Machine learning for optimization (2/5)

Clément W. Royer

M2 MODO - 2024/2025

January 15, 2025

Dauphine | PSLIE

Paradigm: Integrate optimization solvers within an ML (deep learning) pipeline.

- Paradigm: Integrate optimization solvers within an ML (deep learning) pipeline.
- **•** Challenges:
	- **•** Efficient implementation.
	- Compatibility between solver/deep learning environment.
- Paradigm: Integrate optimization solvers within an ML (deep learning) pipeline.
- **•** Challenges:
	- Efficient implementation.
	- Compatibility between solver/deep learning environment.
- Key concepts:
	- Implicit layers in neural networks.
	- Automatic differentiation/Backpropagation.

- [Implicit layer paradigm](#page-7-0)
- [Application: OptNet](#page-10-0)
- [Application: SATNet](#page-17-0)

[Crash course on neural networks](#page-5-0)

- [Implicit layer paradigm](#page-7-0)
- [Application: OptNet](#page-10-0)
- [Application: SATNet](#page-17-0)

Intro to neural networks and automatic differentiation

See online notes.

[Implicit layer paradigm](#page-7-0)

- [Application: OptNet](#page-10-0)
- [Application: SATNet](#page-17-0)

Explicit layers

- A layer≡A differentiable parametric function.
- Most layers are explicitly defined by a mapping $z = f(x)$ Ex) Fully connected, convolutional, recurrent.

Explicit layers

- A layer≡A differentiable parametric function.
- Most layers are explicitly defined by a mapping $z = f(x)$ Ex) Fully connected, convolutional, recurrent.

Implicit layers

Defined in terms of a joint condition on the input and output: Given x, find z such that $c(x, z) = 0$.

Decouples the purpose of the network from its computation.

[Crash course on neural networks](#page-5-0)

- [Implicit layer paradigm](#page-7-0)
- [Application: OptNet](#page-10-0)
- [Application: SATNet](#page-17-0)

Broader: Differentiable convex optimization layers

$$
\begin{array}{rcl} \mathbf{z}^*(\theta) & = & \text{minimize}_{\mathbf{z}} & f(\mathbf{z}, \theta) \\ & \text{s.t.} & \mathbf{g}(\mathbf{z}, \theta) \leq \mathbf{0} \\ & & \mathbf{h}(\mathbf{z}, \theta) = \mathbf{0}. \end{array}
$$

• Maps
$$
\theta
$$
 to $z^*(\theta)$.

• Convex objective function+Convex constraints.

Approach

- Use solvers that allow differentiation of z^* w.r.t. θ .
- Learn some of the problem/solver parameters using data.

Quadratic programming setup

m

$$
\begin{array}{ll}\text{inimize}_{\boldsymbol{z}} & \frac{1}{2}\boldsymbol{z}^{\mathrm{T}}\boldsymbol{Q}(\boldsymbol{x})\boldsymbol{z} + \boldsymbol{q}(\boldsymbol{x})^{\mathrm{T}}\boldsymbol{z}\\ \text{s.t.} & \boldsymbol{G}(\boldsymbol{x})\boldsymbol{z} \leq \boldsymbol{h}(\boldsymbol{x}), \boldsymbol{A}(\boldsymbol{x})\boldsymbol{z} = \boldsymbol{b}(\boldsymbol{x}).\end{array}
$$

Layer perspective: Input x , get $z^*(x) \in \operatorname{\sf argmin}_z \left\{ \cdots \right\}$ as output.

Quadratic programming setup

mi

$$
\begin{array}{ll} \mathsf{nimize}_{\bm{z}} & \frac{1}{2}\bm{z}^\mathrm{T}\bm{Q}(\bm{x})\bm{z} + \bm{q}(\bm{x})^\mathrm{T}\bm{z} \\ \text{s.t.} & \bm{G}(\bm{x})\bm{z} \leq \bm{h}(\bm{x}), \bm{A}(\bm{x})\bm{z} = \bm{b}(\bm{x}). \end{array}
$$

Layer perspective: Input x , get $z^*(x) \in \operatorname{\sf argmin}_z \left\{ \cdots \right\}$ as output.

