
Optimization for Machine Learning

Clément W. Royer

Lecture notes - M2 MIAGE ID Apprentissage - 2024/2025

• The last version of these notes can be found at:
https://www.lamsade.dauphine.fr/∼croyer/ensdocs/OID/PolyOID.pdf.

• Comments, typos, etc, can be sent to clement.royer@lamsade.dauphine.fr.
Thanks to Sébastien Kerleau and Florian Le Bronnec for their feedback on earlier versions of
these notes.

• Version history:

– 2024.09.23: First version of the lecture notes with Chapters 1 and 2.

• Learning goals:

– Understand the specifics of optimization problems, and the interest of certain formulations
over others.

– Given an optimization problem, select an algorithm well suited for solving the problem.

– Analyze the theoretical and practical properties of a particular algorithm.

– Identify challenges posed by optimization in a data science context, and ways to address
these challenges.

Note: This course was previously taught in M2 MIAGE ID Apprentissage under the name ”Op-
timization for Data and Decision Sciences”.

https://www.lamsade.dauphine.fr/%7Ecroyer/ensdocs/OML/PolyOML.pdf

Contents

1 Introduction to optimization 4
1.1 About optimization . 4

1.1.1 The optimization process . 4

1.1.2 Modern optimization . 5

1.2 The optimization problem . 6

1.2.1 Mathematical background . 6

1.2.2 First definitions . 10

1.2.3 Convexity . 11

1.3 Examples of optimization problems in ML . 13

1.3.1 Linear regression . 13

1.3.2 Logistic regression . 14

1.3.3 Linear SVM . 15

1.3.4 Neural networks . 15

1.4 Optimization algorithms . 16

1.4.1 The algorithmic process . 17

1.4.2 Convergence and convergence rates . 17

1.4.3 Popular optimization packages . 18

2 Unconstrained optimization 19
2.1 Gradient descent . 19

2.1.1 Algorithm . 19

2.1.2 Choosing the stepsize . 21

2.1.3 Theoretical analysis for gradient descent . 22

2.2 Acceleration . 25

2.2.1 Introduction: the momentum principle . 25

2.2.2 Nesterov’s accelerated gradient method . 26

2.2.3 Other accelerated methods . 27

Appendix A Notations and mathematical tools 30
A.1 Notations . 30

A.1.1 Generic notations . 30

A.1.2 Scalar and vector notations . 30

A.1.3 Matrix notations . 31

A.2 Mathematical tools . 32

A.2.1 Vector linear algebra . 32

2

Opti. ML - ID App. 2023/2024 3

A.2.2 Matrix linear algebra . 34
A.2.3 Calculus . 36

Chapter 1

Introduction to optimization

1.1 About optimization

Optimization is a field of study that is concerned with making the best possible decision out of a set
of alternatives. Mathematical optimization provides a framework to model optimization problems
using mathematical language. We provide below a broad definition of optimization problems in the
mathematical sense, and connect it to the concept of solving such a problem.

1.1.1 The optimization process

Most optimization problems are readily formulated in plain language, and it can be difficult to extract
the core ideas behind the optimization task. On the contrary, a mathematical optimization problem
is a well-identified object, that corresponds to the following definition.

Definition 1.1.1 A mathematical optimization problem consists of three key components:

• An objective function, that quantifies the quality of a decision. If a better decision yields a
smaller objective value, the problem is called a minimization problem. On the other hand, if a
better decision yields a larger objective value, the problem is called a maximization problem.

• A number of decision variables: those are the knobs that can be turned to change the decision
and, as a result, the value of the objective function. The goal of optimization is to determine
what are the best (optimal) values of the decision variables relatively to the objective function.

• A set of constraints, that specify requirements on the decision variables that must be satisfied
for the decision to be valid.

An optimization procedure consists in minimizing or maximizing an objective function with respect
to the decision variables subject to constraints on those variables.

Remark 1.1.1 In practice, many optimization problems are subject to hidden or implicit constraints,
that may not appear in the optimization formulation yet can have a significant effect on an algorithm’s
performance. The absence of these constraints in the formulation may be due to misspecification
(not including a positivity constraint for a variable corresponding to a mass, for instance), but this
phenomenon often has a more subtle cause. In simulation-based optimization, where the objective
function corresponds to running expensive computational codes, an error may be triggered by certain

4

Opti. ML - ID App. 2023/2024 5

values of the decision variables that may not be known a priori. Such constraints must then be
addressed by an algorithm in real time.

Any concrete problem goes through a modeling phase that produces a mathematical optimiza-
tion problem. In order to solve this problem, we then use optimization algorithms, often designed
to be implemented and run on a computer. Such methods typically output a candidate solution (or,
possibly, that no solution exists), which may or may not form an appropriate answer to the problem.
If needed, the optimization process can go over another modeling phase followed by another solve.
In practice, it is typical that the optimization process includes a discussion phase with experts from
the application domain.

Remark 1.1.2 Numerical optimization typically obeys the following principles:

• There is no universal algorithm. Every method can be efficient on a certain class of problems
and perform poorly on another class. Studying the structure of a problem of interest helps in
choosing the best algorithm for solving this problem.

• There may be a big gap between theory and practice. Finite-precision arithmetic can introduce
round-off errors that result in worse practical performance than what the theory predicts.
Conversely, theory (such as complexity bounds introduced below) can be overly pessimistic,
and much better results can be observed in practice.

• Theory informs practice, and vice-versa. For most optimization problems, one can use math-
ematical formulas to assess whether a solution has been found: these expressions are at the
heart of most of the methods we will describe in this course. More broadly, theoretical guaran-
tees can help guiding the optimization process beyond pure heuristics and guesses. Meanwhile,
some algorithms have demonstrated success without being endowed with theoretical proper-
ties: such phenomena are common, and motivate researchers to explain this behavior using
mathematical tools.

1.1.2 Modern optimization

Numerical optimization started during the 1940s. Major theoretical advances were achieved during
the 1980s, along with significant algorithmic developments, that leverage the limited computing
power of this era. The next two decades saw the rise of computing power, leading to numerous
successes of optimization techniques. This trend continues to this day, albeit with a key change of
paradigm.

Indeed, as data becomes more prevalent, optimization problems now involve massive amounts
of data in the calculation of their objective. In addition to the challenges posed by the use of such
datasets, possibly in a distributed fashion, other difficulties arise due to the fact that the solutions
of these problems must generalize to yet unseen data.

In this course, we will go on a tour d’horizon of optimization problems and algorithms, with a
focus on methods that have been successful in classical industrial settings as well as new paradigms
such as machine learning. Our presentation will cover theoretical, algorithmic and practical aspects.

6 Opti. ML - ID App. 2023/2024

1.2 The optimization problem

We now introduce the mathematical foundations behind optimization. As a field of study, optimiza-
tion is defined as the process of making the best decision out of a set of alternatives.

Mathematically, we write an optimization problem using three components:

• An objective function, i.e. a criterion that measures how good a given decision is, that we
want to minimize or maximize depending on the context;

• Decision variables, that represent the knobs we can turn to change the decision;

• Constraints, i.e. conditions that the decision variables must satisfy in order for the decision
to be acceptable.

The general form of the optimization problems considered in these notes will be the following

minimize
w∈Rd

f(w) subject to w ∈ F . (1.2.1)

In problem (1.2.1), f is the objective function (that we want to minimize), w is the vector of decision
variables defined over a definition set Rd, and F is a set encompassing all the constraints on the
decision variables. This set is called the feasible set, and is often described using mathematical
expressions.

There are multiple ways of formulating an optimization problem given a description of this problem
in plain language: constraints can be expressed in the definition set or in the objective, maximization
can be preferred over minimization, redundant constraints can be added to the problem, etc. Some
formulations will be well suited for theoretical analysis, while others will be efficiently solvable by
modern software.

Definition 1.2.1 Two mathematical optimization problems are called equivalent if the solution of
one is readily obtained from the solution of the other, and vice-versa.

For instance, the minimization problem (1.2.1) has an equivalent reformulation as a maximization
problem when f : Rd → R (i.e. f outputs numerical values):

maximize
w∈Rd

−f(w) subject to w ∈ F .

1.2.1 Mathematical background

Optimization draws from several fields of mathematics, mostly pertaining to linear algebra, topology
and differential calculus. We briefly review the key definitions below.

We will always consider Rd and Rn×d as endowed with their canonical normed vector space
structure; in particular, this means that we will be able to add two vectors (or two matrices), and to
multiply a vector (or a matrix) by a scalar value. It also implies that we can measure the distance
between two elements of these spaces using norms, the most classical of which is defined below.

Definition 1.2.2 (Euclidean norm on Rd) The Euclidean norm (or ℓ2 norm) of a vector w ∈ Rd

is given by:

∥w∥ :=

√√√√ d∑
i=1

w2
i .

Opti. ML - ID App. 2023/2024 7

Definition 1.2.3 (Scalar product on Rd) The scalar product is defined for every w, z ∈ Rd by:

wTz :=
d∑

i=1

wi zi.

One thus has wTz = zTw and wTw = ∥w∥2.

There are natural counterparts to the Euclidean norm and its associated scalar product in a
matrix space.

Definition 1.2.4 (Frobenius norm) For any matrix A ∈ Rn×d, the Frobenius norm is defined by

∥A∥F :=

√√√√ n∑
i=1

d∑
j=1

A2
ij =

√
trace(ATA).

The associated scalar product is the mapping

(A,B) ∈
(
Rn×d

)2
7−→ trace(ATB).

In this course, we will mainly rely on Euclidean norms to measure distance between vectors, and
algorithmic behavior. However, other norms will be used.

Definition 1.2.5 (ℓ1 norm) The ℓ1 norm of a vector w ∈ Rd is defined by:

∥w∥1 :=
d∑

i=1

|wi|.

Both the ℓ1 and ℓ2 norms are special cases of the ℓp norm, defined for any p ∈ [1,∞) by

∀w ∈ Rd, ∥w∥p :=

[
d∑

i=1

|wi|p
]1/p

.

Definition 1.2.6 (ℓ∞ norm) The ℓ∞ norm of a vector w ∈ Rd is defined by:

∥w∥∞ := max
1≤i≤d

|wi|.

