Exercise sheet 1: Around gradient descent

M2 MIAGE ID Apprentissage

October 1st, 2024

Dauphine | PSL 🔀

Exercise 1.1: One-layer neural network (Exam 2021-2022)

In this exercise, we consider the special case of a dataset with scalar labels/outputs, i.e. of the form $\{(x_i, y_i)\}_{i=1}^n$ with $x_i \in \mathbb{R}^{d_x}$ and $y_i \in \mathbb{R}$ for every $i = 1, \ldots, n$. We build a simple neural network with no activation function and one homogeneous linear layer to predict the value y_i from the vector x_i , resulting in the model

$$egin{array}{rcl} h^{lin}(\cdot;oldsymbol{w}):&\mathbb{R}^{d_x}&\longrightarrow&\mathbb{R}\ &oldsymbol{x}&\longmapsto&oldsymbol{W}_1oldsymbol{x}, \end{array}$$

with $W_1 \in \mathbb{R}^{1 \times d_x}$. Letting $d = d_x$ and $w = W_1^T \in \mathbb{R}^d$, finding the best model amounts to solving

$$\underset{\boldsymbol{w}\in\mathbb{R}^d}{\text{minimize}} f^{lin}(\boldsymbol{w}) := \frac{1}{2n} \sum_{i=1}^n (\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_i - y_i)^2.$$
(2)

- a) What class of problems does problem (2) belong to?
- b) The objective function f^{lin} is $C_L^{1,1}$, i.e. its gradient is *L*-Lipschitz continuous. If *L* is known, how can its value be used in an algorithm such as gradient descent?
- c) Problem (2) is convex with a C^1 objective function.
 - i) What can then be said about a point \bar{w} such that $\nabla f^{lin}(\bar{w}) = \mathbf{0}_{\mathbb{R}^d}$?
 - ii) What is the convergence rate of gradient descent on this problem?
 - iii) What is the convergence rate of accelerated descent on a convex problem? Is it better or worse than that of the previous question ?
- d) Suppose that the data is such that the objective f^{lin} is μ -strongly convex, in addition to the properties already mentioned above.
 - i) Let $w, v \in \mathbb{R}^d$ be two points such that $\nabla f^{lin}(w) = \nabla f^{lin}(v) = \mathbf{0}_{\mathbb{R}^d}$. What can we say about v and w?
 - ii) What is the convergence rate of accelerated gradient on this problem?

Exercise 1.2: Two-layer linear neural networks (exam 2021-2022)

We consider a dataset $\{(\boldsymbol{x}_i, \boldsymbol{y}_i)\}_{i=1}^n$ where $\boldsymbol{x}_i \in \mathbb{R}^{d_x}$ and $\boldsymbol{y}_i \in \mathbb{R}^{d_y}$. We wish to learn a mapping from \mathbb{R}^{d_x} to \mathbb{R}^{d_y} that correctly outputs \boldsymbol{y}_i when given \boldsymbol{x}_i as an input. Our model will be that of a two-layer linear neural network :

$$egin{array}{rcl} m{h}(\cdot;m{w}):& \mathbb{R}^{d_x}&\longrightarrow& \mathbb{R}^{d_y}\ &m{x}&\longmapsto&m{W}_2(m{W}_1m{x}+m{b}_1)+m{b}_2, \end{array}$$

where $W_1 \in \mathbb{R}^{d_x \times m}$, $b_1 \in \mathbb{R}^m$, $W_2 \in \mathbb{R}^{m \times d_y}$ and $b_2 \in \mathbb{R}^{d_y}$. We will consider h as being parameterized by $w \in \mathbb{R}^d$, with $d = d_x m + m + m d_y + d_y$ and w concatenating all coefficients from W_1, b_1, W_2, b_2 . Our goal is to determine a value of w so that $h(x_i; w) \approx y_i$, which we formalize using the squared loss $(h, y) \mapsto \frac{1}{2} ||h - y||^2$.