Challenges

- Gurobi/CPLEX/etc solve a single problem efficiently but are harder to deploy in batches on GPU \Rightarrow Ad hoc QP solver (scaling limitations).
- Solver must be differentiable
	- \Rightarrow Careful implementation of forward pass.
- Difference between input and trainable parameters.

$$
\text{QP: minimize}_{\boldsymbol{z}} \tfrac{1}{2} \boldsymbol{z}^{\mathrm{T}} \boldsymbol{Q} \boldsymbol{z} + \boldsymbol{q}^{\mathrm{T}} \boldsymbol{z} \quad \text{s.t.} \quad \boldsymbol{A} \boldsymbol{z} = \boldsymbol{b}, \; \boldsymbol{G} \boldsymbol{z} \leq \boldsymbol{h}.
$$

KKT conditions

If z^* is a solution, there exist λ^* , μ^* such that

$$
\begin{array}{rcl}Qz^*+q+G^\mathrm{T}\lambda^*+A^\mathrm{T}\mu^*&=&0\\ \lambda_i^*\left[Gz^*-h\right]_i&=&0\quad\forall i\\ Az^*-b&=&0\\ Gz^*-h&\leq&0\\ \lambda^*&\geq&0.\end{array}
$$

Solver (IPM type): Apply Newton's method to the first 3 equations!

$$
QP: \text{ minimize}_{\boldsymbol{z}} \, \tfrac{1}{2} \boldsymbol{z}^{\mathrm{T}} \boldsymbol{Q} \boldsymbol{z} + \boldsymbol{q}^{\mathrm{T}} \boldsymbol{z} \quad \text{s.t.} \quad \boldsymbol{A} \boldsymbol{z} = \boldsymbol{b}, \; \boldsymbol{G} \boldsymbol{z} \leq \boldsymbol{h}.
$$

Differentiation

- Implicit function theorem applied to the first 3 KKT conditions.
- Example: For any function ℓ of z^* ,

$$
\mathrm{D}_Q\ell = \frac{1}{2}\left(\boldsymbol{d}_z[\boldsymbol{z}^*]^{\mathrm{T}} + \boldsymbol{z}^*\,\boldsymbol{d}_z^{\mathrm{T}}\right)
$$

where

$$
\begin{bmatrix} d_z \\ d_\lambda \\ d_\mu \end{bmatrix} = - \begin{bmatrix} Q & G^\mathrm{T} \operatorname{diag}(\boldsymbol{\lambda}^*) & A^\mathrm{T} \\ G & \operatorname{diag}(\boldsymbol{Gz}^* - \boldsymbol{h}) & 0 \\ A & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} D_{\boldsymbol{z}^*} \ell^\mathrm{T} \\ 0 \\ 0 \end{bmatrix}
$$

Nice OptNet example

Data $(\boldsymbol{x}_{i},\boldsymbol{y}_{i})_{i=1,...,100}$, \boldsymbol{y}_{i} projection of \boldsymbol{x}_{i} of some set.

• OptNet layer approximates y_i with projection onto polytope

$$
\mathop{\hbox{minimize}}_{\boldsymbol{z}\in\mathbb{R}^n}\|\boldsymbol{z}-\boldsymbol{x}\|^2\quad\mathrm{s.t.}\quad \boldsymbol{G}\boldsymbol{z}\leq\boldsymbol{h}.
$$

 G, h learned through training (40 epochs).

[Crash course on neural networks](#page-5-0)

- [Implicit layer paradigm](#page-7-0)
- [Application: OptNet](#page-10-0)
- [Application: SATNet](#page-17-0)

Classical example: MaxCut (Goemans, Williamson '95).

• Problem: Given graph (V, E) with weighted edges, find a cut with maximum edge weight.

Classical example: MaxCut (Goemans, Williamson '95).

- Problem: Given graph (V, E) with weighted edges, find a cut with maximum edge weight.
- Using graph Laplacian matrix $\boldsymbol{L} \in \mathbb{R}^{n \times n}$, can be formulated as

maximize $x^{\mathrm{T}} L x$. $x \in \{-1,1\}^n$

Classical example: MaxCut (Goemans, Williamson '95).

