-oldsymbol{u})+rac{\mu}{2}\|oldsymbol{v}-oldsymbol{u}\|_2^2.$$

- Optimization problems in ML
- 2 Optimization theory
- Gradient descent
 - Beyond gradient descent: Nonsmoothness
- 5 Beyond gradient descent: Regularization

$\min_{\boldsymbol{w}\in\mathbb{R}^d} f(\boldsymbol{w}).$

Assumptions: f smooth (C^1), bounded below.

$\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w}).$

Assumptions: f smooth (C^1), bounded below.

Key properties

- Smoothness: We will exploit the gradient of f.
- In presence of convexity, get better guarantees.

$$\min_{\boldsymbol{w}\in\mathbb{R}^d} f(\boldsymbol{w}), \quad f\in\mathcal{C}_L^{1,1}.$$

Consider any $\boldsymbol{w} \in \mathbb{R}^d$. Then, one of the two assertions below holds:

- Either \boldsymbol{w} is a local minimum and $\nabla f(\boldsymbol{w}) = 0$;
- **2** Or the function f decreases locally from \boldsymbol{w} in the direction of $-\nabla f(\boldsymbol{w})$.

$$\min_{\boldsymbol{w}\in\mathbb{R}^d} f(\boldsymbol{w}), \quad f\in\mathcal{C}_L^{1,1}.$$

Consider any $\boldsymbol{w} \in \mathbb{R}^d$. Then, one of the two assertions below holds:

- Either \boldsymbol{w} is a local minimum and $\nabla f(\boldsymbol{w}) = 0$;
- **2** Or the function f decreases locally from \boldsymbol{w} in the direction of $-\nabla f(\boldsymbol{w})$.

Key argument (Taylor expansion)

$$f(oldsymbol{v}) pprox f(oldsymbol{w}) +
abla f(oldsymbol{w})^{\mathrm{T}}(oldsymbol{v} - oldsymbol{w}) \quad ext{for }oldsymbol{v} ext{ close to }oldsymbol{w}.$$

Inputs: $\boldsymbol{w}_0 \in \mathbb{R}^d$, $\alpha_0 > 0$, k = 0.

• Evaluate $\nabla f(\boldsymbol{w}_k)$.

2 Set
$$\boldsymbol{w}_{k+1} = \boldsymbol{w}_k - \alpha_k \nabla f(\boldsymbol{w}_k)$$
.

Increment k by 1 and go to Step 1.

Inputs: $\boldsymbol{w}_0 \in \mathbb{R}^d$, $\alpha_0 > 0$, k = 0.

• Evaluate $\nabla f(\boldsymbol{w}_k)$.

2 Set
$$\boldsymbol{w}_{k+1} = \boldsymbol{w}_k - \alpha_k \nabla f(\boldsymbol{w}_k)$$
.

Increment k by 1 and go to Step 1.

Stopping criterion

- Convergence criterion (optional): Stop when $\|\nabla f(\boldsymbol{w}_k)\|_2 < \varepsilon$;
- Budget criterion (optional): Stop when $k = k_{max}$.

Constant stepsize

Set $\alpha_k = \alpha > 0$ for all k.

- Must be chosen carefully (see lab session).
- Can be set according to properties of f (see theory).

Decreasing stepsize

Choose α_k such that $\alpha_k \to 0$.

- Guarantees that f will decrease eventually (for small stepsizes);
- But steps get smaller and smaller.

What's done in optimization

- Line search: At every iteration, α_k is obtained by *backtracking* on a subset of values (ex: 1, ¹/₂, ¹/₄, ¹/₈, ...,).
- The chosen value must satisfy certain conditions (ex: decreasing the function value).

What's done in optimization for ML

- Start with a fixed value until the method starts stalling (gradient gets small);
- Decrease the step size, then repeat.

Analyzing gradient descent

$$\min_{\boldsymbol{x}\in\mathbb{R}^d} f(\boldsymbol{x}), \qquad f\in\mathcal{C}_L^{1,1}.$$

Gradient descent

• Iteration: $\boldsymbol{w}_{k+1} = \boldsymbol{w}_k - \alpha_k \nabla f(\boldsymbol{w}_k)$, stop if $\nabla f(\boldsymbol{w}_k) = 0$.

• Typical choice in theory :
$$\alpha_k = \frac{1}{L}$$
.