Remark 1.2.1 Interestingly, all norms can be defined as optimal values of optimization problems.
This is clear from the definition of the ℓ∞ norm. Below are two optimization problems that yield
this optimal value:

maximize
i∈R

|wi| s.t. i ∈ {1, . . . , d}.

maximize
v∈R

|v| s.t. v ∈ {w1, . . . , wd}.

Notice that these two problems do not have the same decision variables or constraints, however they
both possess a combinatorial structure. 1

1By convention, in these notes, we will always consider optimization problems with real, continuous decision variables.
As illustrated by the ℓ∞ examples, it is indeed possible to model a discrete decision-making problem using continuous
formulations. Our focus in these notes in on continuous optimization problems.

8 Opti. ML - ID App. 2023/2024

Definition 1.2.7 (Matrix inversion) A matrix A ∈ Rd×d is invertible if it exists B ∈ Rd×d such
that BA = AB = Id, where Id is the identity matrix of Rd×d.

In this case, B is the unique matrix with this property: B is called the inverse matrix of A, and
is denoted by A−1.

Definition 1.2.8 (Positive (semi-)definiteness) A symmetric matrixA ∈ Rd×d is positive semidef-
inite if

∀x ∈ Rn, xTAx ≥ 0.

It is called positive definite when xTAx > 0 for every nonzero vector x.

Definition 1.2.9 (Eigenvalues and eigenvectors) Let A ∈ Rd×d. A real λ is called an eigenvalue
of A if

∃v ∈ Rd, ∥v∥ ≠ 0, Av = λv.

The vector v is then called an eigenvector of A associated to the eigenvalue λ.

Theorem 1.2.1 Any symmetric matrix in Rd×d possesses d real eigenvalues.

Notation 1.2.1 Given two symmetric matrices (A,B) ∈ Rd×d, we introduce the following nota-
tions:

• λmin(A)/λmax(A): smallest/largest eigenvalue of A;

• A ⪰ B ⇔ λmin(A) ≥ λmax(B);

• A ≻ B ⇔ λmin(A) > λmax(B).

Following these notations, a matrix A is positive semi-definite (resp. positive definite) if and
only if A ⪰ 0 (resp. A ≻ 0).

Differential calculus We will mostly consider minimization problems involving a smooth objective
function: the term “smooth” can be loosely defined in the optimization or learning literature, but
generally means that the function is as regular as needed for the desired algorithms and analysis
to be applicable. In these notes, we will consider that a smooth function is at least continuously
differentiable.

Definition 1.2.10 (Continuous function) A function f : Rd → Rm is continuous at w ∈ Rd if for
every ϵ > 0, it exists δ > 0 such that

∀v ∈ Rd, ∥v −w∥ ≤ δ =⇒ ∥f(v)− f(w)∥ ≤ ϵ.

Definition 1.2.11 (Lipschitz continuous function) A function f : Rd → Rm is L-Lipschitz con-
tinuous over Rd if

∀(u,v) ∈
(
Rd
)2

, ∥f(u)− f(v)∥ ≤ L ∥u− v∥,

where L > 0 is called a Lipschitz constant.

Opti. ML - ID App. 2023/2024 9

Note that every Lipschitz continuous function is continuous.

Derivatives are ubiquitous in continuous optimization, as they allow to characterize the local
behavior of a function. We assume that the reader is familiar with the concept of derivative of a
function from R → R. A function f : Rd → R is called differentiable at w ∈ Rd if all its partial
derivatives at w exist.

Definition 1.2.12 (Classes of functions) • A function f : Rd → R is continuously differen-
tiable if its first-order derivative exists and is continuous. The set of continously differentiable
functions is denoted by C1(Rd).

• A function f : Rd → R is twice continuously differentiable if f ∈ C1(Rd), its second-order
derivative of f exists and is continuous. The set of twice continously differentiable functions
is denoted by C2(Rd).

Definition 1.2.13 (First-order derivative) Let f ∈ C1(Rd) be a continuously differentiable func-
tion. For any w ∈ Rd, the gradient of f at w is given by

∇f(w) :=

[
∂f

∂wi
(w)

]
1≤i≤d

∈ Rd.

Definition 1.2.14 (Second-order derivative) Let f ∈ C2(Rd) be a twice continuously differen-
tiable function. For any w ∈ Rd, the Hessian of f at w is given by

∇2f(w) :=

[
∂2f

∂wi∂wj
(w)

]
1≤i,j≤d

∈ Rd×d.

The Hessian matrix is symmetric.

Finally, we define an important class of problems involving a Lipschitz continuity assumption.

Definition 1.2.15 (Smooth functions with Lipschitz derivatives) • Given L > 0, the set
C1,1L (Rd) represents the set of all functions f : Rd → R that belong to C1(Rd) such that ∇f
is L-Lipschitz continuous.

• Given L > 0, the set C2,2L (Rd) represents the set of all functions f : Rd → R that belong to
C2(Rd) such that ∇2f is L-Lipschitz continuous.

An important property of such functions is that one can derive upper approximations on their
values, as shown by the following theorem.

Theorem 1.2.2 (First-order Taylor expansion) Let f ∈ C1,1
L (Rd) with L > 0. For any vectors

w, z ∈ Rd, one has:

f(z) ≤ f(w) +∇f(w)T(z −w) +
L

2
∥z −w∥2. (1.2.2)

10 Opti. ML - ID App. 2023/2024

1.2.2 First definitions

Having defined an optimization problem as a mathematical object, we are now able to consider
solving this problem. For simplicity, we will focus on minimization problems of the form:

minimize
w∈Rd

f(w) s.t.w ∈ F , (1.2.3)

with f : Rd → R and F ⊆ Rd. Similar definitions hold for maximization problems.

Definition 1.2.16 (Feasible point) A point w ∈ Rd is called a feasible point of the optimization
problem (1.2.3) if w ∈ F .

If w ̸∈ F , we say that w is infeasible. If F is empty, the problem (1.2.3) is said to be infeasible.
For some optimization problems, the objective function may not be defined at infeasible points.

A solution of problem (1.2.3) must be a feasible point by definition. It should also lead to the
best value in terms of cost function, hence the following definition.

Definition 1.2.17 (Global minimum) A point w∗ ∈ Rd is called a solution or a global minimum
of problem (1.2.3) if

1. w∗ is feasible, i.e. w∗ ∈ F ;

2. f(w∗) ≤ f(w) for any feasible point w ∈ F .

The set of global minima of problem (1.2.3) will be denoted by

argmin
w∈Rd

{f(w) | w ∈ F} ⊂ Rd, (1.2.4)

and the minimal value of the problem will be defined as

min
w∈Rd

{f(w) | w ∈ F} ∈ R ∪ {−∞,+∞}. (1.2.5)

By convention, if f is unbounded below on F ̸= ∅, the minimal value is set to −∞, while it is set
to +∞ if the problem is infeasible.

Definition 1.2.18 (Local minimum) A pointw∗ ∈ Rd is called a local minimum of problem (1.2.3)
if

1. w∗ is feasible, i.e. w∗ ∈ F ;

2. There exists ϵ > 0 such that f(w∗) ≤ f(w) for any feasible point w ∈ F close to w∗ in the
sense that ∥w −w∗∥ ≤ ϵ.

The notion of local minimum is weaker than that of global minimum. In practice, however,
it is often more reasonable to seek local minima, as those can be characterized by mathematical
conditions.

Opti. ML - ID App. 2023/2024 11

Optimality conditions In general, finding global or even local minima is a hard problem. For this
reason, researchers in optimization have developed optimality conditions. These are mathematical
expressions that can be checked at a given point (unlike the conditions above) and help assessing
whether a given point is a local minimum or not.

minimize
w∈Rd

f(w), (1.2.6)

Theorem 1.2.3 (First-order necessary condition) Suppose that the objective function f in prob-
lem (1.2.6) belongs to C1(Rd). Then,

[w∗ is a local minimum of f] =⇒ ∥∇f(w∗)∥ = 0. (1.2.7)

Note that this condition is only necessary: there may exist points with zero gradient that are not
local minima. Indeed, the set of points with zero gradient, called first-order stationary points, also
includes local maxima and saddle points2.

Provided we strengthen our smoothness requirements on f , we can establish stronger optimality
conditions for problem (1.2.6).

Theorem 1.2.4 (Second-order necessary condition) Suppose that the objective function f in
problem (1.2.6) belongs to C2(Rd). Then,

[w∗ is a local minimum of f] =⇒
[
∥∇f(w∗)∥ = 0 and ∇2f(w∗) ⪰ 0

]
. (1.2.8)

From Theorem 1.2.3, first-order stationary points that violate the condition ∇2f(w∗) ⪰ 0 cannot
be local minima. This new condition is thus more precise than the first-order condition, although it
remains a necessary. For an arbitrary function, there may exist points with zero gradient and positive
semidefinite Hessian (termed second-order stationary points) that are not local minima.

On the other hand, and unlike first-order conditions, it is possible to derive a sufficient version
of the second-order optimality conditions, that can be used to certify local optimality.

Theorem 1.2.5 (Second-order sufficient condition) Suppose that the objective function f in
problem (1.2.6) belongs to C2(Rd). Then,[

∥∇f(w∗)∥ = 0 and ∇2f(w∗) ≻ 0
]
=⇒ [w∗ is a local minimum of f] (1.2.9)

By exploiting the second-order derivative, it is thus possible to certify whether a point is a local
minima (note that there could be local minima such that ∇2f(w∗) ⪰ 0). With further assumptions
on the structure of the problem, these optimality conditions can be more informative about minima.
This is the case when the objective function is convex: we detail this property in the next section.

1.2.3 Convexity

Convexity is at its core a geometric notion: before defining what a convex function is, we describe
the corresponding property for a set.

2A vector is a saddle point of a function if it is a local minimum with respect to certain directions and a local
maximum with respect to other directions of the space.

12 Opti. ML - ID App. 2023/2024

Definition 1.2.19 (Convex set) A set C ∈ Rd is called convex if

∀(u,v) ∈ C2, ∀t ∈ [0, 1], tu+ (1− t)v ∈ C.

