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Today's session

e Paradigm: Integrate optimization solvers within an ML (deep learning)
pipeline.
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Today's session

e Paradigm: Integrate optimization solvers within an ML (deep learning)
pipeline.
o Challenges:

o Efficient implementation.
o Compatibility between solver/deep learning environment.

o Key concepts:

e Implicit layers in neural networks.
o Automatic differentiation/Backpropagation.
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@ Crash course on neural networks
@ Implicit layer paradigm
© Application: OptNet

@ Application: SATNet
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@ Crash course on neural networks
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Intro to neural networks and automatic differentiation

See online notes.
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@ Implicit layer paradigm
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From explicit to implicit layers

Explicit layers

o A layer=A differentiable parametric function.

@ Most layers are explicitly defined by a mapping z = f(x)
Ex) Fully connected, convolutional, recurrent.
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From explicit to implicit layers

Explicit layers

o A layer=A differentiable parametric function.

@ Most layers are explicitly defined by a mapping z = f(x)
Ex) Fully connected, convolutional, recurrent.

Implicit layers

@ Defined in terms of a joint condition on the input and output:
Given x, find z such that c¢(x, z) = 0.

@ Decouples the purpose of the network from its computation.
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© Application: OptNet
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Broader: Differentiable convex optimization layers
z*(0)

minimize, f(z,0)
s.t. g(z,0) <0
h(z,0) = 0.

e Maps 6 to z*(0).

@ Convex objective function+Convex constraints.

Approach
o Use solvers that allow differentiation of z* w.r.t. 0.

@ Learn some of the problem/solver parameters using data.
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OptNet (Amos and Kolter '17-'19)

Quadratic programming setup

minimize, 12TQ(x)z + q(z)Tz
st. G(x)z < h(z), A(x)z = b(x).

Layer perspective: Input x, get z*(x) € argmin, {--- } as output.
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OptNet (Amos and Kolter '17-'19)

Quadratic programming setup

minimize, 12TQ(x)z + q(z)Tz
st. G(x)z < h(z), A(x)z = b(x).

Layer perspective: Input x, get z*(x) € argmin, {--- } as output.

Challenges

@ Gurobi/CPLEX/etc solve a single problem efficiently but are harder to
deploy in batches on GPU
=Ad hoc QP solver (scaling limitations).

@ Solver must be differentiable
= Careful implementation of forward pass.

o Difference between input and trainable parameters.
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Differentiation through a QP layer

QP: minimize, %zTQz +q'2 st. Az=b, Gz < h.

KKT conditions

If z* is a solution, there exist A*, u* such that

Qz"+q+ G\ + ATy 0
A [Gz*—h], = 0 Vi

Az —b = 0

Gz—h < 0

A* > 0.

Solver (IPM type): Apply Newton's method to the first 3 equations!
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Differentiation through a QP layer

QP: minimize, %zTQz +q'2z st. Az=0b, Gz < h.

Differentiation

@ Implicit function theorem applied to the first 3 KKT conditions.
o Example: For any function £ of z*,
1
Dol = > (d.[z*]T + 2*d])
where

d, Q G"diag(\*) AT} [D,(T

dy| =— |G diag(Gz*—h) 0 0

d, A 0 0 0
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Nice OptNet example
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e Data (x,y;)i=1,..100, Y; projection of x; of some set.
@ OptNet layer approximates y; with projection onto polytope

minimize |z — z|> st. Gz < h.
zeR"

e G, h learned through training (40 epochs).
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@ Application: SATNet
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Context: Continuous relaxations of combinatorial problems

Classical example: MaxCut (Goemans, Williamson '95).

@ Problem: Given graph (V, E') with weighted edges, find a cut with
maximum edge weight.
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Context: Continuous relaxations of combinatorial problems

Classical example: MaxCut (Goemans, Williamson '95).

@ Problem: Given graph (V, E') with weighted edges, find a cut with
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@ Using graph Laplacian matrix L € R™*™, can be formulated as

maximizex® L.
xze{-1,1}n
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Context: Continuous relaxations of combinatorial problems

Classical example: MaxCut (Goemans, Williamson '95).

@ Problem: Given graph (V, E') with weighted edges, find a cut with
maximum edge weight.

@ Using graph Laplacian matrix L € R™*™, can be formulated as

maximizex® L.
xze{-1,1}n

@ Equivalent to the continuous program

rT;?xémize trace(LTX) subject to X =1, X > 0,rank(X) = 1.
c nxXn
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Context: Continuous relaxations of combinatorial problems

Classical example: MaxCut (Goemans, Williamson '95).