Theoretical analysis

- Convergence: Show that $\|\nabla f(\boldsymbol{w}_k)\|_2 \to 0$;
- Convergence rate: Look at how fast $\|\nabla f(\boldsymbol{w}_k)\|_2$ decreases.
- Worst-case complexity: Equivalent to convergence rate, measures the cost of satisfying ||∇f(w_k)||₂ ≤ ε for ε > 0.

Convergence rates: Nonconvex case

Theorem

If
$$f \in \mathcal{C}_L^{1,1}$$
 and $\alpha_k = \frac{1}{L}$,

$$\min_{0 \le k \le K-1} \|\nabla f(\boldsymbol{w}_k)\|_2 \le \mathcal{O}\left(\frac{1}{\sqrt{K}}\right)$$

after $K \ge 1$ iterations.

Convergence rates: Nonconvex case

Theorem

If
$$f \in \mathcal{C}_L^{1,1}$$
 and $\alpha_k = \frac{1}{L}$,

$$\min_{0 \le k \le K-1} \|\nabla f(\boldsymbol{w}_k)\|_2 \le \mathcal{O}\left(\frac{1}{\sqrt{\kappa}}\right)$$

after $K \ge 1$ iterations.

A key inequality for the proof

$$f(\mathbf{v},\mathbf{w}), \quad f(\mathbf{v}) \leq f(\mathbf{w}) +
abla f(\mathbf{w})^{\mathrm{T}}(\mathbf{v}-\mathbf{w}) + rac{L}{2} \|\mathbf{v}-\mathbf{w}\|_{2}^{2}.$$

• Another key inequality in optimization.

• With $\mathbf{v} = \mathbf{w}_{k+1}$ and $\mathbf{w} = \mathbf{w}_k$, gives decrease in $\mathcal{O}(\|\nabla f(\mathbf{w}_k)\|_2^2)$.

Convergence rates (convex case)

Theorem

Let
$$f \in C_L^{1,1}$$
 be convex and $\alpha_k = \frac{1}{L}$ in GD. Then, for $K \ge 1$,
If f is convex,

$$f(\boldsymbol{w}_{K}) - f^{*} \leq \mathcal{O}\left(rac{1}{K}
ight).$$

2 If f is μ -strongly convex,

$$f(\boldsymbol{w}_{K}) - f^{*} \leq \mathcal{O}\left(\left(1 - \frac{\mu}{L}\right)^{K}\right).$$

Convergence rates (convex case)

Theorem

Let
$$f \in C_L^{1,1}$$
 be convex and $\alpha_k = \frac{1}{L}$ in GD. Then, for $K \ge 1$,
If f is convex,

$$f(\boldsymbol{w}_{K}) - f^{*} \leq \mathcal{O}\left(rac{1}{K}
ight).$$

2 If f is μ -strongly convex,

$$f(\boldsymbol{w}_{K}) - f^{*} \leq \mathcal{O}\left(\left(1 - \frac{\mu}{L}\right)^{K}\right).$$

Interpretation

NonconvexConvexStrongly convex
$$\mathcal{O}(1/\sqrt{K})$$
 $\mathcal{O}(1/K)$ $\mathcal{O}(t^K)$

Stronger guarantees for convex problems at lower cost.

A versatile algorithm

- Applies as long as f has a gradient.
- Various implementations (stepsizes).
- Theoretical guarantees for convex/nonconvex problems.

Going further

- What if the function does not have a gradient?
- What about the problem structure?

- Optimization problems in ML
- 2 Optimization theory
- 3 Gradient descent
- 4 Beyond gradient descent: Nonsmoothness
- 5 Beyond gradient descent: Regularization

The linear SVM problem

$$\min_{\boldsymbol{w}\in\mathbb{R}^d}\frac{1}{n}\sum_{i=1}^n\max\{1-y_i\boldsymbol{x}_i^{\mathrm{T}}\boldsymbol{w},0\}+\frac{\lambda}{2}\|\boldsymbol{w}\|_2^2.$$

- The hinge loss is not continuously differentiable!
- But it is continuous and convex...

Definition

A function is called **nonsmooth** if it is not differentiable everywhere. NB: Nonsmooth \neq Discontinuous.