Example 1.2.1 (Examples of convex sets) The following sets are convex:

• Rd;

• Every line segment of the form {tw|t ∈ R} for some w ∈ Rd;

• Every (Euclidean) ball of the form
{
w ∈ Rd

∣∣∣ ∥w∥22 =∑d
i=1[w]2i ≤ 1

}
.

We now provide the basic definition of a convex function.

Definition 1.2.20 (Convex function) A function f : Rd → R is convex if

∀(u,v) ∈ (Rd)2, ∀t ∈ [0, 1], f(tu+ (1− t)v) ≤ t f(u) + (1− t) f(v). (1.2.10)

Example 1.2.2 The following functions are convex :

• Linear functions of the form w 7→ aTw + b, with a ∈ Rd and b ∈ R;

• Squared Euclidean norm: w 7→ ∥w∥22 = wTw.

If we consider differentiable functions, it is possible to characterize convexity using the derivatives
of the function.

Theorem 1.2.6 Let f : Rd → R be an element of C1(Rd). Then, the function f is convex if and
only if

∀u,v ∈ Rd, f(v) ≥ f(u) +∇f(u)T(v − u). (1.2.11)

Theorem 1.2.7 Let f : Rd → R be an element of C2(Rd). Then, the function f is convex if and
only if

∀w ∈ Rd, ∇2f(w) ⪰ 0. (1.2.12)

Convex functions are particularly suitable for minimization problems as they satisfy the following
property.

Theorem 1.2.8 If f is a convex function, then every local minimum of f is a global minimum.

If the function is differentiable, the optimality conditions as well as the characterization of con-
vexity lead us to the following result.

Corollary 1.2.1 If f is continuously differentiable, every point w∗ such that ∥∇f(w∗)∥ = 0 is a
global minimum of f .

Opti. ML - ID App. 2023/2024 13

Strong convexity The results above can be further improved by assuming that a convex function
is strongly convex, as defined below.

Definition 1.2.21 (Strongly convex function) A function f : Rd → R in C1 is µ-strongly convex
(or strongly convex of modulus µ > 0) if for all (u,v) ∈ (Rd)2 and t ∈ [0, 1],

f(tu+ (1− t)v) ≤ t f(u) + (1− t)f(v)−µ

2
t(1− t)∥v − u∥2.

Theorem 1.2.9 Any strongly convex function has a unique global minimizer.

As for convex functions, there exist characterizations of strong convexity that involve derivatives.

Theorem 1.2.10 Let f : Rd → R be an element of C1(Rd). Then, the function f is µ-strongly
convex if and only if

∀u,v ∈ Rd, f(v) ≥ f(u) +∇f(u)T(v − u)+
µ

2
∥v − u∥2. (1.2.13)

Theorem 1.2.11 Let f : Rd → R be an element of C2(Rd). Then, the function f is µ-strongly
convex if and only if

∀w ∈ Rd, ∇2f(w) ⪰ µI. (1.2.14)

1.3 Examples of optimization problems in ML

1.3.1 Linear regression

Linear least squares is arguably the most classical problem in data analysis. We consider a dataset
{(xi, yi)}ni=1 with xi ∈ Rd and yi ∈ R. Our goal is to compute a linear model that best fits (or
explains) the data. We define this model as a function h : Rd → R, and we parameterize it through
a vector w ∈ Rd, so that for any x ∈ Rd, we have h(x) = xTw. For every example (xi, yi) in the
dataset, we evaluate how we fit the data based on the squared error (xT

i w−yi)
2. We then compute

a model by solving the following optimization problem

minimize
w∈Rd

1

2n
∥Xw − y∥2 + λ

2
∥w∥2. = 1

n

n∑
i=1

1
2

[
(xT

i w − yi)
2 + λ∥w∥2

]
, (1.3.1)

where λ > 0 is a regularization parameter. From an optimizer’s point of view, problem (1.3.1) is
well understood: this is a strongly convex, quadratic problem, and its solution can be computed in
close form.

In a typical linear regression setting, one assumes that there exists an underlying truth but that
the measurements are noisy, i.e.

y = Xw∗ + ϵ,

where ϵ ∈ N (0, I) is a vector with i.i.d. entries following a standard normal distribution: this is
illustrated in Figure 1.1.

In this setting, we wish to compute the most likely value for w∗, while being robust to variance
in the data. To this end, we suppose that y follows a Gaussian distribution of mean Xw and of
covariance matrix I. We also assume a prior Gaussian distribution on the entries of w, in order to

14 Opti. ML - ID App. 2023/2024

Figure 1.1: Noisy data generated from a linear model with Gaussian noise.

reduce the variance with respect to the data. As a result, an estimate of w∗, called the maximum a
posteriori estimator, can be computed by solving

maximize
w∈Rd

L(y1, . . . , yn;w) :=

[
1√
2π

]m
exp

(
−1

2

m∑
i=1

(xT
i w − yi)

2 − λ

2
∥w∥2

)
. (1.3.2)

The solutions of this maximization problem are the same than the solutions of the linear least-squares
problem (1.3.1). The resulting solution can be shown to possess very favorable statistical properties:
in particular, for λ close to 0, its expected value is close to w∗.

Linear regression (with or without regularization) has been extensively studied in optimization
and statistics; however, when the number of samples is extremely large, it still poses a number of
challenges in practice, as the solution of the problem cannot be computed exactly.

1.3.2 Logistic regression

As in Section 1.3.1, we consider a dataset {(xi, yi)}ni=1 where xi ∈ Rd are feature vectors, and the yis
represent binary labels. We wish to build a linear classifier x 7→ wTx to perform this classification,
i. e. identify the correct label from the feature. We first suppose that yi ∈ {−1,+1}. To model
these discrete-valued labels, we introduce an odds-like function

p(x;w) = (1 + ex
Tw)−1 ∈ (0, 1).

Given this function, our goal is to choose the model w such that{
p(xi;w) ≈ 1 if yi = +1;
p(xi;w) ≈ 0 if yi = −1.

Given this goal, we want to build an objective function that measures the error between our model
and the labels according to the property above. Therefore, we penalize situations in which yi = +1

Opti. ML - ID App. 2023/2024 15

and p(xi;w) is close to 0, or yi = −1 and p(xi;w) is close to 1. This results in the so-called logistic
loss, which is a function from Rd to R defined by

∀w ∈ Rd, f(w) =
1

n

 ∑
yi=−1

ln
(
1 + e−xT

i w
)
+
∑

yi=+1

ln
(
1 + ex

T
i w
) . (1.3.3)

The motivation behind introducing the logarithm of the function p is twofold. On the one hand,
it provides a statistical interpretation of the loss as a joint distribution; on the other hand, the
derivatives of this function have a more favorable structure.

Given this objective function, the logistic regression problem is given by

minimize
w∈Rd

1

n

 ∑
yi=−1

ln
(
1 + e−xT

i w
)
+
∑

yi=+1

ln
(
1 + ex

T
i w
) (1.3.4)

This is a convex, smooth problem (though not a strongly convex one), that can be made strongly
convex by adding a regularizing term (see Chapter ??).

1.3.3 Linear SVM

To illustrate the role of optimization in data-related applications, we consider a binary classification
problem, illustrated in Figure 1.2.

The red circles and blue squares appear at the same locations on all three figures : they represent
data samples identified by their coordinates, while their color or shape represents a certain class
they belong to. Our goal is to compute a linear classifier, that is, a separator of the two classes
corresponding to a linear function. Each of the three figures shows a separator that achieves the task
of classifying the data (the separator is the same for the middle and right plots): in that sense, the
task involving the samples has been performed. However, if we envision the samples as being part
of a (much) larger dataset, represented by the blue and red blobs, it becomes clear that the best
classifier is the one on the rightmost figure.

These observations can be modeled and summarized using a mathematical framework. Let
x1, . . . ,xn be n vectors of Rd, and suppose that each vector xi is given a label y(xi) ∈ {−1, 1}
(say, −1 for a red point and 1 for a blue point). Then, one can translate the binary classification
problem into the following optimization problem:

minimize
u∈Rd

v∈R

1

n

n∑
i=1

max
{
1− y(xi)(x

T
i u− v), 0

}
(1.3.5)

Here we seek a linear function defined by x 7→ xTu− v: it thus suffices to compute its coefficients,
given by the vector u and the scalar v (see Section ?? for a formal definition of these concepts).

1.3.4 Neural networks

Neural networks have enabled the most impressive, recent advances in perceptual tasks such as
image recognition and classification. Thanks to the increase in computational capabilities over the
past decade, it is now possible to train extremely deep and wide neural networks, so that they can
learn efficient representations of the data.

16 Opti. ML - ID App. 2023/2024

Figure 1.2: A sample for binary classification (red circles/blue squares) and the associated distribution
(light red set/light blue set). A same linear classifier is shown on the left and middle plot: although
it classifies the samples correctly, its closeness to several data points make it sensitive to the data,
and prevents it from correctly classifying the distribution. On the contrary, the linear classifier on
the right plot (that has a maximal margin of separation) provides a better classification, and is
able to generalize to the distributions. Source : S. J. Wright and B. Recht, Optimization for Data
Analysis [3].

Given an input vector xi ∈ Rd0 , a neural network represents a prediction function h : Rd0 → RdJ ,

which applies a series of transformations in layers xi = x
(0)
i 7→ x

(1)
i 7→ · · · 7→ x

(J−1)
i 7→ x

(J)
i . The

j-th layer typically performs the following transformation:

x
(j)
i = σ

(
W jx

(j−1)
i + bj

)
∈ Rdj , (1.3.6)

where W j ∈ Rdj×dj−1 , bj ∈ Rdj and σ : Rdj → Rdj is a componentwise nonlinear function,

e.g. σ(y) =
[

1
1+exp(−yi)

]
i
(sigmoid function) or σ(y) = [max(0, yi)]i. As a result, we have

x
(J)
i = h(xi;w), where w ∈ Rd gathers all the parameters {(W 1, b1), . . . , (W J , bJ)} of the layers.
The optimization problem corresponding to training this neural network architecture involves a

training set {(xi, yi)}ni=1 and the choice of a loss function ℓ. It usually results in the following
formulation

minimize
w∈Rd

1

n

n∑
i=1

ℓ (h(xi;w), yi) . (1.3.7)

This optimization problem is highly nonlinear and nonconvex in nature, which makes it particularly
difficult to solve using algorithms such as gradient descent. Moreover, it typically involves costly
algebraic operations, as the number of layers and/or parameters is tremendously large in modern
deep neural network architectures. Therefore, problem (1.3.7) also possesses characteristics that are
not accounted for in its formulation. The optimization algorithms that efficiently tackle this problem
are those that can both guarantee convergence and perform well in practice.