- Problem: Given graph (V, E) with weighted edges, find a cut with maximum edge weight.
- Using graph Laplacian matrix $\boldsymbol{L} \in \mathbb{R}^{n \times n}$, can be formulated as

$$
\underset{\boldsymbol{x} \in \{-1,1\}^n}{\text{maximize}} \boldsymbol{x}^{\mathrm{T}} \boldsymbol{L} \boldsymbol{x}.
$$

• Equivalent to the continuous program

 $\mathbf{maximize}_{\mathbf{X} \in \mathcal{S}^{n \times n}} \text{trace}(\mathbf{L}^{\mathrm{T}} \mathbf{X}) \quad \text{subject to} \quad \mathbf{X}_{ii} = 1, \mathbf{X} \succeq \mathbf{0}, \text{rank}(\mathbf{X}) = 1.$

Classical example: MaxCut (Goemans, Williamson '95).

- Problem: Given graph (V, E) with weighted edges, find a cut with maximum edge weight.
- Using graph Laplacian matrix $\boldsymbol{L} \in \mathbb{R}^{n \times n}$, can be formulated as

$$
\underset{\boldsymbol{x} \in \{-1,1\}^n}{\text{maximize}} \boldsymbol{x}^\mathrm{T} \boldsymbol{L} \boldsymbol{x}.
$$

• Equivalent to the continuous program

 $\mathbf{maximize}_{\mathbf{X} \in \mathcal{S}^{n \times n}} \text{trace}(\mathbf{L}^{\mathrm{T}} \mathbf{X}) \quad \text{subject to} \quad \mathbf{X}_{ii} = 1, \mathbf{X} \succeq \mathbf{0}, \text{rank}(\mathbf{X}) = 1.$

Remove rank constraint: Get the SDP relaxation!

$$
\underset{\mathbf{X}\in\mathcal{S}^{n\times n}}{\text{maximize}}\operatorname{trace}(\mathbf{L}^{\mathrm{T}}\mathbf{X})\quad\text{subject to}\quad\mathbf{X}_{ii}=1,\mathbf{X}\succeq\mathbf{0}.
$$

● Solve Max-Cut SDP \Rightarrow Solution $\boldsymbol{X}^{*} \succeq \boldsymbol{0}$, $\boldsymbol{X}_{ii}^{*} = 1$.

- Solve Max-Cut SDP \Rightarrow Solution $\boldsymbol{X}^{*} \succeq \boldsymbol{0}$, $\boldsymbol{X}_{ii}^{*} = 1$.
- $\bm{2}$ Write $\bm{X}^*=[\bm{v}_i^{\mathrm{T}}\bm{v}_j]$ with \bm{v}_1,\ldots,\bm{v}_n unit vectors in \mathbb{R}^n .

- Solve Max-Cut SDP \Rightarrow Solution $\boldsymbol{X}^{*} \succeq \boldsymbol{0}$, $\boldsymbol{X}_{ii}^{*} = 1$.
- $\bm{2}$ Write $\bm{X}^*=[\bm{v}_i^{\mathrm{T}}\bm{v}_j]$ with \bm{v}_1,\ldots,\bm{v}_n unit vectors in \mathbb{R}^n .
- Θ Draw u uniformly at random in the unit sphere, and set

$$
\forall i = 1, \dots, n, \qquad x_i^* = \begin{cases} -1 & \text{if } \mathbf{u}^{\mathrm{T}} \mathbf{v}_i \leq 0 \\ 1 & \text{if } \mathbf{u}^{\mathrm{T}} \mathbf{v}_i > 0. \end{cases}
$$

- Solve Max-Cut SDP \Rightarrow Solution $\boldsymbol{X}^{*} \succeq \boldsymbol{0}$, $\boldsymbol{X}_{ii}^{*} = 1$.
- $\bm{2}$ Write $\bm{X}^*=[\bm{v}_i^{\mathrm{T}}\bm{v}_j]$ with \bm{v}_1,\ldots,\bm{v}_n unit vectors in \mathbb{R}^n .
- Θ Draw u uniformly at random in the unit sphere, and set

$$
\forall i = 1, \dots, n, \qquad x_i^* = \begin{cases} -1 & \text{if } \mathbf{u}^{\mathrm{T}} \mathbf{v}_i \leq 0 \\ 1 & \text{if } \mathbf{u}^{\mathrm{T}} \mathbf{v}_i > 0. \end{cases}
$$

Guarantees

- Randomized rounding above finds an 0.87856-approximation!
- Similar guarantees can be obtained for other problems, such as MAXSAT.
- Challenge: SDPs are difficult to solve at scale.