Example of nonsmooth functions

- $w \mapsto |w|$ from \mathbb{R} to \mathbb{R} ;
- $w \mapsto ||w||_1$ from \mathbb{R}^d to \mathbb{R} ;
- ReLU: $w \mapsto \max\{w, 0\}$ from \mathbb{R}^d to \mathbb{R} .

Subgradients for nonsmooth convex problems

Definition

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a convex function. A vector $g \in \mathbb{R}^n$ is called a *subgradient* of f at $w \in \mathbb{R}^n$ if

$$\forall z \in \mathbb{R}^n, \qquad f(z) \geq f(w) + g^{\mathrm{T}}(z - w).$$

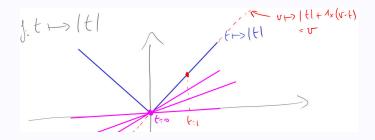
The set of all subgradients of f at w is called the *subdifferential* of f at w, and denoted by $\partial f(w)$.

- If f differentiable at \boldsymbol{w} , $\partial f(\boldsymbol{w}) = \{\nabla f(\boldsymbol{w})\};$
- $0 \in \partial f(w) \Leftrightarrow w$ minimum of f!

Example: Let $f : \mathbb{R} \to \mathbb{R}$, f(w) = |w|.

$$\partial f(w) = \begin{cases} -1 & \text{if } w < 0 \\ 1 & \text{if } w > 0 \\ [-1,1] & \text{if } w = 0. \end{cases}$$

Subdifferential: Illustration



$$\partial(|\cdot|)(t) \ = \ \left\{ egin{array}{cc} -1 & ext{if} \ t < 0 \ 1 & ext{if} \ t > 0 \ [-1,1] & ext{if} \ t = 0. \end{array}
ight.$$

Subgradient method

Iteration for nonsmooth convex f

$$\boldsymbol{w}_{k+1} = \boldsymbol{w}_k - \alpha_k \boldsymbol{g}_k, \qquad \boldsymbol{g}_k \in \partial f(\boldsymbol{w}_k).$$

- Depends on the subgradient: a subgradient can be a direction of increase!
- α_k typically constant or decreasing.

Subgradient method

Iteration for nonsmooth convex f

$$\boldsymbol{w}_{k+1} = \boldsymbol{w}_k - \alpha_k \boldsymbol{g}_k, \qquad \boldsymbol{g}_k \in \partial f(\boldsymbol{w}_k).$$

- Depends on the subgradient: a subgradient can be a direction of increase!
- α_k typically constant or decreasing.

Guarantees

Let
$$\bar{\boldsymbol{w}}_{K} = \frac{1}{\sum_{k=0}^{K-1}} \sum_{k=0}^{K-1} \alpha_{k} \boldsymbol{w}_{k}$$
. Then,

$$f(oldsymbol{ar{w}}_{K}) - f^* \leq \mathcal{O}\left(rac{1}{\sqrt{K}}
ight).$$

Worst rate than gradient descent but a lot more general!

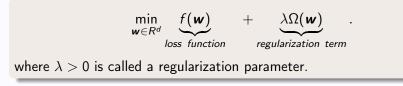
- Optimization problems in ML
- 2 Optimization theory
- 3 Gradient descent
- Beyond gradient descent: Nonsmoothness
- 5 Beyond gradient descent: Regularization

The linear SVM problem

$$\min_{\boldsymbol{w}\in\mathbb{R}^d}\frac{1}{n}\sum_{i=1}^n\max\{1-y_i\boldsymbol{x}_i^{\mathrm{T}}\boldsymbol{w},0\}+\frac{\lambda}{2}\|\boldsymbol{w}\|_2^2.$$

- The problem is regularized (by a data-independent term);
- The purpose of regularization is to enforce specific properties/structure on a solution.

General form of a regularized problem



Example: Ridge regularization

$$\min_{\boldsymbol{w}\in\mathbb{R}^d}f(\boldsymbol{w})+\frac{\lambda}{2}\|\boldsymbol{w}\|_2^2.$$

Interpretations:

- Equivalent to enforcing a constraint on $\|\boldsymbol{w}\|_2^2 = \sum_{i=1}^d w_i^2$;
- Penalizes ws with large components;
- The variance of the solution w. r. t. the data is reduced;
- The objective function is strongly convex.

Setup: Composite optimization

$$\underset{\boldsymbol{w}\in\mathbb{R}^d}{\text{minimize } f(\boldsymbol{w}) + \lambda \Omega(\boldsymbol{w}).}$$

- $f \in C^{1,1}$;
- Ω convex but nonsmooth.