1.4 Optimization algorithms

The field of optimization can be broadly divided into three categories:

• Mathematical optimization is concerned with the theoretical study of complex optimization
formulations, and the proof of well-posedness of such problems (for instance, prove that their
exist solutions);

Opti. ML - ID App. 2023/2024 17

• Computational optimization deals with the development of software that can solve a family of
optimization problems, through careful implementation of efficient methods;

• Algorithmic optimization lies in-between the previous two categories, and aims at proposing
new algorithms that address a particular issue, with theoretical guarantees and/or validation
of their practical interest.

These notes cover material from the third category of optimization activities. The design of opti-
mization algorithms (also called methods, or schemes) is a particularly subtle process, as an algorithm
must exploit the theoretical properties of the problem while being amenable to implementation on a
computer.

1.4.1 The algorithmic process

Most numerical optimization algorithms do not attempt to find a solution of a problem in a direct
way, and rather proceed in an iterative fashion. Given a current point, that represents the current
approximation to the solution, an optimization procedure attempts to move towards a (potentially)
better point: to this end, the method generally requires a certain amount of calculation.

Suppose we apply such a process to the problem minw∈Rd f(w), resulting in a sequence of
iterates {wk}k. Ideally, these iterates obey one of the scenarios below:

1. The iterates produced get increasingly close to a solution, i. e.

∥wk −w∗∥ → 0 when k →∞.

Although w∗ is generally not known in practice, such results can be guaranteed by the theory,
for instance on strongly convex problems.

2. The function values associated with the iterates get increasingly close to the optimum, i. e.

f(wk)→ f∗ when k →∞,

As for the case above, f∗ may not be known, but it can still be possible to prove convergence
for certain algorithms and function classes (typically strongly convex, smooth functions).

3. The first-order optimality condition gets close to being satisfied, that is, f ∈ C1(Rd) and

∥∇f(wk)∥ → 0 when k →∞.

Out of the three conditions, the last one is the easiest to track as the algorithm unfolds: it is,
however, only a necessary condition, and does not guarantee convergence to a local minimum for
generic, nonconvex functions. On the other hand, the first two conditions can only be measured
approximately (by looking at the behavior of the iterates and enforcing decrease in the function
values), but lead to stronger guarantees.

1.4.2 Convergence and convergence rates

The typical theoretical results that optimizers aim at proving for algorithms are asymptotic, as shown
above: they only provide a guarantee in the limit. In practice, one may want to obtain more precise
guarantees, that relate to a certain accuracy target that the practitioner would like to achieve. This
led to the development of global convergence rates.

18 Opti. ML - ID App. 2023/2024

Example 1.4.1 (Global convergence rate for the gradient norm) Given an algorithm applied to
minw∈Rd f(w) that produces a sequence of iterates {wk}, we say that the method is O(1/k) for
the gradient norm, or ∥∇f(wk)∥ = O

(
1
k

)
if

∃C > 0, ∥∇f(wk)∥ ≤
C

k
∀k.

Such rates allow to quantify how much effort (in terms of iterations) is needed to reach a certain
target accuracy ϵ > 0. This leads to the companion notion of worst-case complexity bound.

Example 1.4.2 (Worst-case complexity for the gradient norm) Given an algorithm applied to
minw∈Rd f(w) that produces a sequence of iterates {wk}, we say that the method has a worst-case
complexity of O

(
ϵ−1
)
for the gradient norm if

∃C > 0, ∥∇f(wk)∥ ≤ ϵ when k ≥ C

ϵ
.

Such results are quite common in theoretical computer science or statistics, which partly explain
their popularity in machine learning. In optimization, they have been developed for a number of
years in the context of convex optimization but have only gained momentum in general optimization
over the last decade.

1.4.3 Popular optimization packages

Although a thorough numerical study is out of the scope of this course, we briefly mention popular
choices for implementing optimization methods, either for industrial use or as research prototypes.

The most popular programming languages for optimization are C/C++/Fortran for high per-
formance implementations, with Python and Julia raising increasing interest. The use of MAT-
LAB/Octave is also widespread throughout the optimization community for prototyping (i.e. rapid
and simple validation of an implementation), along with Python and Julia,

In addition to programming languages, optimizers have developed modeling languages that help
bringing the code and the mathematical formulation of a problem closer. The broad-spectrum lan-
guages GAMS/AMPL/CVX are reknown examples; other languages, that are more domain-oriented,
include MATPOWER and PyTorch.

Finally, there are many commercial solvers available, with CPLEX and Gurobi being arguably
some of the most efficient for certain classes of problems. Some of those solvers are implemented in
standard tools such as Microsoft Excel. Open-source codes are also quite popular, again fueled by
the massive production of such implementations in the learning community. As far as optimization
is concerned, the COIN-OR platform provides a good interface to all of these methods.

Chapter 2

Unconstrained optimization

In this chapter, we study more general nonlinear optimization problems of the form

min
w∈Rd

f(w). (2.0.1)

We make the following assumption on the objective function.

Assumption 2.0.1 The objective function f in (2.0.1) is C1,1L (Rd) for L > 0, and bounded below
by flow ∈ R (i.e. f(w) ≥ flow ∀w ∈ Rd).

We will design and analyze algorithms that exploit gradient information to move towards better
points. Our theoretical results will consist in complexity bounds and convergence rates.

2.1 Gradient descent

The gradient descent algorithm is arguably the most classical technique in unconstrained, smooth
optimization. It is based on the following principle, derived from the first-order optimality condi-
tion (1.2.7).

For any vector w ∈ Rd, two cases can occur:

1. Either ∇f(w) = 0 and w is possibly a local minimum (when f is convex, we know that w is
necessarily a global minimum);

2. Or ∇f(w) ̸= 0, and we can show that f must decrease locally in the direction of −∇f(w).

The second property is formalized below, and is at the core of the gradient descent framework.

2.1.1 Algorithm

The gradient descent algorithm is an iterative process wherein every iteration has the following form:

w ← w − α∇f(w), (2.1.1)

where α > 0 is a parameter called stepsize or steplength. When ∇f(w) = 0, note that the
formula (2.1.1) does not change the value of w: this is consistent with the fact that the gradient

19

20 Opti. ML - ID App. 2023/2024

cannot be used to determine a better point in that case. On the contrary, when ∇f(w) ̸= 0, there
will exist values for α leading to a lower function value for the point w − α∇f(w).

Repeated applications of the update (2.1.1) lead to Algorithm 1. This method is called gradient
descent, or (less frequently) steepest descent.1

Algorithm 1: Gradient descent for minimizing the function f .

1 Initialization: Choose w0 ∈ Rd.
2 For k = 0, 1, ...

1. Compute the gradient ∇f(wk).

2. Define a stepsize αk > 0.

3. Set wk+1 = wk − αk∇f(wk).

3 EndFor

Algorithm 1 actually describes a framework rather than a specific method. There exist numerous
variants upon the gradient descent paradigm: we review the main characteristics of these methods
below.

Stopping criterion In practice, an algorithm is often subject to budget requirements (in terms of
arithmetic opterations, running time, iteration number, etc). These limitations are typically enforced
using a stopping criterion. In the context of Algorithm 1, it is typical to terminate the method after
kmax iterations, in which case wkmax is returned as an approximate solution to the problem.

In addition, stopping criteria can be used to check whether the method converged to a solution
of the problem (or an approximation thereof). Such criteria are often based on optimality conditions.
For gradient descent, the most classical criterion is based on the gradient norm: one stops the
algorithm as soon as

∥∇f(wk)∥ < ϵ, (2.1.2)

where ϵ > 0 represents a given, desired accuracy level (the condition becomes more expensive to
satisfy as ϵ gets smaller).

Finally, it is always possible (and often recommended) to add “safety checks”, that stop the
method whenever no visible progress is measured. For instance, if the difference between two suc-
cessive iterates (∥wk+1 −wk∥) is of the order of machine precision, the algorithm is likely stalling
and no further improvement is expected: in that case, it is often better to stop the method.

Choosing the initial point The performance of a given algorithm can be significantly improved
using a suitable starting point. However, finding such a point can be a difficult task without domain
expertise, but if such expertise exists, it should be leveraged to obtain a good initial point that the
method tries to improve upon. Alternatively, one could use several starting points drawn at random
and run a few iterations of gradient descent so as to determine a good starting point.

1The direction of −∇f(wk), i.e. the unit vector −∇f(wk)
∥∇f(wk)∥

(or the zero vector if the gradient is zero) is called the
steepest descent direction.

Opti. ML - ID App. 2023/2024 21

2.1.2 Choosing the stepsize

In this section, we describe the main techniques for selecting the step size sequence in gradient
descent. We provide generic principles, and emphasize that any information about a particular
problem can be extremely valuable in designing a better step size.

Constant step size One of the most common approaches consists in fixing the step size to a single
value for all iterations, i.e. setting αk = α > 0 for all k. Depending on the computational budget,
one could run gradient descent with several values of α and select the best value for future use: this
practice of tuning the step size is commonly adopted in data science problems.

Provided f satisfies Assumption 2.0.1, there exists an interval of values that lead to convergence
of gradient descent. In particular, the choice

αk = α = 1
L , (2.1.3)

where L is the Lipschitz constant for the gradient, is well suited for that problem. Note however that
this choice requires the knowledge of the Lipschitz constant: this information is not always available
in practice.

