CLÉMENT W. ROYER

clement.royer@lamsade.dauphine.fr

Université Paris-Dauphine · Place du M^{al} de Lattre de Tassigny · 75016 Paris · FRANCE https://www.lamsade.dauphine.fr/~croyer

Associate professor in optimization and data science.

CURRENT POSITION

Université Paris Dauphine - PSL *Faculty* - Maître de conférences

- · Lecturer within the Mathematics and Computer Sciences (MIDO) department;
- Currently in charge of the courses *Optimization for Data and Decision Sciences* and *Optimization for Machine Learning* (Master level, in English).

LAMSADE Institute

Member - Permanent

- \cdot At the interface of the Combinatorial optimization, algorithms and Data sciences axes;
- · Research group: *Florentin Goyens* (postdoc, started January 2022); Sébastien Kerleau (PhD thesis started 2021, co-supervised with Denis Cornaz); Iskander Sabri Legheraba (PhD thesis started 2020, co-supervised with Alexandre Allauzen).

EDUCATION & PREVIOUS POSITIONS

University of Wisconsin-Madison Postdoctoral research associate

• In the group of Stephen J. Wright, part of the *Data Science Hub*.

PhD in applied mathematics

Obtained November 4, 2016

- · Parallel Algorithms and Optimization team, IRIT (Institute for Research in Computer Science of Toulouse).
- · Co-advised by Serge Gratton (Univ. Toulouse) and Luís Nunes Vicente (Univ. Coimbra, Portugal).

SKILLS

Main programming experience Additional programming skills Languages Matlab, C++, Python, C. Fortran, Julia, Java, CamL. French (native), English (fluent), Portuguese (intermediate), Spanish (scholar)

November 2016-August 2019 Madison, WI, USA

2013-2016 UPS, University of Toulouse, France

Since September 1, 2019 Paris, France

Since September 1, 2019

Paris, France

SELECTED PUBLICATIONS

Recent submissions

- Riemannian trust-region methods for strict saddle functions with complexity guarantees, F. Goyens and C. W. Royer. Technical report arXiv:2402.07614, February 2024.
- Full-low evaluation methods for bound and linearly constrained derivative-free optimization, C. W. Royer, O. Sohab and L. N. Vicente. Technical report arXiv:2310.00755, October 2023.
- Expected decrease for derivative-free algorithms using random subspaces, W. Hare, L. Roberts and C. W. Royer. Technical report arXiv.2308.04734, August 2023.

Publications in refereed journals

Except in one case identified below, authors are always listed by alphabetical order.

- Using orthogonally structured positive bases for constructing positive k-spanning sets with cosine measure guarantees, W. Hare, G. Jarry-Bolduc, S. Kerleau and C. W. Royer. *Linear Algebra and Applications*, 680:183-207, 2024.
- Direct search based on probabilistic descent in reduced spaces, L. Roberts and C. W. Royer. SIAM Journal on Optimization, 33(4):3057-3082, 2023.
- A nonlinear conjugate gradient method with complexity guarantees and its application to nonconvex regression, R. Chan--Renous-Legoubin and C. W. Royer. *EURO Journal on Computational Optimization*, 10:100044, 2022.
- A stochastic Levenberg-Marquardt method using random models with complexity results, E. Bergou, Y. Diouane, V. Kungurtsev and C. W. Royer, *SIAM/ASA Journal on Uncertainty Quantification*, 10(1):507-536, 2022.
- Trust-region Newton-CG with strong second-order complexity guarantees for nonconvex optimization, F. E. Curtis, D. P. Robinson, C. W. Royer, and S. J. Wright, *SIAM Journal on Optimization*, 31(1):518-544, 2021.
- A Newton-CG algorithm with complexity guarantees for smooth unconstrained optimization. C. W. Royer, M. O'Neill and S. J. Wright. *Mathematical Programming*, 180:451-488, 2020.
- A decoupled first/second-order steps technique for nonconvex nonlinear unconstrained optimization with improved complexity bounds. S. Gratton, C. W. Royer and L. N. Vicente. *Mathematical Programming*, 179(1):195-222, 2020.
- Direct search based on probabilistic feasible descent for bound and linearly constrained problems. S. Gratton, C. W. Royer, L. N. Vicente and Z. Zhang. *Computational Optimization and Applications*, 72(3):525-559, 2019 (COAP Best Paper prize in 2019).
- Complexity analysis of second-order line-search algorithms for smooth nonconvex optimization. C. W. Royer and S. J. Wright. *SIAM Journal on Optimization*, 28(2):1448-1477, 2018.
- Complexity and global rates of trust-region methods based on probabilistic models.
 S. Gratton, C. W. Royer, L. N. Vicente and Z. Zhang. *IMA Journal of Numerical Analysis*, 38(3):1579-1597, 2018.

RESEARCH RESPONSIBILITIES

Main research projects

- Adaptive, Local and Innovative Algorithms for Stochastic Optimization. Thomas Jefferson Fund, FACE Foundation, 2022-2024. Co-PI with Dr. Albert Berahas (University of Michigan, MI, USA).
- · Optimization for high-performance artificial intelligence. PRAIRIE Springboard chair, 2021-2024.

Editorial service

- · Associate editor for the Journal of Optimization Theory and Applications (2022-).
- · Meritorious Service Award in 2022 for reviewing in the journal Mathematical Programming.