Exercise sheet 1: Around gradient descent

M2 MIAGE ID Apprentissage

October 1st, 2024

Dauphine | PSL&

Exercise 1.1: One-layer neural network (Exam 2021-2022)

In this exercise, we consider the special case of a dataset with scalar labels/outputs, i.e. of the form $\{(\bm{x}_i,y_i)\}_{i=1}^n$ with $\bm{x}_i\in\mathbb{R}^{d_x}$ and $y_i\in\mathbb{R}$ for every $i=1,\ldots,n.$ We build a simple neural network with no activation function and one homogeneous linear layer to predict the value y_i from the vector \boldsymbol{x}_i , resulting in the model

$$
h^{lin}(\cdot; \boldsymbol{w}) : \begin{array}{ccc} \mathbb{R}^{d_x} & \longrightarrow & \mathbb{R} \\ \boldsymbol{x} & \longmapsto & \boldsymbol{W}_1 \boldsymbol{x}, \end{array}
$$
 (1)

with $\bm{W}_1 \in \mathbb{R}^{1 \times d_x}$. Letting $d=d_x$ and $\bm{w}=\bm{W}_1^{\rm T} \in \mathbb{R}^{d}$, finding the best model amounts to solving

$$
\underset{\boldsymbol{w}\in\mathbb{R}^d}{\text{minimize}}\,f^{lin}(\boldsymbol{w}) := \frac{1}{2n}\sum_{i=1}^n(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_i - y_i)^2. \tag{2}
$$

- a) What class of problems does problem [\(2\)](#page-0-0) belong to?
- b) The objective function f^{lin} is $\mathcal{C}^{1,1}_L$ $L^{1,1}$, i.e. its gradient is L -Lipschitz continuous. If L is known, how can its value be used in an algorithm such as gradient descent?
- c) Problem [\(2\)](#page-0-0) is convex with a \mathcal{C}^1 objective function.
	- i) What can then be said about a point $\bar{\bm{w}}$ such that $\nabla f^{lin}(\bar{\bm{w}}) = \bm{0}_{\mathbb{R}^d} ?$
	- ii) What is the convergence rate of gradient descent on this problem?
	- iii) What is the convergence rate of accelerated descent on a convex problem? Is it better or worse than that of the previous question ?
- d) Suppose that the data is such that the objective f^{lin} is μ -strongly convex, in addition to the properties already mentioned above.
	- i) Let $\bm{w},\bm{v}\in\mathbb{R}^d$ be two points such that $\nabla f^{lin}(\bm{w})=\nabla f^{lin}(\bm{v})=\bm{0}_{\mathbb{R}^d}.$ What can we say about v and w ?
	- ii) What is the convergence rate of accelerated gradient on this problem?

Exercise 1.2: Two-layer linear neural networks (exam 2021-2022)

We consider a dataset $\{(\bm{x}_i,\bm{y}_i)\}_{i=1}^n$ where $\bm{x}_i\in\mathbb{R}^{d_x}$ and $\bm{y}_i\in\mathbb{R}^{d_y}$. We wish to learn a mapping from \mathbb{R}^{d_x} to \mathbb{R}^{d_y} that correctly outputs \bm{y}_i when given \bm{x}_i as an input. Our model will be that of a two-layer linear neural network :

$$
\begin{array}{cccc}\nh(\cdot;{\boldsymbol w}) : & {\mathbb R}^{d_x} & \longrightarrow & {\mathbb R}^{d_y} \\ {\boldsymbol x} & \longmapsto & {\boldsymbol W}_2({\boldsymbol W}_1{\boldsymbol x} + {\boldsymbol b}_1) + {\boldsymbol b}_2,\end{array} \tag{3}
$$

where $\bm{W}_1\in\mathbb{R}^{d_x\times m},~\bm{b}_1\in\mathbb{R}^m,~\bm{W}_2\in\mathbb{R}^{m\times d_y}$ and $\bm{b}_2\in\mathbb{R}^{d_y}$. We will consider \bm{h} as being parameterized by $\boldsymbol{w}\in\mathbb{R}^d$, with $d=d_xm+m+md_y+d_y$ and \boldsymbol{w} concatenating all coefficients from W_1, b_1, W_2, b_2 . Our goal is to determine a value of w so that $\bm{h}(\bm{x}_i;\bm{w}) \approx \bm{y}_i$, which we formalize using the squared loss $(\bm{h},\bm{y}) \mapsto \frac{1}{2}\|\bm{h}-\bm{y}\|^2.$

Overall, we obtain the following problem:

$$
\underset{\boldsymbol{w}\in\mathbb{R}^d}{\text{minimize}}\,f(\boldsymbol{w}) := \frac{1}{2n}\sum_{i=1}^n\|\boldsymbol{h}(\boldsymbol{x}_i;\boldsymbol{w}) - \boldsymbol{y}_i\|^2.\tag{4}
$$

It can be shown that the function f is \mathcal{C}^1 .

