
Exercise sheet 1: Around gradient descent

M2 MIAGE ID Apprentissage

October 1st, 2024

Exercise 1.1: One-layer neural network (Exam 2021-2022)

In this exercise, we consider the special case of a dataset with scalar labels/outputs, i.e.
of the form {(xi, yi)}ni=1 with xi ∈ Rdx and yi ∈ R for every i = 1, . . . , n. We build a
simple neural network with no activation function and one homogeneous linear layer to
predict the value yi from the vector xi, resulting in the model

hlin(·;w) : Rdx −→ R
x 7−→ W 1x,

(1)

with W 1 ∈ R1×dx . Letting d = dx and w = WT
1 ∈ Rd, finding the best model amounts

to solving

minimize
w∈Rd

f lin(w) :=
1

2n

n∑
i=1

(wTxi − yi)
2. (2)

a) What class of problems does problem (2) belong to?

b) The objective function f lin is C1,1
L , i.e. its gradient is L-Lipschitz continuous. If L

is known, how can its value be used in an algorithm such as gradient descent?

c) Problem (2) is convex with a C1 objective function.

i) What can then be said about a point w̄ such that ∇f lin(w̄) = 0Rd?

ii) What is the convergence rate of gradient descent on this problem?

iii) What is the convergence rate of accelerated descent on a convex problem? Is
it better or worse than that of the previous question ?

d) Suppose that the data is such that the objective f lin is µ-strongly convex, in
addition to the properties already mentioned above.

i) Let w,v ∈ Rd be two points such that ∇f lin(w) = ∇f lin(v) = 0Rd . What
can we say about v and w?

ii) What is the convergence rate of accelerated gradient on this problem?
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Exercise 1.2: Two-layer linear neural networks (exam 2021-2022)

We consider a dataset {(xi,yi)}ni=1 where xi ∈ Rdx and yi ∈ Rdy . We wish to learn
a mapping from Rdx to Rdy that correctly outputs yi when given xi as an input. Our
model will be that of a two-layer linear neural network :

h(·;w) : Rdx −→ Rdy

x 7−→ W 2(W 1x+ b1) + b2,
(3)

where W 1 ∈ Rdx×m, b1 ∈ Rm, W 2 ∈ Rm×dy and b2 ∈ Rdy . We will consider h as
being parameterized by w ∈ Rd, with d = dxm+m+mdy + dy and w concatenating
all coefficients from W 1, b1,W 2, b2. Our goal is to determine a value of w so that
h(xi;w) ≈ yi, which we formalize using the squared loss (h,y) 7→ 1

2∥h− y∥2.
Overall, we obtain the following problem:

minimize
w∈Rd

f(w) :=
1

2n

n∑
i=1

∥h(xi;w)− yi∥2. (4)

It can be shown that the function f is C1.

a) Give a lower bound on the objective function of problem (4).

b) In general, problem (4) is nonconvex. What does this imply about its local minima?

c) Suppose that w∗ is a solution of (4). What can be said about the derivative of f
at w∗?

d) Write down the gradient descent iteration for problem (4) with an arbitrary stepsize.

e) Given that the problem is nonconvex, what is the theoretical convergence rate of
gradient descent applied to (4)?
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Exercise 1.3: Matrix completion (exam 2022-2023)

Let X ∈ Rd×d be a data matrix such that only a subset of its entries S ⊂ {1, . . . , d}2
are known with |S| = n ≤ d2. We consider the problem

minimize
W∈Rd×d

f(W ) :=
1

2n

∑
(i,j)∈S

([W ]ij − [X]ij)
2. (5)

a) When S = {1, . . . , d}2, justify that W ∗ = X is the unique solution of the problem.

b) Problem (5) is convex in the coefficients of W . Letting w ∈ Rd2 denoting the
column vector formed by stacking all columns of the matrix W in order, we can
reformulate the problem as

minimize
w∈Rd2

f̂(w) :=
1

2n

∑
(i,j)∈S

([w]i+(j−1)d − [X]ij)
2. (6)

The function f̂ is convex and C1.

i) What convergence rate guarantee can we provide on gradient descent when
applied to problem (6)? What quantity does this rate apply to?

ii) What is the corresponding convergence rate for the accelerated gradient method
due to Nesterov? Is it better than that of gradient descent?

iii) When n = d2, the function f̂ is a strongly convex quadratic function. Aside
from Nesterov’s method, what other approach can we use to obtain better
convergence rates than gradient descent?

