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Exercise 1: A nonconvex problem

Let {(xi, yi)}ni=1 be a dataset with yi ∈ (0, 1) for every i. Given the following loss
function:

ℓ(h, y) :=

(
y − 1

1 + exp(−h)

)2

, (1)

we consider the optimization problem corresponding to fitting a linear model to the data,
given by

minimize
w∈Rd

ϕ(w) :=
1

n

n∑
i=1

ℓ
(
xT
i w, yi

)
=

1

n

n∑
i=1

(
yi −

1

1 + exp(−xT
i w)

)2

. (2)

The function ϕ is C2 and it is nonconvex.

a) Justify that 0 is a lower bound on the function ϕ. Is it necessarily its optimal value?

b) We wish to apply the gradient descent algorithm to (2).

i) Write the iteration of this algorithm with an arbitrary stepsize.

ii) Give two possible choices for the stepsize.

iii) Under appropriate assumptions, what is the complexity of the algorithm on a
problem such as (2)? What quantity does this result apply to?

c) Suppose that gradient descent returns a point with a zero gradient. Is it necessarily
a minimum?

d) State the second-order necessary optimality conditions for problem (2). Is a point
satisfying these conditions a minimum?

e) Suppose that we start gradient descent from a randomly selected initial point, and
that we observe that the method converges towards a point satisfying the second-
order necessary optimality conditions. What result seen in class does this illustrate?
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Exercise 2: Convex matrix recovery

We consider a data matrix X ∈ Rd1×d2 , and a subset S ⊂ {1, . . . , d1} × {1, . . . , d2}.
The matrix recovery problem consists in finding the best approximation of X given some
observed entries {Xij | (i, j) ∈ S}. This amounts to solving the following optimization
problem:

minimize
W∈Rd1×d2

1

2

∑
(i,j)∈S

(W ij −Xij)
2 (3)

For any value of S, the problem (3) can be reformulated as a vector optimization problem.
Indeed, if we denote by w ∈ Rd the concatenation of all columns of W ∈ Rd1×d2 (with
d = d1d2), problem (3) can be rewritten as

minimize
w∈Rd

f(w) :=
1

2

∑
(i,j)∈S

(
[w]i+(j−1)d1 −Xij

)2
. (4)

The objective function of problem (4) is convex and C1

a) The objective function of problem (4) is convex and C1.

i) How can we characterize a solution of problem (4) using the derivative of f?

ii) Give an example of a C1, convex function that does not possess a minimum.

b) The standard complexity of gradient descent on a convex problem such as (4) is
O(ϵ−1). What quantity does this rate apply to?

c) What is the corresponding complexity for accelerated gradient? What is the algo-
rithmic idea behind this method?

d) We consider the special case in which all entries of the matrix are observed, i.e.
S = {1, . . . , d1} × {1, . . . , d2}.
i) In that case, the objective function of (3) (or, equivalently, that of (4)) is

strongly convex. What can be said about local minima of strongly convex
functions?

ii) Justify that the problem (3) has a unique global minimum in the context of
this question. What is this minimum?

iii) When all entries are observed, the objective function f is a strongly convex
quadratic function. Name one algorithm other than accelerated gradient that
possesses better complexity guarantees than gradient descent on this problem.
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Exercise 4: Stochastic gradient

In this exercise, we consider a finite-sum minimization problem of the form :

minimize
w∈Rd

f(w) :=
1

n

n∑
i=1

fi(w), (5)

where every function fi is assumed to be C1 and depends solely on the ith element in a
dataset {(xi, yi)}ni=1.

a) Why is the structure of problem (5) amenable to applying stochastic gradient tech-
niques?

b) Write the stochastic gradient iteration with a decreasing step size proportional to
1

k+1 , with k being the iteration index.

c) What is the cost of a stochastic gradient iteration in terms of accesses to the
dataset? How does this compare to the cost of a gradient descent iteration?

d) Suppose that we perform K iterations of stochastic gradient and K iterations of
gradient descent where K = nE for some integer E ≥ 1. We wish to compare the
performance of both algorithms.

i) Justify that comparing the values of f obtained for the final iterates of both
methods is not a good metric.

ii) Propose a relevant metric for comparing both methods without performing
more iterations.

e) We now assume that the various items in the dataset are distributed across r
processors, with r being a value between 1 and n.

i) Write the iteration of a batch stochastic gradient method with a constant batch
size equal to nb, and a constant step size.

ii) What can be the computational advantage of setting nb = r?

iii) If r ≈ n, however, what is a possible drawback of using nb = r?

iv) If 1 < r ≪ n, setting nb = r corresponds to doing mini-batching. Does that
necessarily lead to a better performance than nb = 1? Justify your answer.

f) We finally consider an iteration of the Adam variant on stochastic gradient. Explain
how this iteration differs from the vanilla stochastic gradient iteration.
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Solutions

Solutions for Exercise 1

a) The function ϕ is an average of nonnegative terms, thus ϕ(w) ≥ 0 for any w ∈ Rd, and 0 is a
lower bound on the function ϕ. In order to have 0 = minw∈Rd ϕ(w), there must exist w ∈ Rd

such that ϕ(w) = 0. Since the existence of such a w depends on the problem data, 0 is not
necessarily the optimal value.

