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– 2025.01.17: Second version of the document.

– 2024.12.20: First version of the document (discussed in class).

Assignment

• This project follows the template of the course notebooks by mixing optimization questions
with implementation tasks.

• Students may discuss the project with their classmates, but they should submit the project in
groups of n students with n ∈ {1, 2}.

• Students may submit their sources in either French or English.

• Students are expected to submit sources that include:

– Their answers to the questions (in PDF or notebook format).

– A Python script or a notebook to run the methods and reproduce the results.

• Please send your sources to clement.royer@lamsade.dauphine.fr under the form of a
compressed folder. Those sources must include the first and last name of every member of the
group.

• The deadline to send the sources is March 21, 2025 AOE (Anywhere On Earth).

https://www.lamsade.dauphine.fr/%7Ecroyer/ensdocs/OID/ProjOID.pdf
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Project: Regularization and optimization

Introduction

In the course, we covered problems of the form

minimize
w∈Rd

f(w) =
1

n

n∑
i=1

fi(w), (1)

where each fi depends on a certain sample from a dataset of size n. The function f is called a
data-fitting term, since it quantifies how good a model is with respect to fitting the data.

Standard practice in optimization for machine learning consists in regularizing a problem, i.e.
replacing problem (1) by

minimize
w∈Rd

f(w) + λr(w), (2)

where λ > 0 and r : Rd → R is a regularization term used to enforce specific properties on the
solution. This is particularly useful when problem (1) has multiple solutions, but regularization also
helps in a less direct way, e.g. by improving the performance of the model corresponding to the
solution of (1) on unseen data.

In this project, we consider ℓ2 regularization, arguably the most classical regularization choice in
the literature. Our final goal is to assess the interest of ℓ2 regularization for improving generalization.
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1 Optimization with ℓ2 regularization

Given a (data-fitting) function f : Rd → R, we consider the family of problems

minimize
w∈Rd

f(w) +
λ

2
∥w∥2, (3)

where ∥w∥2 =
∑d

j=1w
2
j and λ ≥ 0 is a regularization parameter. When λ = 0, we recover the

original problem (1). When λ → ∞, one can show that the problem (3) is equivalent to

minimize
w∈Rd

1

2
∥w∥2. (4)

Question 1.1 Consider the toy function f toy(w) = 1
4∥Xw − y∥2 with

X =

[
1 0
0 0

]
and y =

[
1
1

]
.

As seen in class, this function is C1 and convex.

a) Consider the problem
minimize

w∈Rd
f toy(w). (5)

Show that f toy has an infinite number of global minima, and give a characterization of the set
of global minima for f toy.

b) Consider the problem

minimize
w∈Rd

f toy(w) +
λ

2
∥w∥2 (6)

with λ > 0. Show that problem (6) has a unique solution.

c) Suppose now that we are given a new data sample

(
x+ =

[
−1
0

]
, y+ = 1

)
. Given a global

minimum w0 for minimizew∈Rd f toy(w) and the global minimum wλ for (6), show that there is
a range of values for λ such that

1

2
([x+]Twλ − y+)2 <

1

2
([x+]Tw0 − y+).

Question 1.2 The gradient of w 7→ λ
2∥w∥2 is w 7→ λw. Using this expression, write down the

iteration of gradient descent applied to problem (3) with a generic stepsize. How does this iteration
change as λ increases? How does this illustrate the impact of regularization at every iteration?
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2 Experiments on synthetic data

In this part, we will consider the synthetic data used in the course notebooks, in the context of linear
regression.

Question 2.1 Using the functions given in the lab sessions, generate two datasets for linear regression
based on the same ground truth vector.

Question 2.2 Run gradient descent with and without regularization on the first instance, then
compute the objective function corresponding to the second instance. Do you observe that using
regularization in the first instance improves the objective function of the second instance?

Question 2.3 Reproduce the experiment of Question 2.2 using (batch) stochastic gradient instead
of gradient descent.

3 Binary classification on real-world data

In this final part, we will apply our techniques to a classification problem based on real-world data.

3.1 Dataset

We will rely on datasets from the libsvm repository, that can be downloaded from

https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

Recommended datasets are a9a,covtype.binary,ijcnn1. To load the dataset in Python, students
may use the routine

sklearn.datasets.load svmlight file

from the scikit-learn library.

Implementation 3.1 Select a dataset from the libsvm repository. The dataset should have at least
20 features and 1,000 training samples. It should also have both a training set (used for optimization)
and a testing set.

3.2 Optimization problem

Let {(xi, yi)}ni=1 denote the samples from the training set of the dataset. We formulate the following
finite-sum optimization problem

minimize
w∈Rd

g(w) :=
1

n

n∑
i=1

gi(w), gi(w) :=

(
yi −

1

1 + exp(−xT
i w)

)2

, (7)

where This problem is nonconvex in general. The function t 7→ 1
1+exp(−t) is called the sigmoid

function. For any i = 1, . . . , n, the function gi is C1, with its gradient being given by

∇gi(w) = −
2 exp(xT

i w)
(
exp(xT

i w)(y − 1) + y
)

(1 + exp(xT
i w))3

xi. (8)

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Implementation 3.2 Given your dataset, implement the associated codes for gS , ∇gS where S is
a set of random indices in {1, . . . , n}.

In addition to the optimization problem above, we will be interested in the generalization capa-
bilities of the model obtained by solving problem (7). Let {x̃i, ỹi}mi=1 denote the samples from the
testing set. Given a vector w ∈ Rd, our goal is to obtain a good value for

g̃(w) =
1

m

m∑
i=1

(
ỹi −

1

1 + exp(−x̃T
i w)

)2

. (9)

Since the training and testing datasets are supposed to originate from the same distribution, we
expect that a solution to problem (7) will have good performance on the testing dataset, i.e. will
yield a low value of g̃(w).

3.3 Comparison of the algorithms

Our goal is now to assess the interest of ℓ2 regularization for this problem. We will thus consider the
family of problems

minimize
w∈Rd

g(w) +
λ

2
∥w∥2. (10)

Implementation 3.3 Implement (batch) stochastic gradient for problem (10), and run the method
for several values of the regularization parameter.

Question 3.1 Compare the final values of the data-fitting term g for all methods, as well as that of
the testing loss g̃. Can you find a value for λ that improves the testing error compared to λ = 0?
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