- a) Give a lower bound on the objective function of problem [\(4\)](#page-1-0).
- b) In general, problem [\(4\)](#page-1-0) is nonconvex. What does this imply about its local minima?
- c) Suppose that w^* is a solution of [\(4\)](#page-1-0). What can be said about the derivative of f at $w^*?$
- d) Write down the gradient descent iteration for problem [\(4\)](#page-1-0) with an arbitrary stepsize.
- e) Given that the problem is nonconvex, what is the theoretical convergence rate of gradient descent applied to [\(4\)](#page-1-0)?

Exercise 1.3: Matrix completion (exam 2022-2023)

Let $\bm{X}\in\mathbb{R}^{d\times d}$ be a data matrix such that only a subset of its entries $\mathcal{S}\subset\{1,\ldots,d\}^2$ are known with $|\mathcal{S}| = n \leq d^2.$ We consider the problem

$$
\underset{\mathbf{W}\in\mathbb{R}^{d\times d}}{\text{minimize}}\ f(\mathbf{W}) := \frac{1}{2n} \sum_{(i,j)\in\mathcal{S}} ([\mathbf{W}]_{ij} - [\mathbf{X}]_{ij})^2. \tag{5}
$$

- a) When $\mathcal{S} = \{1,\ldots,d\}^2$, justify that $\boldsymbol{W}^* = \boldsymbol{X}$ is the unique solution of the problem.
- b) Problem [\(5\)](#page-2-0) is convex in the coefficients of \pmb{W} . Letting $\pmb{w} \in \mathbb{R}^{d^2}$ denoting the column vector formed by stacking all columns of the matrix W in order, we can reformulate the problem as

minimize
$$
\hat{f}(\boldsymbol{w}) := \frac{1}{2n} \sum_{(i,j) \in S} ([\boldsymbol{w}]_{i+(j-1)d} - [\boldsymbol{X}]_{ij})^2
$$
. (6)

The function \hat{f} is convex and $\mathcal{C}^1.$

- i) What convergence rate guarantee can we provide on gradient descent when applied to problem [\(6\)](#page-2-1)? What quantity does this rate apply to?
- ii) What is the corresponding convergence rate for the accelerated gradient method due to Nesterov? Is it better than that of gradient descent?
- iii) When $n=d^2$, the function \hat{f} is a strongly convex quadratic function. Aside from Nesterov's method, what other approach can we use to obtain better convergence rates than gradient descent?
- c) We now suppose that the data matrix X is symmetric, positive semidefinite and of rank $1 \ll d$. In this setting, rather than seeking an arbitrary matrix W to approximate X, we can force the matrix to be rank one by writing it uu^T where $\boldsymbol{u} \in \mathbb{R}^d$. Problem [\(5\)](#page-2-0) then becomes

$$
\underset{\mathbf{u}\in\mathbb{R}^d}{\text{minimize}}\,\tilde{f}(\mathbf{u}) := \frac{1}{2n}\sum_{(i,j)\in\mathcal{S}}([u\mathbf{u}^{\mathrm{T}}]_{ij} - [\mathbf{X}]_{ij})^2. \tag{7}
$$

The objective function of problem [\(7\)](#page-2-2) is \mathcal{C}^2 and nonconvex.

- i) State the first-order necessary optimality conditions for problem [\(7\)](#page-2-2).
- ii) What is the convergence rate of gradient descent for this problem? What quantity does this rate apply to?
- iii) Under certain assumptions on X and S , one can show that all the local minima of this problem are global. In that case, what technique guarantees almost surely that gradient descent will converge to such a point?

Solutions

Solutions to Exercise 1.1

a) The function $f(\boldsymbol{W})$ is always nonnegative (as a sum of squares, i.e. nonnegative numbers). When $n=d^2$, we have that

$$
f(\mathbf{W})=0 \quad \Leftrightarrow \quad ([\mathbf{W}]_{ij}-[\mathbf{X}]_{ij})^2=0 \; \forall (i,j) \in \{1,\ldots,d\}^2 \quad \Leftrightarrow \quad \mathbf{W}=\mathbf{X}.
$$

As a result, the problem has a single global minimum given by $W^* = X$.

