TD 02 : Autour de la descente de gradient

Outils d'optimisation pour les sciences des données et de la décision, M2 MIAGE

11 octobre 2024

Exercice 2.1: Réseaux linéaires à une couche

(Adapté d'un exercice de l'examen 2021-2022.)

Dans cet exercice, on considère un jeu de données à labels scalaires, à savoir $\{(\boldsymbol{x}_i,y_i)\}_{i=1}^n$ où $\boldsymbol{x}_i \in \mathbb{R}^{d_x}$ et $y_i \in \mathbb{R}$ pour tout $i=1,\ldots,n$. On construit une architecture neuronale très basique avec une seule couche linéaire homogène et pas d'activation, afin de prédire la valeur y_i à partir du vecteur \boldsymbol{x}_i : le modèle obtenu est ainsi

$$h^{lin}(\cdot; \boldsymbol{w}): \mathbb{R}^{d_x} \longrightarrow \mathbb{R}^{d_y}$$

$$\boldsymbol{x} \longmapsto \boldsymbol{W}_1 \boldsymbol{x},$$

$$(1)$$

avec $W_1 \in \mathbb{R}^{1 \times d_x}$. En posant $d = d_x$ et $w = W_1^T \in \mathbb{R}^d$, on formule le problème de déterminer le meilleur modèle comme suit :

$$\underset{\boldsymbol{w} \in \mathbb{R}^d}{\operatorname{minimiser}} f^{lin}(\boldsymbol{w}) := \frac{1}{2n} \sum_{i=1}^n (\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_i - y_i)^2. \tag{2}$$

- a) La formulation (2) correspond à un problème bien connu en apprentissage. Quel est ce problème ?
- b) La fonction objectif f^{lin} est $\mathcal{C}_L^{1,1}$ (son gradient est L-lipschitzien). Lorsque la valeur de L est connue, comment celle-ci peut-elle être employée dans un algorithme tel que la descente de gradient ?
- c) Le problème (2) est convexe avec une fonction objectif de classe \mathcal{C}^1 .
 - i) Que peut-on dire d'un point $ar{w}$ tel que $abla f^{lin}(ar{w}) = \mathbf{0}_{\mathbb{R}^d}$?
 - ii) Quelle est la complexité de la descente de gradient sur ce problème ?
- d) On suppose dans cette question que les données sont telles que f^{lin} soit μ -strongly convex, en plus des propriétés mentionées plus haut.
 - i) Soient $w, v \in \mathbb{R}^d$ deux vecteurs tels que $\nabla f^{lin}(w) = \nabla f^{lin}(v) = \mathbf{0}_{\mathbb{R}^d}$. Que peut-on dire de v et w?
 - ii) La complexité de la descente de gradient dans ce cas est-elle meilleure que celle de la question c)ii) ?

Exercice 2.2: Réseaux linéaires à deux couches

(Adapté d'un exercice de l'examen 2021-2022.)

Soit un jeu de données $\{(\boldsymbol{x}_i, \boldsymbol{y}_i)\}_{i=1}^n$ avec $\boldsymbol{x}_i \in \mathbb{R}^{d_x}$ et $\boldsymbol{y}_i \in \mathbb{R}^{d_y}$. Notre objectif est d'apprendre une fonction de \mathbb{R}^{d_x} dans \mathbb{R}^{d_y} qui renvoie \boldsymbol{y}_i lorsque \boldsymbol{x}_i est passé en entrée. Le modèle que l'on choisit ici est celui d'un réseau de neurones à deux couches linéaires :

$$h(\cdot; \boldsymbol{w}) : \mathbb{R}^{d_x} \longrightarrow \mathbb{R}^{d_y}$$

$$\boldsymbol{x} \longmapsto \boldsymbol{W}_2(\boldsymbol{W}_1 \boldsymbol{x} + \boldsymbol{b}_1) + \boldsymbol{b}_2,$$
(3)

où $\boldsymbol{W}_1 \in \mathbb{R}^{d_x \times m}$, $\boldsymbol{b}_1 \in \mathbb{R}^m$, $\boldsymbol{W}_2 \in \mathbb{R}^{m \times d_y}$ et $\boldsymbol{b}_2 \in \mathbb{R}^{d_y}$. On considère que le modèle h est paramétré par $\boldsymbol{w} \in \mathbb{R}^d$, où $d = d_x m + m + m d_y + d_y$ et \boldsymbol{w} représente tous les coefficients de $\boldsymbol{W}_1, \boldsymbol{b}_1, \boldsymbol{W}_2, \boldsymbol{b}_2$ mis sous forme vectorielle. Notre but est de déterminer une valeur de \boldsymbol{w} telle que $h(\boldsymbol{x}_i; \boldsymbol{w}) \approx \boldsymbol{y}_i$ pour tout i, ce que l'on quantifie au moyen d'une fonction de perte aux moindres carrés.

