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About the instructor

Who I am: Clément Royer
Maître de conférences at Dauphine since 2019.
Research topics: Optimization and applications.
Email: clement.royer@lamsade.dauphine.fr
Webpage: https://www.lamsade.dauphine.fr/∼croyer
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About these lectures

Repository:
https://tinyurl.com/3etmd46y

Learning goals
Have an optimization toolbox for ML;
Know the theoretical underpinnings;
Practical experience.
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What’s optimization?

Operations research;
Decision-making;
Decision sciences;
Mathematical programming;
Mathematical optimization.

⇒ All of these can be considered as optimization.

My definition
The purpose of optimization is to make the best decision out of a set of

alternatives.
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A warning

Optimization ̸⊂ Machine Learning
Optimization is a mathematical tool;
Used in many areas: Economics, Chemistry, Physics, Social sciences,...
Appears in other branches of (applied) mathematics: Linear Algebra,
PDEs, Statistics, etc.

Machine Learning ̸⊂ Optimization
Optimization targets a certain problem;
ML is not just about this problem;
Other features of ML (data cleaning, hardware,...) will not appear in
the optimization.
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Formulation of an (unconstrained) optimization problem

minimize
w∈Rd

f (w)

w represents the optimization variable(s);
d is the dimension of the problem (we will assume d ≥ 1);
f (·) is the objective/cost/loss function.

Maximizing f is equivalent to minimizing −f .
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Example: SVM Classification

Given: A dataset {(x1, y1), . . . , (xn, yn)}.
x i is a feature vector in Rd ;
yi is a label.

Motivation: text classification
Using d words for classification:

x i represents the words contained in a text document:

[x i ]j =

{
1 if word j is in document i ,
0 otherwise.

yi is equal to +1 if the document addresses a certain topic of interest,
to −1 otherwise.
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Example: SVM Classification (2)

Learning process

Given {(x i , yi )}i , discover a function h : Rd → R such that
h(x i ) ≈ yi ∀i = 1, . . . , n.
Choose the predictor function h among a set H parameterized by a
vector w ∈ Rd : H =

{
h | h = h(·;w), w ∈ Rd̂

}
;

Linear model for text classification

We seek a hyperplane in Rd separating the feature vectors associated
with yi = +1 and those associated with yi = −1;
This corresponds to a linear model h(x) = xTw , and we want to
choose w such that:

∀i = 1, . . . , n,
{

xT
i w ≥ 1 if yi = +1

xT
i w ≤ −1 if yi = −1.
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Example: SVM Classification (3)

An objective to optimize over

Our goal: penalize values of w for which h(x i ) does not predict yi well
enough.
We use the hinge loss function

∀(h, y) ∈ R2, ℓ(h, y) = max {1 − yh, 0} .

About the hinge loss

hy > 1 ⇒ ℓ(h, y) = 0: h and y are of the same sign, |h| > 1 so good
prediction;
hy < −1 ⇒ ℓ(h, y) > 2: h and y are of opposite sign and |h| > 1 bad
prediction);
|hy | ≤ 1 ⇒ ℓ(h, y) ∈ [0, 2]: small penalty (value of |h| makes the
prediction less certain).
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Example: SVM Classification (4)

An optimization problem

minimize
w∈Rd

1
n

n∑
i=1

max
{
1 − yi (xT

i w), 0
}

+
λ

2
∥w∥2

2

.

for λ ≥ 0.

Minimize the sum of the losses for all examples;
Regularizing term to promote small-norm solutions (more on that
later).
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Example: SVM Classification (4)

Source: S. J. Wright & B. Recht, Optimization for Data Analysis, 2022.

Red/Blue dots: data points labeled +1/-1;
Red/Blue clouds: distribution of the text documents;
Two linear classifiers;
Rightmost plot: maximal-margin solution.
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Typical optimization problem for ML

Data, e.g. {x i , y i}ni=1.
Model class H = {h(·;w),w ∈ Rd}
Loss function ℓ.