b) i) wk+1 = wk − αk∇ϕ(wk), where αk > 0.

ii) The stepsize sequence {αk} can be chosen constant (αk = α > 0 for all k) or decreasing
(αk ↕ 0, e.g. αk = 1

k+1). Another option is an adaptive stepsize choice, for instance using a
line search.

iii) The complexity of the method on a nonconvex optimization problem such as (2) is O(ϵ−2),
where this bound applies to the number of iterations of gradient descent. More precisely,
given ϵ > 0, gradient descent computes a point such that ∥∇f(wK)∥ ≤ ϵ (or, equivalently,
min0≤k≤K−1 ∥∇f(wk)∥ ≤ ϵ) when run for K = O(ϵ−2) iterations.

c) Since the function is nonconvex, a point with zero gradient is not necessarily a minimum, and
can either be a saddle point or a (local or global) maximum.

d) If w̄ ∈ Rd is a local minimum of problem (2), then we have

∇ϕ(w̄) = 0 and ∇2ϕ(w̄) ⪰ 0.

e) A result seen in class states that gradient descent with random initialization converges almost
surely towards a point satisfying the second-order necessary optimality conditions.

Solutions for Exercise 2

a) i) The set of solutions of problem (4) corresponds to the set of vectors w ∈ Rd such that
∇f(w) = 0.

ii) A linear function w 7→ aTw is a C1, convex function that does not have a minimum when
a ̸= 0.

b) The complexity of gradient in the convex case corresponds to a bound on the number of iterations
necessary to satisfy f(wk)−minw∈Rd f(w) ≤ ϵ for some tolerance ϵ > 0.

c) The corresponding complexity for accelerated gradient is O(ϵ−1/2. This method is based on
combining gradient steps with momentum terms, that correspond to the step taken at the previous
iteration.

d) i) A strongly convex function has a unique local minimum.

ii) It suffices to notice that the objective function is nonnegative, and that

1

2

∑
(i,j)∈S

(W ij −Xij)
2 = 0 ⇔ W ij = Xij ∀(i, j).
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As a result, X is the unique global minimum of the problem. NB: When we do not observe
all entries of X, in general there are many global optima!

iii) The heavy-ball method, like accelerated gradient, has a better complexity than gradient
descent on strongly convex quadratic problems.

Solutions for Exercise 4

a) The objective of problem (5) has a finite-sum structure, where each term in the sum depends
on a different part of a dataset. This is the setting in which stochastic gradient are interesting
algorithms to apply

b) wk+1 = wk − α
k+1∇fik(wk), where α > 0 and ik is an index drawn randomly in {1, . . . , n}.

c) A stochastic gradient iteration costs one access to a data point. By contrast, a gradient descent
computes ∇f(wk) =

1
n

∑n
i=1∇fi(wk), which costs n accesses to data points.

d) i) Let wGD
K and wSG

K denote the final iterates of gradient descent and stochastic gradient,
respectively. To compute wGD

K , one needs to run K iterations of gradient descent or, equiv-
alently, nK accesses to data points. Meanwhile, computing wSG

K requires only K accesses to
data points. As a result, a comparison between f(wGD

K ) and f(wSG
K ) is unfair to stochastic

gradient, because gradient descent has used a lot more accesses to data points.

ii) Since K = nE, stochastic gradient has been run for E epochs, where one epoch corresponds
to the cost of accessing n data points. It is thus fairer to compare f(wSG

K ) = f(wSG
nE ) to

f(wGD
E ), since wGD

E is the iterate output by gradient descent at the cost of E epochs.

e) i) wk+1 = wk − α 1
nb

∑
i∈Sk

∇fi(wk), where α > 0, and Sk is a set of nb random indices
drawn with or without replacement in {1, . . . , n}.

ii) When nb = r, one can leverage the presence of r processors and evaluate the gradients
∇fi(wk) in the batch in parallel.s

iii) When r ≈ n, using nb = r corresponds to a large batch regime, and the performance of the
method resembles that of gradient descent. It is thus likely that the method will converge
more slowly than vanilla stochastic gradient (nb = 1).

iv) Mini-batching might lead to improvement compared to vanilla stochastic gradient, in that it
uses more data points to build a gradient estimator (thus this estimator has less variance).
On the other hand, batch methods with nb > 1 can be more sensitive to redundancies in the
dataset, and might be outperformed by vanilla stochastic gradient in such a setting.
Other possible elements of justification:

• (positive) In presence of parallelism, the computational cost of mini-batch methods is
comparable to that of vanilla stochastic gradient.

• (negative) The per-iteration cost of a batch method is necessarily higher than that of
vanilla stochastic gradient, hence the method will perform less updates of the iterate.

f) Adam differs from vanilla stochastic gradient in two aspects. First, a momentum term is incorpo-
rated in the iteration, that involves a geometric average of all previous steps. Secondly, a diagonal
scaling of the stepsize is performed, using again a geometric average of past stochastic gradients
(thus a different stepsize is used for each coordinate of w).