Au final, on obtient le problème suivant

$$\underset{\boldsymbol{w} \in \mathbb{R}^d}{\operatorname{minimiser}} f(\boldsymbol{w}) := \frac{1}{2n} \sum_{i=1}^n \|h(\boldsymbol{x}_i; \boldsymbol{w}) - y_i\|^2. \tag{4}$$

- a) Donner un minorant de la fonction objectif du problème (4).
- b) En général, le problème (4) est non convexe. Que cela implique-t-il concernant l'ensemble de ses minima locaux et celui de ses minima globaux?
- c) La fonction f est continûment différentiable, ou de classe C^1 .
 - i) Supposons que w^* soit une solution de (4). Que peut-on dire de la dérivée de f en w^* ?
 - ii) Écrire l'itération de la descente de gradient appliquée au problème (4) avec une longueur de pas non spécifique.
 - iii) Donner deux stratégies possibles pour choisir cette longueur de pas.
 - iv) Ce problème est non convexe : quelle est donc la complexité de la descente de gradient dans ce cas ? À quelle critère cette complexité est-elle associée ?

Exercice 2.3: Complétion de matrice

(Adapté d'un exercice de l'examen 2022-2023.)

Soit une matrice de données $X \in \mathbb{R}^{d \times d}$ dont on ne connaît qu'un ensemble d'entrées $S \subset \{1,\ldots,d\}^2$ de taille $n \leq d^2$. On se donne alors le problème

$$\underset{\boldsymbol{W} \in \mathbb{R}^{d \times d}}{\text{minimiser}} f(\boldsymbol{W}) := \frac{1}{2n} \sum_{(i,j) \in \mathcal{S}} ([\boldsymbol{W}]_{ij} - [\boldsymbol{X}]_{ij})^2. \tag{5}$$

- a) Si $n=d^2$, justifier que $\boldsymbol{W}^*=\boldsymbol{X}$ est l'unique solution du problème.
- b) Le problème ci-dessus est convexe en les coefficients de W. En notant $w \in \mathbb{R}^{d^2}$ le vecteur colonne formé en mettant bout à bout les colonnes de W dans l'ordre, le problème se reformule comme suit :

$$\underset{\boldsymbol{w} \in \mathbb{R}^{d^2}}{\text{minimiser }} \hat{f}(\boldsymbol{w}) := \frac{1}{2n} \sum_{(i,j) \in \mathcal{S}} ([\boldsymbol{w}]_{i+(j-1)d} - [\boldsymbol{X}]_{ij})^2. \tag{6}$$

La fonction \hat{f} est convexe et de classe \mathcal{C}^1 . Quelle garantie de complexité peut-on fournir sur l'algorithme de descente de gradient lorsqu'il est appliqué au problème (6) ? Sur quelle critère porte cette garantie ?

c) On suppose maintenant que la matrice de données X est symétrique semi-définie positive et de rang $1 \ll d$. Dans ce cas, au lieu de chercher une matrice W arbitraire, on peut chercher à calculer une matrice de rang 1 par construction, que l'on note uu^T avec $u \in \mathbb{R}^d$. Le problème (5) est alors remplacé par

$$\underset{\boldsymbol{u} \in \mathbb{R}^d}{\text{minimiser }} \tilde{f}(\boldsymbol{u}) := \frac{1}{2n} \sum_{(i,j) \in \mathcal{S}} ([\boldsymbol{u}\boldsymbol{u}^{\mathrm{T}}]_{ij} - [\boldsymbol{X}]_{ij})^2. \tag{7}$$

La fonction objectif du problème (7) est de classe C^2 et est non convexe.

- i) Donner la condition nécessaire d'optimalité à l'ordre un pour le problème (7).
- ii) Quelle est la complexité de la descente de gradient sur un tel problème ? À quel critère ce résultat s'applique-t-il ?
- iii) Donner la condition nécessaire d'optimalité à l'ordre deux pour le problème (7).

Correction

Correction de l'exercice 2.1: Réseau à une couche

- a) La formulation (2) correspond à un problème aux moindres carrés linéaires.
- b) Si l'on connaît la constante de Lipschitz L associée au gradient, alors la valeur constante $\alpha=\frac{1}{L}$ peut être utilisée comme longueur de pas. NB: Toute valeur positive strictement inférieure à $\frac{1}{L}$ conduit à la convergence théorique de l'algorithme.

c)

- i) Comme le problème est convexe, tout point \bar{w} tel que $\nabla f^{lin}(\bar{w}) = \mathbf{0}_{\mathbb{R}^d}$ est un minimum global.
- ii) Pour un tel problème convexe, étant donnée une précision $\epsilon>0$, l'algorithme a une complexité en $\mathcal{O}(\epsilon^{-1})$. NB : Ce n'est pas explicitement demandé dans la question, mais cette borne signifie que l'algorithme calcule un itéré tel que $f(\boldsymbol{w}_k) \min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w}) < \epsilon$ en au plus $\mathcal{O}(\epsilon^{-1})$ itérations.