Empirical risk minimization

minimize
w∈Rd

1
n

n∑
i=1

ℓ(h(x i ,w), y i )︸ ︷︷ ︸
f (w)

+λΩ(w)

f : Data-fitting term.
Ω: Regularization term.
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A few more examples

Linear regression

minimize
w∈Rd

1
2n

∥Xw − y∥2
2 =

1
2n

n∑
i=1

(xT
i w − yi )

2.

Simplest data analysis task possible.
x i ∈ Rd , yi ∈ R.
Nontrivial to solve when n, d ≫ 1.

Alternate losses for linear regression

ℓ1 loss: ∥Xw − y∥1 =
∑n

i=1 |xT
i w − yi |

Chebyshev loss: ∥Xw − y∥∞ = max1≤i≤n |xT
i w − yi |.

And more!
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A few more examples (’ed)

Binary classification (using CNNs)

minimize
w∈Rd

1
n

n∑
i=1

log(1 + exp(−yiCNN(x i )) + λ∥w∥1.

Cross-entropy/Logistic loss.
x i ∈ Rd0×d0×c0 (image), yi ∈ {−1, 1} (class).
CNN : x i = z (0) 7→ z (1) 7→ · · · 7→ z (L), where

z (l)
ijk = ϕ

(∑
m,n,p

W (l−1)
m,n,p,kz

(l−1)
i−m,j−n,p + b(l−1)

k

)
.

ϕ(z) = [max(z i , 0)]i (ReLU activation).
w concatenates all (W l ,bl)l=0...(L−1).

C. W. Royer Optimization for ML CIMPA 16



Takeaways

Generic form: minimizew∈Rd f (w) + λΩ(w).

Common traits
Defined based on data.
Use continuous functions (linear, ReLU, log/exp).

Distinctive aspects

Model complexity/Number of parameters.
Nonlinearity of operations.
Regularization/Lack thereof.
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Outline
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4 Beyond gradient descent: Nonsmoothness

5 Beyond gradient descent: Regularization
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Local and global solutions

minimize
w∈Rd

f (w)

argminw∈Rd f (w): Set of solutions (can be empty).
minw∈Rd f (w): Optimal value (can be infinite).

Global and local minima
w∗ is a solution or a global minimum of f if
f (w∗) ≤ f (w) ∀w ∈ Rd .
w∗ is a local minimum of f if
f (w∗) ≤ f (w) ∀w , ∥w − w∗∥2 ≤ ϵ for some ϵ > 0.

Finding global/local minima is hard in general!
Regularity of f is needed.
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First notion of regularity: Smoothness

Class of C1 functions

f : Rd → R is continuously differentiable/C1 if
For any w ∈ Rd , the gradient ∇f (w) exists.
∇f : Rd → Rd is continuous.

⇒ f (v) ≈ f (w) +∇f (w)T(v − w) for v close to w .

Class of C1,1
L functions (L > 0)

f is C1,1
L if it is C1 and ∇f is L-Lipschitz continuous, i.e.

∀(v ,w) ∈ (Rd)2, ∥∇f (v)−∇f (w)∥ ≤ L∥v − w∥.

Ex) Linear regression, logistic regression, etc.
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Smoothness and optimality conditions
Problem: minimizew∈Rd f (w), f C1.

First-order necessary condition
If w∗ is a local minimum of the problem, then

∥∇f (w∗)∥2 = 0.

This condition is only necessary;
A point such that ∥∇f (w∗)∥ = 0 can also be a local maximum or a
saddle point.

Picture from (Wright and Ma ’22).
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Another notion of regularity: Convexity

Generic definition (+Wikicommons picture)

A function f : Rd → R is convex if

∀(u, v) ∈ (Rd)2, ∀t ∈ [0, 1],
f (tu + (1 − t)v) ≤ t f (u) + (1 − t) f (v).

Examples in ML

Linear function w 7→ aTw + b

Norms ∥w∥2, ∥w∥1, ∥w∥2
2.