Proximal approach

- Classical optimization paradigm: replace a problem by a sequence of easier (sub)problems;
- Exploit smoothness of f, use the structure of Ω to solve the subproblems;
- Those should be solvable efficiently.

Proximal Gradient Descent (PGD)

Iteration of PGD

$$\boldsymbol{w}_{k+1} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{R}^d} \left\{ f(\boldsymbol{w}_k) + \nabla f(\boldsymbol{w}_k)^{\mathrm{T}}(\boldsymbol{w} - \boldsymbol{w}_k) + \frac{1}{2\alpha_k} \|\boldsymbol{w} - \boldsymbol{w}_k\|_2^2 + \lambda \Omega(\boldsymbol{w}) \right\}.$$

- If $\Omega \equiv 0$, the solution is $\boldsymbol{w}_{k+1} = \boldsymbol{w}_k \alpha_k \nabla f(\boldsymbol{w}_k)$: This is the Gradient Descent iteration!
- In general, the cost of an iteration is 1 gradient call + 1 proximal subproblem solve.

Properties

- Complexity bounds exist for nonconvex and mostly for convex *f*;
- Stepsize choices can be designed based on those for GD.

Illustration: ISTA

Sparsity-inducing regularizers

- Want solution $\boldsymbol{w} \in \mathbb{R}^d$ with few nonzero components.
- For linear models, amounts to feature selection.

A better approach: LASSO regularization

LASSO=Least Absolute Shrinkage and Selection Operator

$$\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_1, \quad \|\boldsymbol{w}\|_1 = \sum_{i=1}^d |w_i|.$$

- $\|\cdot\|_1$ is convex, continuous, and a norm.
- Nonsmooth but subgradients can be computed.
- No close form even for linear regression \Rightarrow Proximal gradient!

Context

- Solve minimize $_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_1$.
- Common problem in image processing: Proximal gradient=ISTA.
- Explicit form of the proximal subproblem solution.

Context

- Solve minimize $_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w}) + \lambda \| \boldsymbol{w} \|_1$.
- Common problem in image processing: Proximal gradient=ISTA.
- Explicit form of the proximal subproblem solution.

Iteration of ISTA: Iterative Soft-Thresholding Algorithm

Define \boldsymbol{w}_{k+1} componentwise: for any $i \in \{1, \ldots, d\}$,

$$[\boldsymbol{w}_{k+1}]_i = \begin{cases} [\boldsymbol{w}_k - \alpha_k \nabla f(\boldsymbol{w}_k)]_i + \alpha_k \lambda & \text{if } [\boldsymbol{w}_k - \alpha_k \nabla f(\boldsymbol{w}_k)]_i < -\alpha_k \lambda \\ [\boldsymbol{w}_k - \alpha_k \nabla f(\boldsymbol{w}_k)]_i - \alpha_k \lambda & \text{if } [\boldsymbol{w}_k - \alpha_k \nabla f(\boldsymbol{w}_k)]_i > \alpha_k \lambda \\ 0 & \text{if } [\boldsymbol{w}_k - \alpha_k \nabla f(\boldsymbol{w}_k)]_i \in [-\alpha_k \lambda, \alpha_k \lambda]. \end{cases}$$

Optimization problems in ML

- Common feature: Depend on data.
- Distinctive features: Convexity, smoothness, regularization.

Gradient descent

- The basic block for optimization.
- Applies to convex and nonconvex functions.
- Some freedom in the implementation (see lab session).

Beyond gradient descent

- Nonsmoothness⇒ Subgradient methods!
- Regularization ⇒ Proximal methods!
- Data dependency? \Rightarrow See next lecture.

Textbooks:

• A. Beck, *First-order methods in optimization*, MOS-SIAM Series on Optimization, 2017.

 \Rightarrow *Chapter 10* is related to proximal methods, and contains many examples of explicit proximal step calculations.

- J. Wright and Y. Ma, High-Dimensional Data Analysis with Low-Dimensional Models: Principles, Com- putation, and Applications, Cambridge University Press, 2022.
 ⇒ Numerous applications, freely available online.
- S. J. Wright and B. Recht, *Optimization for Data Analysis*, Cambridge University Press, 2022.
 - \Rightarrow Textbook with full analysis for gradient descent.