@ Problem: Given graph (V, E') with weighted edges, find a cut with
maximum edge weight.

@ Using graph Laplacian matrix L € R™*™, can be formulated as

maximizex® L.
xze{-1,1}n

@ Equivalent to the continuous program

rT;?xémize trace(LTX) subject to X =1, X > 0,rank(X) = 1.
c nxXn

@ Remove rank constraint: Get the SDP relaxation!

maximize trace(LT X) subject to X; =1,X > 0.
Xesnxn
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From the relaxation to a solution

@ Solve Max-Cut SDP = Solution X* > 0, Xj; = 1.
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From the relaxation to a solution

@ Solve Max-Cut SDP = Solution X* = 0, X}, = 1.
@ Write X* = [v]v;] with vy, ..., v, unit vectors in R".
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From the relaxation to a solution

@ Solve Max-Cut SDP = Solution X* > 0, Xj; = 1.
@ Write X* = [v]v;] with vy, ..., v, unit vectors in R".
© Draw u uniformly at random in the unit sphere, and set

Vi 1 . | -1 ifulv; <0
TR T ifu e > 0.
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From the relaxation to a solution

@ Solve Max-Cut SDP = Solution X* > 0, Xj; = 1.
@ Write X* = [v]v;] with vy, ..., v, unit vectors in R".
© Draw u uniformly at random in the unit sphere, and set

Vi1 n o —1 ifulv; <0
R Tl if uTv; > 0.

Guarantees

@ Randomized rounding above finds an 0.87856-approximation!

@ Similar guarantees can be obtained for other problems, such as
MAXSAT.

@ Challenge: SDPs are difficult to solve at scale.
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MaxSAT case

MAXSAT problem

Given m vectors {s;} C {—1,0,1}", solve

m n
maximize Z \/ 1{s;;0;, > 0}

pe{—1,1}n
se{-L1}" iy
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MaxSAT case
MAXSAT problem

Given m vectors {s;} C {—1,0,1}", solve

m n
maximize Z \/ 1{s;;0;, > 0}

ve{—1,1}n
ve{-1um 0

Continuous SDP relaxation

minimize <STS’, VTV> st. vl =1vi=1,...,n+ 1L
V eRkX(n+1)
o Relax @; into v; € R¥, ||v;|| = 1.
@ Add a variable vy to apply randomized rounding.
@ S built from the 8; with scaling.

e If k > /2n, recovers the original solution.
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SATNet (Wang et al. '19)

Prob Relaxed Relaxed Prob

inputs inputs . outputs outputs

2, €[0,1] mp v, ERF mp Sbp (::il!',:fasﬁmn = U,ER" =y 2,0, 1]

Ve Yoe O
Relax Optimize Round

Optimization solver SDP layer
@ Use vector representation of SDP o Careful encod.mg of
matrix. backpropagation.

o Continuous relaxation
and randomized rounding

_ _ encoded through
@ Can differentiate through the solver! probability distributions.

@ Cheap update, one vector at a time.

@ Amenable to batch parallelism.

C. W. Royer ML Optim. 2/5 M2 MODO 17



Cool SATNet example

SATNet: Bridging deep learning and logical reasoning using a differentiable satisfiability solver

Model Train Test Model Train Test Model Train Test
ConvNet 72.6% 0.04% ConvNet 0% 0% ConvNet 0.31% 0%
ConvNetMask  91.4% 15.1% ConvNetMask  0.01% 0% ConvNetMask 89% 0.1%
SATNet (ours) 99.8% 98.3% SATNet (ours) 99.7% 98.3% SATNet (ours) 93.6% 63.2%
(a) Original Sudoku. (b) Permuted Sudoku. (c) Visual Sudoku. (Note: the theoretical
“best” test accuracy for our architecture is
74.7%.)

Table 1. Results for 9 x 9 Sudoku experiments with 9K train/1K test examples. We compare our SATNet model against a vanilla convolu-
tional neural network (ConvNet) as well as one that receives a binary mask indicating which bits need to be learned (ConvNetMask).

@ Setup: Learn rules and fill out Sudoku grids, represented as vectors.

e Convolutional networks treat grids as images, must learn the masked
bits.

@ Permuting the inputs does not change the rules to learn=-Clear
advantage of SATNet.
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Summary: Implicit layers/Optimization solvers

Optimization solvers as a layer

e Implicit layer paradigm.
@ Key: Allow for automatic differentiation.

o Benefit: Parallelism+integration within a neural architecture.

Key examples: Essentially convex optimization solves

@ Quadratic programming layers (e.g. OptNet).

@ Relaxation of combinatorial problems (e.g. SATNet).
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