Logistic loss.
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Smooth convex functions

Convexity and gradient

A continuously differentiable function f : Rd → R is convex if and only if

∀u, v ∈ Rd , f (v) ≥ f (u) +∇f (u)T(v − u).

A key inequality in optimization.

C. W. Royer Optimization for ML CIMPA 23



Smooth convex functions

Convexity and gradient

A continuously differentiable function f : Rd → R is convex if and only if

∀u, v ∈ Rd , f (v) ≥ f (u) +∇f (u)T(v − u).

A key inequality in optimization.

C. W. Royer Optimization for ML CIMPA 23



Convex optimization problem

minimize
w∈Rd

f (w), f convex.

Theorem
Every local minimum of f is a global minimum.

Corollary

If f is C1,
argmin
w∈Rd

f (w) = { w̄ | ∥∇f (w̄)∥2 = 0 } .

Any point with a zero gradient is a global minimum!
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Strong convexity

Definition

A function f : Rd → R in C1 is µ-strongly convex (or strongly convex of
modulus µ > 0) if for all (u, v) ∈ (Rd)2 and t ∈ [0, 1],

f (tu + (1 − t)v) ≤ t f (u) + (1 − t)f (v)−µ

2
t(1 − t)∥v − u∥2

2.

Theorem

Any strongly convex function in C1 has a unique global minimizer.

Gradient and strong convexity

Let f : Rd → R, f ∈ C1. Then,

∀u, v ∈ Rd , f (v) ≥ f (u) +∇f (u)T(v − u)+
µ

2
∥v − u∥2

2.

C. W. Royer Optimization for ML CIMPA 25



Strong convexity

Definition

A function f : Rd → R in C1 is µ-strongly convex (or strongly convex of
modulus µ > 0) if for all (u, v) ∈ (Rd)2 and t ∈ [0, 1],

f (tu + (1 − t)v) ≤ t f (u) + (1 − t)f (v)−µ

2
t(1 − t)∥v − u∥2

2.

Theorem

Any strongly convex function in C1 has a unique global minimizer.

Gradient and strong convexity

Let f : Rd → R, f ∈ C1. Then,

∀u, v ∈ Rd , f (v) ≥ f (u) +∇f (u)T(v − u)+
µ

2
∥v − u∥2

2.

C. W. Royer Optimization for ML CIMPA 25



Outline

1 Optimization problems in ML

2 Optimization theory

3 Gradient descent

4 Beyond gradient descent: Nonsmoothness

5 Beyond gradient descent: Regularization

C. W. Royer Optimization for ML CIMPA 26



General optimization problem

minimize
w∈Rd

f (w).

Assumptions: f smooth (C1), bounded below.

Key properties
Smoothness: We will exploit the gradient of f .
In presence of convexity, get better guarantees.

C. W. Royer Optimization for ML CIMPA 27



General optimization problem

minimize
w∈Rd

f (w).

Assumptions: f smooth (C1), bounded below.

Key properties
Smoothness: We will exploit the gradient of f .
In presence of convexity, get better guarantees.

C. W. Royer Optimization for ML CIMPA 27



Negative gradient direction

minimize
w∈Rd

f (w), f ∈ C1,1
L .

Consider any w ∈ Rd . Then, one of the two assertions below holds:
1 Either w is a local minimum and ∇f (w) = 0;
2 Or the function f decreases locally from w in the direction of -∇f (w).

Key argument (Taylor expansion)

f (v) ≈ f (w) +∇f (w)T(v − w) for v close to w .
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Gradient descent method

Inputs: w0 ∈ Rd , α0 > 0, k = 0.
1 Evaluate ∇f (wk).
2 Set wk+1 = wk − αk∇f (wk).
3 Increment k by 1 and go to Step 1.

Stopping criterion

Convergence criterion (optional): Stop when ∥∇f (wk)∥2 < ε;
Budget criterion (optional): Stop when k = kmax.
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Key: choosing the stepsize αk

Constant stepsize
Set αk = α > 0 for all k .