Decreasing step size Another classical technique for selecting the stepsize consists in defining a
decreasing sequence {αk} such that αk → 0 prior to running the method. This choice can also lead
to converging method, but it risks producing steps that are unnecessarily small in norm. In fact, a
good decreasing strategy should drive αk to 0 quickly enough for convergence, but slowly enough
that the norm of the steps do not approach 0 too rapidly.

Adaptive choice using a line search Line-search techniques are widely used in continuous opti-
mization and scientific computing (though less popular in data science, for reasons that we will detail
in Chapter ?? of these notes). At a given iteration of index k, we seek a stepsize αk that leads to
a decrease in the objective function along a suitably chosen direction (in the case of Algorithm 1,
this would be the direction of −∇f(wk)). An exact line search results in the best possible decrease,
but may be costly to perform. In practice, inexact approaches are preferred: Algorithm 2 details the
most popular of such techniques, called backtracking.

Algorithm 2: Backtracking line search in direction d.

1 Inputs: w ∈ Rd, d ∈ Rd, α0 ∈ Rd.
2 Initialization: Choose α = α0.
3 While f(w + αd) > f(w)
4 α→ α

2 .
5 End
6 Output: α.

The line-search procedure of Algorithm 2 can be used at Step 2 of Algorithm 1 using w = wk,
d = −∇f(wk) and (for instance) α0 = 1 as inputs. Many variants of this simple idea have been
proposed in the literature: those are generally designed to guarantee that a better point (in terms
of the objective function) is found. Still, these techniques require at least one additional function
evaluation per stepsize value (possibly more), leading to an overall more expensive method.

22 Opti. ML - ID App. 2023/2024

2.1.3 Theoretical analysis for gradient descent

In this section, we present several convergence rates for gradient descent, in the case of a smooth
objective function. We will see that the nonconvex, convex and strongly convex cases exhibit different
behavior.

Proposition 2.1.1 Consider the k-th iteration of Algorithm 1 applied to f ∈ C1,1L (Rd), and suppose
that ∇f(wk) ̸= 0. Then, if 0 < αk < 2

L , we have

f(wk − αk∇f(wk)) < f(wk).

In particular, choosing αk = 1
L leads to

f(wk −
1

L
∇f(wk)) < f(wk)−

1

2L
∥∇f(wk)∥2. (2.1.4)

Proof. We use the inequality (1.2.2) with the vectors (wk,wk − αk∇f(wk)) :

f(wk − αl∇f(wk)) ≤ f(wk) +∇f(wk)
T [−αk∇f(wk)] +

L

2
∥ − αk∇f(wk)∥2

= f(wk)− αk∇f(wk)
T∇f(wk) +

L

2
α2
k∥∇f(wk)∥2

= f(wk) +

(
−αk +

L

2
α2
k

)
∥∇f(wk)∥2.

If −αk + L
2α

2
k < 0, the second term on the right-hand side will be negative, thus we will have

f(wk − αl∇f(wk)) < f(wk). Since −αk + L
2α

2
k < 0 ⇔ αk < 2

L and αk > 0 by definition, this
proves the first part of the result.

To obtain (2.1.4), one simply needs to use αk = 1
L in the series of equations above. □

The result of Proposition 2.1.1 will be instrumental to obtain complexity guarantees on Algo-
rithm 1 in three different settings: nonconvex, convex, and strongly convex.

Nonconvex case In the nonconvex case, we aim at bounding the number of iterations required to
drive the gradient norm below some threshold ϵ > 0: this means that we should be able to show
that the gradient norm actually goes below this threshold, which is a guarantee of convergence.

Theorem 2.1.1 (Complexity of gradient descent for nonconvex functions) Let f be a noncon-
vex function satisfying Assumption 2.0.1. Suppose that Algorithm 1 is applied with αk = 1

L . Then,
for any K ≥ 1, we have

min
0≤k≤K−1

∥∇f(wk)∥ ≤ O
(

1√
K

)
. (2.1.5)

Proof. LetK be an iteration index such that for every k = 0, . . . ,K−1, we have ∥∇f(wk)∥ > ϵ.
From Proposition 2.1.1, we have that

∀k = 0, . . . ,K − 1, f(wk+1) ≤ f(wk)−
1

2L
∥∇f(wk)∥2 ≤ f(wk)−

1

2L

(
min

0≤k≤K−1
∥∇f(wk)∥

)2

.

Opti. ML - ID App. 2023/2024 23

By summing across all such iterations, we obtain :

K−1∑
k=0

f(wk+1) ≤
K−1∑
k=0

f(wk)−
K

2L

(
min

0≤k≤K−1
∥∇f(wk)∥

)2

.

Removing identical terms on both sides yields

f(wK) ≤ f(w0)−
K

2L

(
min

0≤k≤K−1
∥∇f(wk)∥

)2

.

Using f(wK) ≥ flow (which holds by Assumption 2.0.1) and re-arranging the terms leads to

min
0≤k≤K−1

∥∇f(wk)∥ ≤
[
2L(f(w0)− flow)

K

]1/2
= O

(
1√
K

)
.

□
Equivalently, we say that the worst-case complexity of gradient descent isO

(
ϵ−2
)
, because for any

ϵ > 0, a reasoning similar to the proof of Theorem 2.1.1 guarantees that min0≤k≤K−1 ∥∇f(wk)∥ ≤ ϵ
after at most ⌈

2L(f(w0)− flow)ϵ
−2
⌉
= O(ϵ−2)

iterations.

Convex/Strongly convex case In addition to Assumption 2.0.1, if we further assume that the
objective is convex or strongly convex, we can show that stronger guarantees than that of the
nonconvex case can be obtained at a lower cost. This improvement illustrates the interest of convex
functions in optimization.

In this paragraph, we let f∗ = minw∈Rd f(w) denote the minimal value of f (note that f∗ ≥ flow)
and we assume that there existsw∗ ∈ Rd such that f(w∗) = f∗ (i.e. the set of minima is not empty).
Given an accuracy threshold ϵ > 0, we are interested in bounding the number of iterations necessary
to reach an iterate wk such that f(wk)− f∗ ≤ ϵ.

Theorem 2.1.2 Convergence of gradient descent for convex functions Let f be a convex function
satisfying Assumption 2.0.1. Suppose that Algorithm 1 is applied with αk = 1

L . Then, for any
K ≥ 1, the iterate wK satisfies

f(wk)− f∗ ≤ O
(

1

K

)
. (2.1.6)

Proof. Let K be an index such that for every k = 0, . . . ,K − 1, f(wk)− f∗ > ϵ.
For any k = 0, . . . ,K − 1, the characterization of convexity (1.2.11) at wk and w∗ gives

f(w∗) ≥ f(wk) +∇f(wk)
T(w∗ −wk).

Combining this property with (2.1.4), we obtain:

f(wk+1) ≤ f(wk)−
1

2L
∥∇f(wk)∥2

≤ f(w∗) +∇f(wk)
T(wk −w∗)− 1

2L
∥∇f(wk)∥2.

24 Opti. ML - ID App. 2023/2024

To proceed onto the next step, one notices that

∇f(wk)
T(wk −w∗)− 1

2L
∥∇f(wk)∥2 =

L

2

(
∥wk −w∗∥2 − ∥wk −w∗ − 1

L
∇f(wk)∥2

)
.

Thus, recalling that wk+1 = wk − 1
L∇f(wk), we arrive at

f(wk+1) ≤ f(w∗) +
L

2

(
∥wk −w∗∥2 − ∥wk −w∗ − 1

L
∇f(wk)∥2

)
= f(w∗) +

L

2

(
∥wk −w∗∥2 − ∥wk+1 −w∗∥2

)
.

Hence,

f(wk+1)− f(w∗) ≤ L

2

(
∥wk −w∗∥2 − ∥wk+1 −w∗∥2

)
. (2.1.7)

By summing (2.1.7) on all indices k between 0 and K − 1, we obtain

K−1∑
k=0

f(wk+1)− f(w∗) ≤ L

2

(
∥w0 −w∗∥2 − ∥wK −w∗∥2

)
≤ L

2
∥w0 −w∗∥2.

Finally, using f(w0) ≥ f(w1) ≥ ... ≥ f(wK) (a consequence of Proposition 2.1.1, we obtain that

K−1∑
k=0

f(wk+1)− f(w∗) ≥ K (f(wK)− f∗) .

Injecting this formula into the previous equation finally yields the desired outcome:

f(wk)− f(w∗) ≤ L∥w0 −w∗∥2

2

1

K
.

□
Equivalently, we say that the worst-case complexity of gradient descent is O

(
ϵ−1
)
, which means

here that there exist a positive constant C (that depends on ∥w0 −w∗∥ and L) such that

f(wK)− flow ≤ ϵ.

after at most Cϵ−1 = O(ϵ−1) iterations.

We now turn to the strongly convex case.

Theorem 2.1.3 Convergence of gradient descent for strongly convex functions Let f be a µ-strongly
convex function satisfying Assumption 2.0.1, with µ ∈ (0, L]. Suppose that Algorithm 1 is applied
with αk = 1

L . Then, for any K ∈ N, we have

f(wk)− f∗ ≤ O
(
(1− µ

L)
k
)
. (2.1.8)

We say that the convergence rate of gradient descent is O
(
(1− µ

L)
k
)
.

Opti. ML - ID App. 2023/2024 25

Proof. We exploit the strong convexity property (1.2.13). For any (x,y) ∈ (Rn)2, we have

f(y) ≥ f(x) +∇f(x)T(y − x) +
µ

2
∥y − x∥2.

Minimizing both sides with respect to y lead to y = w∗ on the left-hand side, and y = x− 1
µ∇f(x)

on the right-hand side2. As a result, we obtain

f∗ ≥ f(x) +∇f(x)T
[
− 1

µ
∇f(x)

]
+

µ

2
∥ − 1

µ
∇f(x)∥2

f∗ ≥ f(x)− 1

2µ
∥∇f(x)∥2.

By re-arranging the terms, we arrive at

∥∇f(x)∥2 ≥ 2µ [f(x)− f∗] , (2.1.9)

which is valid for any x ∈ Rn. Using (2.1.9) together with (2.1.4) thus gives

f(wk+1) ≤ f(wk)−
1

2L
∥∇f(wk)∥2 ≤ f(wk)−

µ

L
(f(wk)− f∗).