Overall, we obtain the following problem:

$$\underset{\boldsymbol{w}\in\mathbb{R}^{d}}{\text{minimize}} f(\boldsymbol{w}) := \frac{1}{2n} \sum_{i=1}^{n} \|\boldsymbol{h}(\boldsymbol{x}_{i}; \boldsymbol{w}) - \boldsymbol{y}_{i}\|^{2}.$$
(4)

It can be shown that the function f is C^1 .

- a) Give a lower bound on the objective function of problem (4).
- b) In general, problem (4) is nonconvex. What does this imply about its local minima?
- c) Suppose that w^* is a solution of (4). What can be said about the derivative of f at w^* ?
- d) Write down the gradient descent iteration for problem (4) with an arbitrary stepsize.
- e) Given that the problem is nonconvex, what is the theoretical convergence rate of gradient descent applied to (4)?

Exercise 1.3: Matrix completion (exam 2022-2023)

Let $X \in \mathbb{R}^{d \times d}$ be a data matrix such that only a subset of its entries $S \subset \{1, \ldots, d\}^2$ are known with $|S| = n \le d^2$. We consider the problem

$$\underset{\boldsymbol{W}\in\mathbb{R}^{d\times d}}{\text{minimize}} f(\boldsymbol{W}) := \frac{1}{2n} \sum_{(i,j)\in\mathcal{S}} ([\boldsymbol{W}]_{ij} - [\boldsymbol{X}]_{ij})^2.$$
(5)

- a) When $S = \{1, \dots, d\}^2$, justify that $W^* = X$ is the unique solution of the problem.
- b) Problem (5) is convex in the coefficients of W. Letting $w \in \mathbb{R}^{d^2}$ denoting the column vector formed by stacking all columns of the matrix W in order, we can reformulate the problem as

$$\underset{\boldsymbol{w}\in\mathbb{R}^{d^2}}{\text{minimize}}\,\hat{f}(\boldsymbol{w}) := \frac{1}{2n} \sum_{(i,j)\in\mathcal{S}} ([\boldsymbol{w}]_{i+(j-1)d} - [\boldsymbol{X}]_{ij})^2. \tag{6}$$

The function \hat{f} is convex and \mathcal{C}^1 .

- i) What convergence rate guarantee can we provide on gradient descent when applied to problem (6)? What quantity does this rate apply to?
- ii) What is the corresponding convergence rate for the accelerated gradient method due to Nesterov? Is it better than that of gradient descent?
- iii) When $n = d^2$, the function \hat{f} is a strongly convex quadratic function. Aside from Nesterov's method, what other approach can we use to obtain better convergence rates than gradient descent?
- c) We now suppose that the data matrix X is symmetric, positive semidefinite and of rank $1 \ll d$. In this setting, rather than seeking an arbitrary matrix W to approximate X, we can force the matrix to be rank one by writing it uu^{T} where $u \in \mathbb{R}^{d}$. Problem (5) then becomes

$$\underset{\boldsymbol{u}\in\mathbb{R}^d}{\operatorname{minimize}} \tilde{f}(\boldsymbol{u}) := \frac{1}{2n} \sum_{(i,j)\in\mathcal{S}} ([\boldsymbol{u}\boldsymbol{u}^{\mathrm{T}}]_{ij} - [\boldsymbol{X}]_{ij})^2.$$
(7)

The objective function of problem (7) is C^2 and nonconvex.

- i) State the first-order necessary optimality conditions for problem (7).
- ii) What is the convergence rate of gradient descent for this problem? What quantity does this rate apply to?
- iii) Under certain assumptions on X and S, one can show that all the local minima of this problem are global. In that case, what technique guarantees almost surely that gradient descent will converge to such a point?

Solutions

Solutions to Exercise 1.1

a) The function f(W) is always nonnegative (as a sum of squares, i.e. nonnegative numbers). When $n = d^2$, we have that

$$f(\mathbf{W}) = 0 \quad \Leftrightarrow \quad ([\mathbf{W}]_{ij} - [\mathbf{X}]_{ij})^2 = 0 \; \forall (i,j) \in \{1,\ldots,d\}^2 \quad \Leftrightarrow \quad \mathbf{W} = \mathbf{X}.$$

As a result, the problem has a single global minimum given by $W^* = X$.