MaxSAT case

MAXSAT problem

Given m vectors $\{\tilde{\bm{s}}_i\} \subset \{-1,0,1\}^m$, solve

$$
\underset{\tilde{v}\in\{-1,1\}^n}{\text{maximize}}\sum_{j=1}^m\bigvee_{i=1}^n\mathbf{1}\left\{\tilde{s}_{ij}\tilde{v}_i>0\right\}
$$

MaxSAT case

MAXSAT problem

Given m vectors $\{\tilde{\bm{s}}_i\} \subset \{-1,0,1\}^m$, solve

$$
\underset{\tilde{v}\in\{-1,1\}^n}{\text{maximize}}\sum_{j=1}^m\bigvee_{i=1}^n\mathbf{1}\left\{\tilde{s}_{ij}\tilde{v}_i>0\right\}
$$

Continuous SDP relaxation

$$
\underset{\boldsymbol{V}\in\mathbb{R}^{k\times (n+1)}}{\text{minimize}}\left\langle \boldsymbol{S}^{\mathrm{T}}\boldsymbol{S},\boldsymbol{V}^{\mathrm{T}}\boldsymbol{V}\right\rangle \quad \text{s.t.} \quad \|\boldsymbol{v}_i\|=1 \forall i=1,\ldots,n+1.
$$

- Relax \tilde{v}_i into $\boldsymbol{v}_i \in \mathbb{R}^k$, $\|\boldsymbol{v}_i\|=1.$
- Add a variable v_0 to apply randomized rounding.
- S built from the \tilde{s}_i with scaling.
- $\frac{1}{2}$ band nom the e_i man sealing.
If $k > \sqrt{2n}$, recovers the original solution.

SATNet (Wang et al. '19)

Optimization solver

- Use vector representation of SDP matrix.
- Cheap update, one vector at a time.
- Amenable to batch parallelism.
- Can differentiate through the solver!

SDP layer

- Careful encoding of backpropagation.
- **Continuous relaxation** and randomized rounding encoded through probability distributions.

Model	Train	Test	Model	Train	Test	Model	Train	Test
ConvNet	72.6%	0.04%	ConvNet	0%	0%	ConvNet	0.31%	0%
ConvNetMask	91.4%	15.1%	ConvNetMask	0.01%	0%	ConvNetMask	89%	0.1%
SATNet (ours)	99.8%	98.3%	SATNet (ours)	99.7%	98.3%	SATNet (ours)	93.6%	63.2%
(a) Original Sudoku.			(b) Permuted Sudoku.			(c) Visual Sudoku. (Note: the theoretical "best" test accuracy for our architecture is 74.7%)		

Table 1. Results for 9×9 Sudoku experiments with 9K train/1K test examples. We compare our SATNet model against a vanilla convolutional neural network (ConvNet) as well as one that receives a binary mask indicating which bits need to be learned (ConvNetMask).

- Setup: Learn rules and fill out Sudoku grids, represented as vectors.
- Convolutional networks treat grids as images, must learn the masked bits.
- Permuting the inputs does not change the rules to learn⇒Clear advantage of SATNet.

Optimization solvers as a layer

- **•** Implicit layer paradigm.
- Key: Allow for automatic differentiation.
- Benefit: Parallelism+integration within a neural architecture.

Key examples: Essentially convex optimization solves

- Quadratic programming layers (e.g. OptNet).
- Relaxation of combinatorial problems (e.g. SATNet).

References

- A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, J. Z. Kolter, Differentiable convex optimization layers, NeurIPS, 2019.
- B. Amos and J. Z. Kolter, OptNet: Differentiable Optimization as a Layer in Neural Networks, ICML, 2017.
- J. Djolonga and A. Krause, Differentiable learning of submodular models, NeurIPS, 2017.
- M. X. Goemans and D. P. Williamson, Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming, J. ACM, 1995.
- M. Hardt and B. Recht, Patterns, Predictions and Actions: Foundations of Machine Learning, Princeton University Press, 2022.
- J. Z. Kolter, D. Duvenaud and M. Johnson, Deep Implicit Layers: Neural ODEs, Deep Equilibrium Models and beyond, NeurIPS tutorial, 2020.
- P.-W. Wang, P. L. Donti, B. Wilder and J. Z. Kolter, SATNet: Bridging deep learning and logical reasoning using a differentiable satisfiability solver, ICML, 2019.