Must be chosen carefully (see lab session).
Can be set according to properties of f (see theory).

Decreasing stepsize
Choose αk such that αk → 0.

Guarantees that f will decrease eventually (for small stepsizes);
But steps get smaller and smaller.
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Choosing the stepsize (2)

What’s done in optimization
Line search: At every iteration, αk is obtained by backtracking on a
subset of values (ex: 1, 1

2 ,
1
4 ,

1
8 , . . . ,).

The chosen value must satisfy certain conditions (ex: decreasing the
function value).

What’s done in optimization for ML

Start with a fixed value until the method starts stalling (gradient gets
small);
Decrease the step size, then repeat.
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Analyzing gradient descent

minimize
x∈Rd

f (x), f ∈ C1,1
L .

Gradient descent
Iteration: wk+1 = wk − αk∇f (wk), stop if ∇f (wk) = 0.
Typical choice in theory : αk = 1

L .

Theoretical analysis

Convergence: Show that ∥∇f (wk)∥2 → 0;
Convergence rate: Look at how fast ∥∇f (wk)∥2 decreases.
Worst-case complexity: Equivalent to convergence rate, measures the
cost of satisfying ∥∇f (wk)∥2 ≤ ϵ for ϵ > 0.
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Convergence rates: Nonconvex case

Theorem

If f ∈ C1,1
L and αk = 1

L ,

min
0≤k≤K−1

∥∇f (wk)∥2 ≤ O
(

1√
K

)
after K ≥ 1 iterations.

A key inequality for the proof

∀(v ,w), f (v) ≤ f (w) +∇f (w)T(v − w) +
L

2
∥v − w∥2

2.

Another key inequality in optimization.
With v = wk+1 and w = wk , gives decrease in O(∥∇f (wk)∥2

2).
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Convergence rates (convex case)

Theorem

Let f ∈ C1,1
L be convex and αk = 1

L in GD. Then, for K ≥ 1,
1 If f is convex,

f (wK )− f ∗ ≤ O
(

1
K

)
.

2 If f is µ-strongly convex,

f (wK )− f ∗ ≤ O
((

1 − µ

L

)K)
.

Interpretation

Nonconvex Convex Strongly convex
O(1/

√
K ) O(1/K ) O(tK )

Stronger guarantees for convex problems at lower cost.
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Conclusion: Gradient descent

A versatile algorithm
Applies as long as f has a gradient.
Various implementations (stepsizes).
Theoretical guarantees for convex/nonconvex problems.

Going further
What if the function does not have a gradient?
What about the problem structure?
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Back to where we started

The linear SVM problem

min
w∈Rd

1
n

n∑
i=1

max{1 − yixT
i w , 0}+ λ

2
∥w∥2

2.

The hinge loss is not continuously differentiable!
But it is continuous and convex...
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Nonsmooth functions

Definition
A function is called nonsmooth if it is not differentiable everywhere.
NB: Nonsmooth ̸= Discontinuous.

Example of nonsmooth functions

w 7→ |w | from R to R;
w 7→ ∥w∥1 from Rd to R;
ReLU: w 7→ max{w , 0} from Rd to R.
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Subgradients for nonsmooth convex problems

Definition
Let f : Rn → R be a convex function. A vector g ∈ Rn is called a
subgradient of f at w ∈ Rn if

∀z ∈ Rn, f (z) ≥ f (w) + gT(z − w).

The set of all subgradients of f at w is called the subdifferential of f at w ,
and denoted by ∂f (w).

If f differentiable at w , ∂f (w) = {∇f (w)};
0 ∈ ∂f (w) ⇔ w minimum of f !

Example: Let f : R → R, f (w) = |w |.

∂f (w) =


−1 if w < 0
1 if w > 0
[−1, 1] if w = 0.
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Subdifferential: Illustration

∂(| · |)(t) =


−1 if t < 0
1 if t > 0
[−1, 1] if t = 0.
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Subgradient method

Iteration for nonsmooth convex f

wk+1 = wk − αkgk , gk ∈ ∂f (wk).