- b) Convex formulation
 - i) Since the problem is convex, we know that after $K \ge 1$ iterations of gradient descent, the iterate w_K satisfies

$$\hat{f}(\boldsymbol{w}_K) - \min_{\boldsymbol{w} \in \mathbb{R}^{d^2}} \hat{f}(\boldsymbol{w}) \le \mathcal{O}\left(\frac{1}{K}\right)$$

Gradient descent thus converges at a rate $\frac{1}{K}$.

- ii) The rate for accelerated gradient on such a problem is $\frac{1}{K^2}$, which is a better rate as it converges more quickly to 0.
- iii) When \hat{f} is a strongly convex quadratic function, the heavy-ball method (aka Polyak's method) attains the optimal rate of convergence for strongly convex functions, which is better than gradient descent. *NB: The value of that rate is not required to answer the question.*
- c) (Nonconvex case)
 - i) If $\bar{u} \in \mathbb{R}^d$ is a local minima of problem (7), then $\nabla \tilde{f}(\bar{u}) = 0$.
 - ii) For this problem, after $K \ge 1$ iterations of gradient descent, we have

$$\min_{0 \le k \le K-1} \|\nabla f(\boldsymbol{w}_k)\| \le \mathcal{O}\left(\frac{1}{\sqrt{K}}\right),$$

hence the convergence rate of gradient descent is in $\frac{1}{\sqrt{K}}$.

iii) Initializing gradient descent with a random point guarantees almost surely that it will converge to a local minima under the assumptions of this question.

Solutions to Exercise 1.2

- a) The value 0 is a lower bound on this objective function, since it is always nonnegative. Any value less than or equal to 0 also works.
- b) The local minima of a nonconvex problem are not necessarily global minima.
- c) By the first-order necessary conditions, if w^* is a solution of (4), then its gradient is zero, that is $\nabla f(w^*) = 0$.

d) Using an arbitrary stepsize $\alpha_k > 0$, the kth iteration of gradient descent can be written as

$$\boldsymbol{w}_{k+1} = \boldsymbol{w}_k - \alpha_k \nabla f(\boldsymbol{w}_k).$$

e) For a nonconvex problem such as (4), it can be guaranteed that, after K ≥ 1 iterations of gradient descent, one has

$$\min_{0 \le k \le K-1} \left\| \nabla f(\boldsymbol{w}_k) \right\| \le \mathcal{O}\left(\frac{1}{\sqrt{K}}\right).$$

Solutions to Exercise 1.3

- a) Problem (2) is a linear least-squares problem.
- b) If a Lipschitz constant L for the gradient is known, the stepsize can be chosen as the constant value $\alpha = \frac{1}{L}$. NB: Other values less than $\frac{2}{L}$ would also guarantee decrease of the function value at every iteration.

c)

- i) Since the problem is convex, any point \bar{w} such that $\nabla f^{lin}(\bar{w}) = \mathbf{0}_{\mathbb{R}^d}$ is a global minimum.
- ii) On such a convex problem, after $K \ge 1$ iterations of gradient descent, one obtains that

$$f(\boldsymbol{w}_k) - \min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w}) \le \mathcal{O}\left(\frac{1}{K}\right).$$

iii) On a convex problem, after $K \ge 1$ iterations of accelerated gradient, one obtains that

$$f(\boldsymbol{w}_k) - \min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w}) \le \mathcal{O}\left(rac{1}{K^2}
ight),$$

which is better than the rate for gradient descent since it converges more rapidly towards 0.

d)

- i) Since the function is strongly convex and continuously differentiable, it has a unique global minimum, which is the unique solution of the equation $\nabla f^{lin}(w) = \mathbf{0}_{\mathbb{R}^d}$. Therefore, if w and v satisfy $\nabla f^{lin}(w) = \nabla f^{lin}(v) = \mathbf{0}_{\mathbb{R}^d}$, then we must have v = w.
- ii) On a strongly convex problem, after $K \ge 1$ iterations of accelerated gradient, one obtains that

$$f(\boldsymbol{w}_k) - \min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w}) \le \mathcal{O}\left((1 - \sqrt{\mu}L)^K \right)$$