c) We now suppose that the data matrix X is symmetric, positive semidefinite and
of rank 1 ≪ d. In this setting, rather than seeking an arbitrary matrix W to
approximate X, we can force the matrix to be rank one by writing it uuT where
u ∈ Rd. Problem (5) then becomes

minimize
u∈Rd

f̃(u) :=
1

2n

∑
(i,j)∈S

([uuT]ij − [X]ij)
2. (7)

The objective function of problem (7) is C2 and nonconvex.

i) State the first-order necessary optimality conditions for problem (7).

ii) What is the convergence rate of gradient descent for this problem? What
quantity does this rate apply to?

iii) Under certain assumptions on X and S, one can show that all the local minima
of this problem are global. In that case, what technique guarantees almost
surely that gradient descent will converge to such a point?
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Solutions

Solutions to Exercise 1.1

a) The function f(W ) is always nonnegative (as a sum of squares, i.e. nonnegative numbers).
When n = d2, we have that

f(W ) = 0 ⇔ ([W ]ij − [X]ij)
2 = 0 ∀(i, j) ∈ {1, . . . , d}2 ⇔ W = X.

As a result, the problem has a single global minimum given by W ∗ = X.

b) Convex formulation

i) Since the problem is convex, we know that after K ≥ 1 iterations of gradient descent, the
iterate wK satisfies

f̂(wK)− min
w∈Rd2

f̂(w) ≤ O
(

1

K

)
.

Gradient descent thus converges at a rate 1
K .

ii) The rate for accelerated gradient on such a problem is 1
K2 , which is a better rate as it

converges more quickly to 0.

iii) When f̂ is a strongly convex quadratic function, the heavy-ball method (aka Polyak’s method)
attains the optimal rate of convergence for strongly convex functions, which is better than
gradient descent. NB: The value of that rate is not required to answer the question.

c) (Nonconvex case)

i) If ū ∈ Rd is a local minima of problem (7), then ∇f̃(ū) = 0.

ii) For this problem, after K ≥ 1 iterations of gradient descent, we have

min
0≤k≤K−1

∥∇f(wk)∥ ≤ O
(

1√
K

)
,

hence the convergence rate of gradient descent is in 1√
K
.

iii) Initializing gradient descent with a random point guarantees almost surely that it will converge
to a local minima under the assumptions of this question.

Solutions to Exercise 1.2

a) The value 0 is a lower bound on this objective function, since it is always nonnegative. Any value
less than or equal to 0 also works.

b) The local minima of a nonconvex problem are not necessarily global minima.

c) By the first-order necessary conditions, if w∗ is a solution of (4), then its gradient is zero, that
is ∇f(w∗) = 0.
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d) Using an arbitrary stepsize αk > 0, the kth iteration of gradient descent can be written as

wk+1 = wk − αk∇f(wk).

e) For a nonconvex problem such as (4), it can be guaranteed that, afterK ≥ 1 iterations of gradient
descent, one has

min
0≤k≤K−1

∥∇f(wk)∥ ≤ O
(

1√
K

)
.

Solutions to Exercise 1.3

a) Problem (2) is a linear least-squares problem.

b) If a Lipschitz constant L for the gradient is known, the stepsize can be chosen as the constant
value α = 1

L . NB: Other values less than
2
L would also guarantee decrease of the function value

at every iteration.

c)

i) Since the problem is convex, any point w̄ such that ∇f lin(w̄) = 0Rd is a global minimum.

ii) On such a convex problem, after K ≥ 1 iterations of gradient descent, one obtains that

f(wk)− min
w∈Rd

f(w) ≤ O
(

1

K

)
.

iii) On a convex problem, after K ≥ 1 iterations of accelerated gradient, one obtains that

f(wk)− min
w∈Rd

f(w) ≤ O
(

1

K2

)
,

which is better than the rate for gradient descent since it converges more rapidly towards 0.

d)

i) Since the function is strongly convex and continuously differentiable, it has a unique global
minimum, which is the unique solution of the equation ∇f lin(w) = 0Rd . Therefore, if w
and v satisfy ∇f lin(w) = ∇f lin(v) = 0Rd , then we must have v = w.

ii) On a strongly convex problem, after K ≥ 1 iterations of accelerated gradient, one obtains
that

f(wk)− min
w∈Rd

f(w) ≤ O
(
(1−√

µL)K
)
.