- b) Convex formulation
	- i) Since the problem is convex, we know that after $K \geq 1$ iterations of gradient descent, the iterate w_K satisfies

$$
\hat{f}(\boldsymbol{w}_K)-\min_{\boldsymbol{w}\in\mathbb{R}^{d^2}}\hat{f}(\boldsymbol{w})\leq \mathcal{O}\left(\frac{1}{K}\right).
$$

Gradient descent thus converges at a rate $\frac{1}{K}$.

- ii) The rate for accelerated gradient on such a problem is $\frac{1}{K^2}$, which is a better rate as it converges more quickly to 0.
- iii) When f is a strongly convex quadratic function, the heavy-ball method (aka Polyak's method) attains the optimal rate of convergence for strongly convex functions, which is better than gradient descent. NB: The value of that rate is not required to answer the question.
- c) (Nonconvex case)
	- i) If $\bar{\bm{u}} \in \mathbb{R}^d$ is a local minima of problem [\(7\)](#page-2-2), then $\nabla \tilde{f}(\bar{\bm{u}}) = \bm{0}.$
	- ii) For this problem, after $K \geq 1$ iterations of gradient descent, we have

$$
\min_{0\leq k\leq K-1} \|\nabla f(\boldsymbol{w}_k)\| \leq \mathcal{O}\left(\frac{1}{\sqrt{K}}\right),
$$

hence the convergence rate of gradient descent is in $-\frac{1}{\sqrt{2}}$ $\frac{1}{K}$.

iii) Initializing gradient descent with a random point guarantees almost surely that it will converge to a local minima under the assumptions of this question.

Solutions to Exercise 1.2

- a) The value 0 is a lower bound on this objective function, since it is always nonnegative. Any value less than or equal to 0 also works.
- b) The local minima of a nonconvex problem are not necessarily global minima.
- c) By the first-order necessary conditions, if \bm{w}^* is a solution of [\(4\)](#page-1-0), then its gradient is zero, that is $\nabla f(\boldsymbol{w}^*) = \boldsymbol{0}$.

d) Using an arbitrary stepsize $\alpha_k > 0$, the kth iteration of gradient descent can be written as

$$
\mathbf{w}_{k+1} = \mathbf{w}_k - \alpha_k \nabla f(\mathbf{w}_k).
$$

e) For a nonconvex problem such as [\(4\)](#page-1-0), it can be guaranteed that, after $K \geq 1$ iterations of gradient descent, one has

$$
\min_{0\leq k\leq K-1} \|\nabla f(\boldsymbol{w}_k)\| \leq \mathcal{O}\left(\frac{1}{\sqrt{K}}\right).
$$

Solutions to Exercise 1.3

- a) Problem [\(2\)](#page-0-0) is a linear least-squares problem.
- b) If a Lipschitz constant L for the gradient is known, the stepsize can be chosen as the constant value $\alpha = \frac{1}{L}$ $\frac{1}{L}.$ NB: Other values less than $\frac{2}{L}$ would also guarantee decrease of the function value at every iteration.

c)

- i) Since the problem is convex, any point \bar{w} such that $\nabla f^{lin}(\bar{w}) = \bm{0}_{\mathbb{R}^d}$ is a global minimum.
- ii) On such a convex problem, after $K \geq 1$ iterations of gradient descent, one obtains that

$$
f(\boldsymbol{w}_k)-\min_{\boldsymbol{w}\in\mathbb{R}^d}f(\boldsymbol{w})\leq \mathcal{O}\left(\frac{1}{K}\right).
$$

iii) On a convex problem, after $K \geq 1$ iterations of accelerated gradient, one obtains that

$$
f(\boldsymbol{w}_k) - \min_{\boldsymbol{w}\in\mathbb{R}^d} f(\boldsymbol{w}) \leq \mathcal{O}\left(\frac{1}{K^2}\right),
$$

which is better than the rate for gradient descent since it converges more rapidly towards 0.

d)

- i) Since the function is strongly convex and continuously differentiable, it has a unique global minimum, which is the unique solution of the equation $\nabla f^{lin}(\bm{w})=\bm{0}_{\mathbb{R}^d}.$ Therefore, if \bm{w} and \bm{v} satisfy $\nabla f^{lin}(\bm{w})=\nabla f^{lin}(\bm{v})=\bm{0}_{\mathbb{R}^d}$, then we must have $\bm{v}=\bm{w}$.
- ii) On a strongly convex problem, after $K \geq 1$ iterations of accelerated gradient, one obtains that

$$
f(\boldsymbol{w}_k) - \min_{\boldsymbol{w}\in\mathbb{R}^d} f(\boldsymbol{w}) \leq \mathcal{O}\left((1-\sqrt{\mu}L)^K\right).
$$