This leads to
f(wk+1)− f∗ ≤

(
1− µ

L

)
(f(wk)− f∗),

which we can iterate in order to obtain

f(wK)− f∗ ≤
(
1− µ

L

)K
(f(w0)− f∗).

It then suffices to note that the bound is also valid for K = 0. □
Equivalently, we can show a worst-case complexity result: the method computes wk such that

f(wk)− f∗ ≤ ϵ in at most O(Lµ ln(1ϵ)) iterations.
Similar results can be shown for the criterion ∥wk −w∗∥: in other words, the distance between

the current iterate and the (unique) global optimum decreases at a rate O
(
(1− µ

L)
k
)
.

Remark 2.1.1 Proofs of convergence rates are typically more technical for convex and strongly
convex problems: in order to obtain better bounds than in the nonconvex setting, one must make
careful use of the (strong) convexity inequalities. In this course, we do not focus on these aspects,
but rather draw insights from the final complexity bounds or convergence rates.

2.2 Acceleration

2.2.1 Introduction: the momentum principle

In Section 2.1.3, we derive complexity bounds for the gradient descent algorithm, and we saw in
particular that assuming that the function was convex (respectively, strongly convex) improved the
complexity. These results are called upper complexity bounds, in the sense that they reflect the worst

2This is because the gradient of the quadratic function on the right-hand side with respect to y is ∇f(x)+µ(y−x).
This vector is equal to 0 if and only if y = x− 1

µ
∇f(x)

26 Opti. ML - ID App. 2023/2024

possible convergence rate that this algorithm could exhibit on a given problem. The issue of lower
bounds, that show a rate that cannot be improved upon, has been the subject to a lot of attention,
particularly in the convex optimization community.

For nonconvex optimization, it is known that there exists a function for which gradient descent
converges exactly at the O(1√

K
) rate: in this case, the lower bound matches the upper bound. On the

contrary, for convex functions, the lower bound is actually O(1
K2), which is a sensible improvement

over the bound in O(1
K) of Theorem 2.1.2. There are methods that can achieve this bound, thanks

to an algorithmic technique called acceleration.

The underlying idea of acceleration is that, at a given iteration and given the available information
from previous iterations (in particular, the latest displacement), one can move along a better step
than that given by the current gradient.

2.2.2 Nesterov’s accelerated gradient method

Among the existing methods based on acceleration, the accelerated gradient algorithm proposed
by Yurii Nesterov in 1983 is the most famous, to the point that it has been termed “Nesterov’s
algorithm”.

Algorithm 3: Accelerated gradient method.

1 Initialization: w0 ∈ Rd, w−1 = w0.
2 for k = 0, 1, ... do

1. Compute a steplength αk > 0 and a parameter βk > 0.

2. Compute the new iterate as

wk+1 = wk − αk∇f (wk + βk(wk −wk−1)) + βk(wk −wk−1). (2.2.1)

3 end

Algorithm 3 provides a description of the method. Like the gradient descent method of Sec-
tion 2.1, it requires a single gradient calculation per iteration; however, unlike in gradient descent,
the gradient is not evaluated at the current iterate wk, but at a combination of this iterate with the
previous step wk −wk−1: this term is called the momentum term, and is key to the performance
of accelerated gradient techniques.

Another view of the accelerated gradient descent is that of a two-loop recursion: given w0 and
z0 = w0, the update (2.2.1) can be rewritten as{

wk+1 = zk − αk∇f(zk)
zk+1 = wk+1 + βk+1(wk+1 −wk).

(2.2.2)

This formulation decouples the two steps behind the accelerated gradient update: a gradient step
on zk, combined with a momentum step on wk+1.

Opti. ML - ID App. 2023/2024 27

Choosing the parameters We now comment on the choice of the stepsize αk and the momentum
parameter βk. The same techniques than those presented in Section 2.1.2 can be considered for the
choice of αk (stepsize parameter). As in the gradient descent case, the choice αk = 1

L is a standard
one.

The choice of βk is most crucial to obtaining the improved complexity bound. The standard
values proposed by Nesterov depend on the nature of the objective function:

• If f is a µ-strongly convex, we set

βk = β =
√
L−√

µ√
L+

√
µ

(2.2.3)

for every k. Note that this requires the knowledge of both the Lipschitz constant of the gradient
and the strong convexity constant.

• For a general convex function f , βk is computed in an adaptive way using two sequences, as
follows:

tk+1 =
1

2
(1 +

√
1 + 4t2k), t0 = 0, βk =

tk − 1

tk+1
. (2.2.4)

The following informal theorem summarizes the complexity results that can be proven for Algo-
rithm 3.

Theorem 2.2.1 Consider Algorithm 3 applied to a convex function f satisfying Assumption 2.0.1,
with αk = 1

L , and let ϵ > 0. Then, for any K ≥ 1, the iterate wK computed by Algorithm 3 satisfies

i) f(wK) − f∗ ≤ O(1
K2) for a generic convex function if βk is set according to the adaptive

rule (2.2.4);

ii) At most f(wK) − f∗ ≤
(
(1−

√
µ
L)

K
)
for a µ-strongly convex function, provided βk is set to

the constant value given by (2.2.3).

Note that we can also derive worst-case complexity bounds for the accelerated gradient method,
that show the same improvement. For instance, for strongly convex functions, we can establish

that f(wk) − f∗ ≤ ϵ after at most O
(√

L
µ ln(ϵ−1)

)
iterations, which represents an improvement

over the O
(
L
µ ln(ϵ−1)

)
complexity over gradient descent. Here the improvement is in terms of

problem-dependent constants.

2.2.3 Other accelerated methods

Heavy ball method The heavy ball method is a precursor of the accelerated gradient algorithm,
that was proposed by Boris T. Polyak in 1964. Its k-th iteration can be written as

wk+1 = wk − α∇f(wk) + β(wk −wk−1),

where the stepsize and momentum parameters are chosen to be constant values. The key difference
between this iteration and Nesterov’s lies in the gradient evaluation, which the heavy ball method
performs at the current point: in that sense, the heavy ball method performs first the gradient
update, then the momentum step, while Nesterov’s method adopts the inverse approach. This
method achieves the optimal rate of convergence on strongly convex quadratic functions, but can
fail on general strongly convex functions.

28 Opti. ML - ID App. 2023/2024

Conjugate gradient The (linear) conjugate gradient method, proposed by Hestenes and Stiefel in
1952, has remained to this day one of the preferred methods to solve linear systems of equations and
strongly convex quadratic minimization problems. Unlike Polyak’s method, the conjugate gradient
algorithm does not require knowledge of the Lipschitz constant L nor the parameter µ, because it
exploits knowledge from the past iterations. The k-th iteration of conjugate gradient can be written
as:

wk+1 = wk + αkpk, pk = −∇f(xk) + βkpk−1.

In a standard conjugate gradient algorithm, αk and βk are computed using formulas tailored to the
problem: this contributes to their convergence rate analysis, which leads to a rate similar to that
of accelerated gradient. However, unlike accelerated gradient, the conjugate gradient is guaranteed
to terminate after d iterations on a d-dimensional problem. When d is very large, the bound for
conjugate gradient matches that of the other methods, and in that sense does not depend on the
problem dimension.

Example 2.2.1 (Strongly convex quadratic minimization) A strongly convex quadratic minimiza-
tion problem is an optimization problem of the form

minimize
w∈Rd

q(w) := 1
2w

TAw − bTw

where A ∈ Rd×d is a symmetric positive definite matrix and b ∈ Rd. This problem is smooth
(because the objective is polynomial in all of the decision variables) and ∇2f(w) ≻ 0 for every w,
meaning that the problem is µ-strongly convex with µ denoting the minimum eigenvalue of A. As
a result, there exist a unique global minimum given by the solution of ∇q(w) = Aw − b = 0. This
equation is a linear system but the cost of inverting this system and computing a solution can be
prohibitive. For this reason, one can replace the exact solve by an iterative, gradient-based approach,
and apply Algorithm 1 or Algorithm 3. Note that q ∈ C1,1∥A∥(R

d), hence the choice of steplength 2.1.3
is a valid one.

If gradient descent is applied, then an ϵ-accuracy in the objective value can be reached in at most

O
(
L
µ ln(1ϵ)

)
iterations, while if one applies the accelerated gradient or the heavy ball method with

appropriately chosen parameters, this bound improves to O
(
L
µ ln(1ϵ

)
. Finally, if we aim at using

conjugate gradient, the result bound will be in O
(
min{d, Lµ ln(1ϵ)}

)
.

Bibliography

[1] L. Bottou, F. E. Curtis, and J. Nocedal. Optimization Methods for Large-Scale Machine Learning.
SIAM Rev., 60:223–311, 2018.

[2] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press, Cambridge,
United Kingdom, 2004.

[3] S. J. Wright and B. Recht. Optimization for Data Analysis. Cambridge University Press, 2022.

29

Appendix A

Notations and mathematical tools

A.1 Notations

A.1.1 Generic notations

• Scalars (i.e. reals) are denoted by lowercase letters: a, b, c, α, β, γ.

• Vectors are denoted by bold lowercase letters: a, b, c,α,β,γ.

• Matrices are denoted by bold uppercase letters: A,B,C.

• Sets are denoted by bold uppercase cursive letters : A,B, C.

• A new operator or quantity is defined using :=.

• The following quantifiers are used throughout the notes: ∀ (for every), ∃ (it exists), ∃! (it
exists a unique), ∈ (belongs to), ⊆ (subset of), ⊂ (proper subset).

• The Σ operator is used for sums. To lighten the notation, and in the absence of ambiguity,
we may omit the first and last indices, or use one sum over multiple indices. As a result, the
notations

∑m
i=1

∑n
j=1,

∑
i

∑
j and

∑
i,j may be used interchangeably.

• The Π operator is used for products. To lighten the notation, and in the absence of ambiguity,
we may omit the first and last indices, or use one sum over multiple indices. As a result, the
notations

∏m
i=1

∏n
j=1,

∏
i

∏
j and

∏
i,j may be used interchangeably.