d)

- i) Comme la fonction est fortement convexe et de classe \mathcal{C}^1 , elle possède un unique minimum global, qui correspond à l'unique point \boldsymbol{w} tel que $\nabla f^{lin}(\boldsymbol{w}) = \mathbf{0}_{\mathbb{R}^d}$. Par conséquent, si \boldsymbol{w} et \boldsymbol{v} sont tels que $\nabla f^{lin}(\boldsymbol{w}) = \nabla f^{lin}(\boldsymbol{v}) = \mathbf{0}_{\mathbb{R}^d}$, alors nécéssairement $\boldsymbol{v} = \boldsymbol{w}$.
- ii) Lorsque le problème est fortement convexe, la complexité de la descente de gradient est en $\mathcal{O}(\ln(\epsilon^{-1}))$, ce qui est meilleur que $\mathcal{O}(\epsilon^{-1})$, au sens où la borne dans le cas fortement convexe croît moins lentement que celle dans le cas convexe lorsque ϵ diminue. $NB: Ce \ n'est \ pas \ demandé dans la question, mais cette borne s'applique à la quantité <math>\|\boldsymbol{w}_k \boldsymbol{w}^*\|$ où \boldsymbol{w}^* est l'unique minimum du problème.

Correction de l'exercice 2.2: Réseaux linéaires à deux couches

- a) La fonction objectif étant toujours positive ou nulle, toute valeur négative ou nulle en est un minorant.
- b) Comme la fonction est non convexe, les minima locaux de la fonction ne sont pas nécessairement globaux (mais peuvent l'être).
- c) Si w^* est une solution du problème (4), on sait alors que son gradient est nul, alors $\nabla f(w^*) = 0$.
- d) Si la longueur de pas est notée $\alpha_k > 0$, la kième itération de la descente de gradient s'écrit

$$\boldsymbol{w}_{k+1} = \boldsymbol{w}_k - \alpha_k \nabla f(\boldsymbol{w}_k).$$

NB : Ne pas oublier la positivité de la valeur α_k !

e) On peut choisir une longueur de pas constante, une longueur de pas décroissante (par exemple en $\frac{1}{k+1}$), ou encore une longueur de pas adaptative calculée via une recherche linéaire.

f) Pour un problème non convexe comme (4), on peut montrer (notamment avec le choix de longueur de pas $\alpha_k = \frac{1}{L}$) que l'algorithme calcule w_k tel que $\|\nabla f(w_k)\| < \epsilon$ (avec $\epsilon > 0$) en au plus $\mathcal{O}(\epsilon^{-2})$ itérations.

Correction de l'exercice 2.3: Complétion de matrice

a) Les valeurs de la fonction $f(\mathbf{W})$ sont toujours positives ou nulles. De plus, lorsque $n=d^2$, on a

$$f(\mathbf{W}) = 0 \quad \Leftrightarrow \quad ([\mathbf{W}]_{ij} - [\mathbf{X}]_{ij})^2 = 0 \ \forall (i,j) \in \{1,\ldots,d\}^2 \quad \Leftrightarrow \quad \mathbf{W} = \mathbf{X}.$$

Par conséquent, $f(X) \leq f(W)$ pour tout $W \in \mathbb{R}^{d^2 \times d^2}$ et f(X) < f(W) si $X \neq W$, ce qui prouve que le problème possède un unique minimum global donné par $W^* = X$.

- b) Comme le problème est convexe, on sait que la complexité de la descente de gradient est en $\mathcal{O}(\epsilon^{-1})$ pour une tolérance $\epsilon>0$. Cette borne de complexité s'applique à la quantité $f(\boldsymbol{w}_k)-\min_{\boldsymbol{w}\in\mathbb{R}^d}f(\boldsymbol{w})$, c'est-à-dire à l'écart à la valeur optimale.
- c) (Cas non convexe)
 - i) Si $\bar{u} \in \mathbb{R}^d$ est un minimum local du problème (7), alors $\nabla \tilde{f}(\bar{u}) = 0$.
 - ii) Pour une telle fonction non convexe, étant donné $\epsilon>0$, on sait que la méthode calcule un itéré tel que $\|\nabla f(\boldsymbol{w}_k)\|<\epsilon$ en au plus $\mathcal{O}(\epsilon^{-2})$ itérations. On dit alors que la complexité de la descente de gradient est en ϵ^{-2} .
 - iii) Si $\bar{u} \in \mathbb{R}^d$ est un minimum local du problème (7), alors $\nabla \tilde{f}(\bar{u}) = 0$ et $\nabla^2 \tilde{f}(\bar{u}) \succeq 0$.