Depends on the subgradient: a subgradient can be a direction of
increase!
αk typically constant or decreasing.

Guarantees

Let w̄K = 1∑K−1
k=0

∑K−1
k=0 αkwk . Then,

f (w̄K )− f ∗ ≤ O
(

1√
K

)
.

Worst rate than gradient descent but a lot more general!
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Back to where we started

The linear SVM problem

min
w∈Rd

1
n

n∑
i=1

max{1 − yixT
i w , 0}+ λ

2
∥w∥2

2.

The problem is regularized (by a data-independent term);
The purpose of regularization is to enforce specific
properties/structure on a solution.
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General form of a regularized problem

min
w∈Rd

f (w)︸ ︷︷ ︸
loss function

+ λΩ(w)︸ ︷︷ ︸
regularization term

.

where λ > 0 is called a regularization parameter.

Example: Ridge regularization

min
w∈Rd

f (w) +
λ

2
∥w∥2

2.

Interpretations:
Equivalent to enforcing a constraint on ∥w∥2

2 =
∑d

i=1 w
2
i ;

Penalizes ws with large components;
The variance of the solution w. r. t. the data is reduced;
The objective function is strongly convex.
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Solving regularized problems

Setup: Composite optimization

minimize
w∈Rd

f (w) + λΩ(w).

f ∈ C 1,1;
Ω convex but nonsmooth.

Proximal approach
Classical optimization paradigm: replace a problem by a sequence of
easier (sub)problems;
Exploit smoothness of f , use the structure of Ω to solve the
subproblems;
Those should be solvable efficiently.
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Proximal Gradient Descent (PGD)

Iteration of PGD

w k+1 = argmin
w∈Rd

{
f (w k) +∇f (w k)

T(w − w k) +
1

2αk
∥w − w k∥2

2 + λΩ(w)
}
.

If Ω ≡ 0, the solution is wk+1 = wk − αk∇f (wk): This is the
Gradient Descent iteration!
In general, the cost of an iteration is 1 gradient call + 1 proximal
subproblem solve.

Properties
Complexity bounds exist for nonconvex and mostly for convex f ;
Stepsize choices can be designed based on those for GD.
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Illustration: ISTA

Sparsity-inducing regularizers

Want solution w ∈ Rd with few nonzero components.
For linear models, amounts to feature selection.

A better approach: LASSO regularization
LASSO=Least Absolute Shrinkage and Selection Operator

minimize
w∈Rd

f (w) + λ∥w∥1, ∥w∥1 =
d∑

i=1

|wi |.

∥ · ∥1 is convex, continuous, and a norm.
Nonsmooth but subgradients can be computed.
No close form even for linear regression⇒ Proximal gradient!
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Illustration: ISTA (2)

Context
Solve minimizew∈Rd f (w) + λ∥w∥1.
Common problem in image processing: Proximal gradient≡ISTA.
Explicit form of the proximal subproblem solution.

Iteration of ISTA: Iterative Soft-Thresholding Algorithm

Define wk+1 componentwise: for any i ∈ {1, . . . , d},

[w k+1]i =

 [w k − αk∇f (w k)]i + αkλ if [w k − αk∇f (w k)]i < −αkλ
[w k − αk∇f (w k)]i − αkλ if [w k − αk∇f (w k)]i > αkλ
0 if [w k − αk∇f (w k)]i ∈ [−αkλ, αkλ].
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Summary

Optimization problems in ML
Common feature: Depend on data.
Distinctive features: Convexity, smoothness, regularization.

Gradient descent
The basic block for optimization.
Applies to convex and nonconvex functions.
Some freedom in the implementation (see lab session).

Beyond gradient descent
Nonsmoothness⇒ Subgradient methods!
Regularization⇒ Proximal methods!
Data dependency? ⇒ See next lecture.
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