• The notation i = 1, . . . ,m indicates that the variable i takes all integer values between 1 and
m.

A.1.2 Scalar and vector notations

• The set of natural numbers (nonnegative integers) is denoted by N; the set of integers is
denoted by Z.

• The set of real numbers is denoted by R. Our notations for the subset of nonnegative real
numbers and the set of positive real numbers are R+ and R++, respectively. We also define
the extended real line R := R ∪ {−∞,∞}.

30

Opti. ML - ID App. 2023/2024 31

• The notation Rd is used for the set of vectors with d ∈ N real components; although we do
not explicitly indicate it in the rest of these notes, we always assume that d ≥ 1.

• A vector w ∈ Rd is thought as a column vector, with wi ∈ R denoting its i-th coordinate in

the canonical basis of Rd. We thus write w =

 w1
...
wd

, or, in a compact form, w = [wi]1≤ı≤d.

• Given a column vector w ∈ Rd, the corresponding row vector is denoted by wT, so that
wT = [w1 · · · wd] and [wT]T = w.

• For any integer d ≥ 1, the vectors 0d and 1d correspond to the vectors of Rd for which all
elements are 0 or 1, respectively. For simplicity, we may write w ≥ 0 to indicate that all
components of w are nonnegative.

A.1.3 Matrix notations

• We use Rm×n to denote the set of real rectangular matrices with m rows and n columns,
where m et n will always be assumed to be at least 1. If m = n, Rn×n refers to the set of
square matrices of size n.

• We identify a matrix in Rm×1 with its corresponding column vector in Rm.

• Given a matrix A ∈ Rm×n, Aij or [A]ij refers to the coefficient from the i-th row and the j-th
column of A. Provided this notation is not ambiguous, we use the notations A, [Aij]1≤i≤m

1≤j≤n

and [Aij] interchangeably.

• Depending on the context, we may use aT
i to denote the i-th row of A or aj to denote the

j-th column of A, leading to A =

 aT
1
...

aT
m

 or A = [a1 · · · an] , respectively.

• The diagonal of a square matrix A ∈ Rd×d is given by the coefficients Aii. The trace of such
a matrix is trace(A) :=

∑d
i=1Aii.

• Given A = [Aij] ∈ Rm×n, the transpose of matrix A, denoted by AT (read “A transpose”),
is defined as the matrix in Rn×m (or “n-by-m matrix”) such that

∀i = 1 . . .m, ∀j = 1 . . . n, [AT]ji = Aij .

Note that this generalizes the notation used for row vectors.

• For every n ≥ 1, In refers to the identity matrix in Rn×n (with 1s on the diagonal and 0s
elsewhere).

32 Opti. ML - ID App. 2023/2024

A.2 Mathematical tools

Optimization has mathematical roots in real analysis, mostly through differential calculus. Linear
algebra structures also play a major role in optimization (and data science). In this section, we list
the basic results that will be used in the course.

For a deeper dive into these notions, the following links are recommended.

• For linear algebra:

– https://www.ceremade.dauphine.fr/∼carlier/polyalgebre.pdf (in Frnech);

– http://vmls-book.stanford.edu/vmls.pdf (Chapters 1 to 3, in English).

• For differential calculus:

– https://www.ceremade.dauphine.fr/∼bouin/ens1819/Cours Bolley.pdf (in French);

– https://sebastianraschka.com/pdf/books/dlb/appendix d calculus.pdf (in English).

A.2.1 Vector linear algebra

We always consider vectors in the normed vector space Rd, of dimension d. The following operations
are defined in this space:

• For any x,y ∈ Rd, the sum of x and y is denoted by x+ y = [xi + yi]1≤i≤d;

• For any λ ∈ R, we define λx
n
= λ · x = [λxi]1≤i≤d. In this context, the real value λ is called

a scalar.

Using these operations, we can build linear combinations of vectors in Rd that produce a vector
in Rd of the form

∑p
i=1 λixi, where xi ∈ Rd and λi ∈ R for any i = 1, . . . , p.

The matrix space Rn×d can also be endowed with a vector space structure of dimension nd:

• For any A,B ∈ Rn×d, the sum of A and B is denoted by A+B = [Aij +Bij]1≤i≤d
1≤j≤d

;

• For any scalar λ ∈ R, we define λA
n
= λ ·A = [λAij]1≤i≤n

1≤j≤d
.

Definition A.2.1 A set S ⊆ Rd satisfying the conditions

1. 0d ∈ S;

2. ∀(x,y) ∈ S, x+ y ∈ S;

3. ∀x ∈ S, ∀λ ∈ R, λx ∈ S.

is called a (linear) subspace of Rd.

Definition A.2.2 Let x1, . . . ,xp be p vectors in Rd. The span (or linear span) of x1, . . . ,xp,
denoted by Span(x1, . . . ,xp), is the subspace of Rd defined by

Span(x1, . . . ,xp) :=

{
x =

p∑
i=1

αixi

∣∣∣∣∣αi ∈ R ∀i

}
.

https://www.ceremade.dauphine.fr/~carlier/polyalgebre.pdf
http://vmls-book.stanford.edu/vmls.pdf
https://www.ceremade.dauphine.fr/~bouin/ens1819/Cours_Bolley.pdf
https://sebastianraschka.com/pdf/books/dlb/appendix_d_calculus.pdf

Opti. ML - ID App. 2023/2024 33

We now recall various properties of vector sets.

Definition A.2.3 • The vectors in a set {xi}ki=1 ⊂ Rn are called linearly independent if for any

scalars λ1, . . . , λk satisfying
∑k

i=1 λixi = 0, we have λ1 = · · · = λk = 0. In that case, k ≤ n.

• If the above property does not hold, the vectors are called linearly dependent.

• A spanning set is a set of vectors {xi} ⊂ Rn such that their span is Rn.

• A set of vectors {xi}ni=1 ⊂ Rn is a basis if it is both linearly independent and a spanning set.
In that case, any vector in Rn can be written as a uniquely defined linear combination of the
xis. Any basis in Rn has exactly n vectors.

Since the size of a basis in Rn is n, we say that the dimension of the space is n. Consequently,
any subspace of Rn has dimension at most n.

Example A.2.1 Any vector x in Rn can be written as x =
∑n

i=1 xiei, where ei = [0 · · · 0 1 0 · · · 0]T
is the ith vector of the canonical basis (with a 1 in the ith coordinate).

Norm and scalar product Using a Euclidean norm and its associated scalar product allows to
compare vectors by measuring the distance between them. This ability is particularly useful to
establish that a sequence of vector generated by an optimization method converges toward the
solution of a given problem.

Definition A.2.4 The Euclidean norm ∥ · ∥ on Rn is defined by

∀x ∈ Rn, ∥x∥ :=

√√√√ n∑
i=1

x2i .

Remark A.2.1 This is indeed a norm, since it fulfills the four axioms that define what a norm is:

1. ∀x,y ∈ Rn, ∥x+ y∥ ≤ ∥x∥+ ∥y∥;

2. ∥x∥ = 0 ⇔ x = 0Rn ;

3. ∀x, ∥x∥ ≥ 0;

4. ∀x ∈ Rn, ∀λ ∈ R, ∥λx∥ = |λ|∥x∥.

A vector x ∈ Rn is called a unit vector if ∥x∥ = 1.

Definition A.2.5 For any vectors x,y ∈ Rn, the scalar product derived from the Euclidean norm
is a function of x and y, denoted by xTy, defined as follows:

xTy :=

n∑
i=1

xiyi.

Two vectors x and y are called orthogonal if xTy = 0.

34 Opti. ML - ID App. 2023/2024

Note that yTx = xTy, hence the scalar product defines a “product” between a row vector and
a column vector.

Proposition A.2.1 Let x and y be two vectors in Rn. Then, the following properties hold

i) |x+ y∥2 = ∥x∥2 + 2xTy + ∥y∥2;

ii) ∥x− y∥2 = ∥x∥2 − 2xTy + ∥y∥2;

iii) ∥x∥2 + ∥y∥2 = 1
4

(
∥x+ y∥2 + ∥x− y∥2

)
;

iv) Cauchy-Schwarz inequality :

∀x,y ∈ Rn, xTy ≤ ∥x∥∥y∥.

Remark A.2.2 The last inequality is a key result in both linear algebra and analysis. In this course,
it will play a major role in deriving Taylor-type inequalities.

A.2.2 Matrix linear algebra

We can define the product of two matrices that have compatible dimensions. More precisely, for any
A ∈ Rm×n and B ∈ Rn×p, the product matrix AB is defined as the matrix C ∈ Rm×p such that

∀i = 1, . . . ,m, ∀j = 1, . . . , p, Cij =
n∑

k=1

AikBkj .

Using this definition, the product of a matrix A ∈ Rm×n with a (column) vector x ∈ Rn is the
vector y ∈ Rm given by

∀i = 1, . . . ,m, yi =
n∑

j=1

Aijxj .

Remark A.2.3 Note that the scalar product on Rn corresponds to the matrix product for matrices
of sizes 1× n and n× 1: the result of this operation is a 1× 1 matrix, that is, a scalar.

When one work with matrices, the following subspaces are of interest.

Definition A.2.6 (Matrix subspaces) Let A ∈ Rm×n.

• The null space of A is the subspace

Null(A) := {x ∈ Rn | Ax = 0m}

• The range space of A is the subspace

Range(A) := {y ∈ Rm | ∃x ∈ Rn,y = Ax}

The dimension of this subspace is called the rank of A. We denote it by rank(A). One always
has rank(A) ≤ min{m,n}.

Opti. ML - ID App. 2023/2024 35

Theorem A.2.1 (Rank-nullity theorem) Let A ∈ Rm×n. Then,

dim(ker(A)) + rang(A) = n.

Definition A.2.7 (Matrix norms) Consider the space Rm×n. The operator norm ∥ · ∥ and the
Frobenius norm ∥ · ∥F are defined by

∀A ∈ Rm×n,


∥A∥ := maxx∈Rn

x̸=0n

∥Ax∥
∥x∥ = maxx∈Rn

∥x∥=1
∥Ax∥

∥A∥F :=
√∑

1≤i≤m
1≤j≤n

A2
ij .

