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Exercise 1: A nonconvex problem

Let {(xi, yi)}ni=1 be a dataset with yi ∈ (0, 1) for every i. Given the following loss
function:

ℓ(h, y) :=

(
y − 1

1 + exp(−h)

)2

, (1)

we consider the optimization problem corresponding to fitting a linear model to the data,
given by

minimize
w∈Rd

ϕ(w) :=
1

n

n∑
i=1

ℓ
(
xT
i w, yi

)
=

1

n

n∑
i=1

(
yi −

1

1 + exp(−xT
i w)

)2

. (2)

The function ϕ is C2 and it is nonconvex.

a) Justify that 0 is a lower bound on the function ϕ. Is it necessarily its optimal value?

b) We wish to apply the gradient descent algorithm to (2).

i) Write the iteration of this algorithm with an arbitrary stepsize.

ii) Give two possible choices for the stepsize.

iii) Under appropriate assumptions, what is the complexity of the algorithm on a
problem such as (2)? What quantity does this result apply to?

c) Suppose that gradient descent returns a point with a zero gradient. Is it necessarily
a minimum?

d) State the second-order necessary optimality conditions for problem (2). Is a point
satisfying these conditions a minimum?

e) Suppose that we start gradient descent from a random initial point, and that the
method converges towards a point satisfying the second-order necessary optimality
conditions. How can you explain this phenomenon?
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Exercise 2: Convex matrix recovery

We consider a data matrix X ∈ Rd1×d2 , and a subset S ⊂ {1, . . . , d1} × {1, . . . , d2}.
The matrix recovery problem consists in finding the best approximation of X given some
observed entries {Xij | (i, j) ∈ S}. This amounts to solving the following optimization
problem:

minimize
W∈Rd1×d2

1

2

∑
(i,j)∈S

(W ij −Xij)
2 (3)

For any value of S, the problem (3) can be reformulated as a vector optimization problem.
Indeed, if we denote by w ∈ Rd the concatenation of all columns of W ∈ Rd1×d2 (with
d = d1d2), problem (3) can be rewritten as

minimize
w∈Rd

f(w) :=
1

2

∑
(i,j)∈S

(
[w]i+(j−1)d1 −Xij

)2
. (4)

The objective function of problem (4) is convex and C1

a) The objective function of problem (4) is convex and C1.

i) How can we characterize a solution of problem (4) using the derivative of f?

ii) Give an example of a C1, convex function that does not possess a minimum.

b) The standard convergence rate of gradient descent on a convex problem such as (4)
is O( 1

K ). What quantity does this rate apply to?

c) What is the corresponding rate for accelerated gradient? What is the algorithmic
idea behind this method?

d) We consider the special case in which all entries of the matrix are observed, i.e.
S = {1, . . . , d1} × {1, . . . , d2}.
i) In that case, the objective function of (3) (or, equivalently, that of (4)) is

strongly convex. What can be said about local minima of strongly convex
functions?

ii) Justify that the problem (3) has a unique global minimum in the context of
this question. What is this minimum?

iii) When all entries are observed, the objective function f is a strongly convex
quadratic function. Name one algorithm other than accelerated gradient that
achieves a better convergence rate than gradient descent on this problem.
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Exercise 4: Stochastic gradient

In this exercise, we consider a finite-sum minimization problem of the form :

minimize
w∈Rd

f(w) :=
1

n

n∑
i=1

fi(w), (5)

where every function fi is assumed to be C1 and depends solely on the ith element in a
dataset {(xi, yi)}ni=1.

a) Why is the finite-sum structure amenable to applying stochastic gradient tech-
niques?

b) Write the stochastic gradient iteration with a decreasing step size proportional to
1

k+1 , with k being the iteration index.

c) What is the cost of a stochastic gradient iteration in terms of accesses to the
dataset? How does this compare to the cost of a gradient descent iteration?

d) Suppose that we perform K iterations of stochastic gradient and K iterations of
gradient descent where K ≥ n. We wish to compare the performance of both
algorithms.

i) Justify that comparing the values of f obtained for the final iterates of both
methods is not a good metric.

ii) Propose a relevant metric for comparing both methods without performing
more iterations.

e) We now assume that the various items in the dataset are distributed across r
processors, with r being a value between 1 and n.

i) Write the iteration of a batch stochastic gradient method with a constant batch
size equal to nb, and a constant step size.

ii) What can be the computational advantage of setting nb = r?

iii) If r ≈ n, however, what is a possible drawback of using nb = r?

iv) If 1 < r ≪ n, setting nb = r corresponds to doing mini-batching. Does that
necessarily lead to a better performance than nb = 1? Justify your answer.

f) We finally consider an iteration of the Adam variant on stochastic gradient. Explain
how this iteration differs from the vanilla stochastic gradient iteration.