Definition A.2.8 (Symmetric matrix) A square matrix A ∈ Rn×n is called symmetric if AT = A.
The set of symmetric matrices in Rn×n is denoted by Sn.

Definition A.2.9 (Invertible matrix) A square matrix A ∈ Rn×n is called invertible if there exists
B ∈ Rn×n such that BA = AB = In (where we recall that In denotes the identity matrix in
Rn×n).

When it exists, such a matrix B is unique. It is then called the inverse of A and denoted by
A−1.

Definition A.2.10 (Positive (semi)definite matrix) A square, symmetric matrix A ∈ Rn×n is
called positive semidefinite if

∀x ∈ Rn, xTAx ≥ 0,

which we write A ⪰ 0.
Such a matrix is called positive definite when xTAx > 0 for any nonzero vector x. We write

this as A ≻ 0.

Definition A.2.11 (Orthogonal matrix) A square matrix P ∈ Rn×n is called orthogonal if PT =
P−1.

More generally, a matrix Q ∈ Rm×n, where m ≤ n, is called orthogonal if QQT = Im (the
columns of Q are orthonormal in Rm).

When Q ∈ Rn×n is orthogonal, then so is its transpose QT (this result only applies to square
matrices). Orthogonal matrices have the following desirable property.

Lemma A.2.1 Let A ∈ Rm×n and U ∈ Rm×m, V ∈ Rn×n be two orthogonal matrices. Then,

∥A∥ = ∥UA∥ = ∥AV ∥ and ∥A∥F = ∥UA∥F = ∥AV ∥F ,

i.e. multiplying by an orthogonal matrix preserves the norm.

As a corollary of the previous lemma, we observe that an orthogonal matrix Q ∈ Rm×n with
m ≤ n must satisfy ∥Q∥ = 1 and ∥Q∥F =

√
m.

Definition A.2.12 (Eigenvalue) Let A ∈ Rn×n. A scalar λ ∈ R is called an eigenvalue of A if

∃v ∈ Rn,v ̸= 0n, Av = λv.

The vector v is called an eigenvector associated with the eigenvalue λ. The set of eigenvalues
of A is the spectrum of A.

36 Opti. ML - ID App. 2023/2024

The span of eigenvectors associated to the same eigenvalue is called the eigenspace. Its dimension
corresponds to the multiplicity of the eigenvalue relatively to the matrix.

Proposition A.2.2 For any matrix A ∈ Rn×n, the following holds:

• A has n complex eigenvalues.

• IfA is symmetric positive semidefinite (resp. definite), then its eigenvalues are real nonnegative
(resp. real positive).

• The null space of A is spanned by the eigenvectors associated with the 0 eigenvalue.

Theorem A.2.2 (Eigenvalue decomposition theorem) Any symmetric matrix A ∈ Rn×n has an
eigenvalue decomposition of the form

A = PΛP T ,

where P ∈ Rn×n is an orthogonal matrix,and Λ ∈ Rn×n is a diagonal matrix that contains the n
eigenvalues of A λ1, . . . , λn on its diagonal.

The eigenvalue decomposition is not unique, but the set of eigenvalues that appears in the
decomposition is uniquely defined.

Remark A.2.4 There are matrices that possess an eigenvalue decomposition of the form PΛP−1,
where P is invertible (but not necessarily orthogonal). Those matrices are called diagonalizable.

Link with singular value decomposition Let A ∈ Rm×n. In general, m ̸= n and the notion of
eigenvalue that we introduced above does not apply. However, we can always consider the eigenvalues
of

ATA ∈ Rn×n and AAT ∈ Rm×m.

These matrices are real and symmetric, hence they can be diagonalized. This property is what gives
rise to the singular value decomposition (or SVD).

A.2.3 Calculus

Note: This section gives additional background to the concepts and properties introduced in Chap-
ter 1.

Definition A.2.13 (Continuity) A function f : Rn → Rm is called continuous in x ∈ Rn if

∀ϵ > 0, ∃δ > 0, ∀y ∈ Rn, ∥y − x∥ < δ ⇒ ∥f(y)− f(x)∥ < ϵ.

The function f is continuous on a set A ⊆ Rn if it is continuous at every point of A. When A = Rn,
we simply say that f is continuous.

Remark A.2.5 In certain textbooks, the notion above is termed uniform continuity. For simplicity
of exposure, we will use it as our definition of continuity.

Opti. ML - ID App. 2023/2024 37

An alternate characterization of continuity based on sequences is given below. Sequences typically
appear when considering iterative algorithms, hence the relevance of this notion here.

Definition A.2.14 (Continuity (sequential definition)) A function f : Rn → Rm is continuous
at x ∈ Rn if

∀{xn} ∈ (Rn)N, {xn} → x, lim
n→∞

f(xn) = f(x).

Example A.2.2 A linear map f : Rn → Rm, where f(x) = Ax+b for any x ∈ Rn with A ∈ Rm×n

and b ∈ Rm, is a continuous function on Rn.

Definition A.2.15 (Differentiability Jacobian matrix) A function f : Rn → Rm is called differ-
entiable at a point x ∈ Rn if there exists a matrix Jf (x) ∈ Rm×n such that

lim
z→x
z ̸=x

∥f(z)− f(x)− Jf (x)(z − x)∥
∥z − x∥

= 0.

• Jf (x) is called the Jacobian of f at x, and is uniquely defined.

• If f(·) = [f1(·), . . . , fm(·)]T, then

∀1 ≤ i ≤ m, ∀1 ≤ j ≤ n, [Jf (x)]ij =
∂fi
∂xj

(x).

The following special cases are instrumental to optimization and basic analysis.

Corollary A.2.1 • When m = 1, we define the (column) vector ∇f(x) ≡ Jf (x)
T, called the

gradient of f at x. In this case, the gradient is the vector of partial derivatives of f :

∀i = 1, . . . , n, ∇f(x) =
[
∂f

∂xi
(x)

]
1≤i≤n

.

• When n = m = 1, both the Jacobian and the gradient are equivalent to a scalar la matrice
Jacobienne et le vecteur f ′(x) ≡ ∇f(x) ≡ Jf (x)

T, called the derivative of f at x.

In these notes, we assume familiarity with the common derivative formulas for functions from R
to R. More complex formulas are typically obtained thanks to the rule below.

Theorem A.2.3 (Chain rule) If f : Rn 7→ Rm and g : Rm 7→ Rp are both differentiable, respec-
tively on Rn and Rm, then h : Rn 7→ Rp is differentiable on Rn and

∀x ∈ Rn, Jh(x) = Jg(f(x))Jf (x).

Remark A.2.6 Special cases of the chain rule:

• m = p = 1 : ∇h(x) = g′(f(x))∇f(x);

• n = m = p = 1 : h′(x) = g′(f(x))f ′(x).

38 Opti. ML - ID App. 2023/2024

Theorem A.2.4 (Mean-value theorem in dimension 1) Let f : [a, b]→ R. If f is continuous on
[a, b] and differentiable on (a, b), there exists c ∈ (a, b) such that

f(b)− f(a)

b− a
= f ′(c).

Definition A.2.16 (Taylor expansion) Let f : [a, b] 7→ R be C1 on [a, b], then

f(b) = f(a) + f ′(c)(b− a) where c ∈ [a, b]

f(b) = f(a) +

∫ 1

0
f ′(a+ t(b− a))(b− a) dt.

Theorem A.2.5 (Mean-value theorem in dimension d) Let f : Rd → R f ∈ C1(Rd). For any
x,y ∈ Rd, x ̸= y, there exists t ∈ (0, 1) such that

f(y) = f(x) +∇f(x+ t(y − x))T(y − x).

Definition A.2.17 (Lipschitz continuity) A function f : Rn → Rm is L-Lipschitz continuous on
A ⊂ Rn if

∀x,y ∈ A2, ∥f(x)− f(y)∥ ≤ L∥x− y∥.

Proposition A.2.3 Any Lipschitz continuous function on a set is continuous on this set.

Definition A.2.18 (Function classes) Let f : Rd → R.

• We say that f is Cp(Rd) (or simply Cp) if it is differentiable p times with a continuous pth-
order derivative (in which case all derivatives up to order p are continuous). The class of C∞
functions is the intersection of all Cp with p ∈ N.

• We say that f is Cp,pL (Rd) (or simply Cp,pL) if it is differentiable p times and its pth-order
derivative is L-Lipschitz continuous.

Theorem A.2.6 (Taylor expansion of order 1) Let f ∈ C1(Rd). For any vectors x and y of Rd,
we have

f(y) = f(x) +

∫ 1

0
∇f(x+ t (y − x))T(y − x) dt.

Moreover, if f ∈ C1,1L (Rd), then

f(y) ≤ f(x) +∇f(x)T(y − x) +
L

2
∥y − x∥2. (A.2.1)

Theorem A.2.7 (Taylor expansion of order 2) Let f ∈ C2(Rd). For any vectors x and y of Rd,
one has

f(y) = f(x) +∇f(x)T(y − x) +
1

2

∫ 1

0
(y − x)T∇2f(x+ t (y − x))(y − x) dt.

Moreover, if f ∈ C2,2L (Rd), then

f(y) ≤ f(x) +∇f(x)T(y − x) +
1

2
(y − x)T∇2f(x)(y − x) +

L

2
∥y − x∥3. (A.2.2)

	Introduction to optimization
	About optimization
	The optimization process
	Modern optimization

	The optimization problem
	Mathematical background
	First definitions
	Convexity

	Examples of optimization problems in ML
	Linear regression
	Logistic regression
	Linear SVM
	Neural networks

	Optimization algorithms
	The algorithmic process
	Convergence and convergence rates
	Popular optimization packages

	Unconstrained optimization
	Gradient descent
	Algorithm
	Choosing the stepsize
	Theoretical analysis for gradient descent

	Acceleration
	Introduction: the momentum principle
	Nesterov's accelerated gradient method
	Other accelerated methods

	Appendix Notations and mathematical tools
	Notations
	Generic notations
	Scalar and vector notations
	Matrix notations

	Mathematical tools
	Vector linear algebra
	Matrix linear algebra
	Calculus

