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Today’s session

Paradigm: Integrate optimization solvers within an ML (deep learning)
pipeline.

Challenges:

Efficient implementation.
Compatibility between solver/deep learning environment.

Key concepts:

Implicit layers in neural networks.
Automatic differentiation/Backpropagation.
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Roadmap

1 Crash course on neural networks

2 Implicit layer paradigm

3 Application: OptNet

4 Application: SATNet
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Intro to neural networks and automatic differentiation

See online notes.
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From explicit to implicit layers

Explicit layers
A layer≡A differentiable parametric function.
Most layers are explicitly defined by a mapping z = f(x)
Ex) Fully connected, convolutional, recurrent.

Implicit layers
Defined in terms of a joint condition on the input and output:

Given x, find z such that c(x, z) = 0.

Decouples the purpose of the network from its computation.
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Setup

Broader: Differentiable convex optimization layers

z∗(θ) = minimizez f(z, θ)
s.t. g(z, θ) ≤ 0

h(z, θ) = 0.

Maps θ to z∗(θ).
Convex objective function+Convex constraints.

Approach
Use solvers that allow differentiation of z∗ w.r.t. θ.
Learn some of the problem/solver parameters using data.
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OptNet (Amos and Kolter ’17-’19)

Quadratic programming setup

minimizez 1
2z

TQ(x)z + q(x)Tz
s.t. G(x)z ≤ h(x),A(x)z = b(x).

Layer perspective: Input x, get z∗(x) ∈ argminz {· · · } as output.

Challenges

Gurobi/CPLEX/etc solve a single problem efficiently but are harder to
deploy in batches on GPU
⇒Ad hoc QP solver (scaling limitations).
Solver must be differentiable
⇒Careful implementation of forward pass.
Difference between input and trainable parameters.
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Differentiation through a QP layer

QP: minimizez 1
2z

TQz + qTz s.t. Az = b, Gz ≤ h.

KKT conditions
If z∗ is a solution, there exist λ∗, µ∗ such that

Qz∗ + q +GTλ∗ +ATµ∗ = 0

λ∗
i [Gz∗ − h]i = 0 ∀i

Az∗ − b = 0

Gz∗ − h ≤ 0

λ∗ ≥ 0.

Solver (IPM type): Apply Newton’s method to the first 3 equations!
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Differentiation through a QP layer

QP: minimizez 1
2z

TQz + qTz s.t. Az = b, Gz ≤ h.

Differentiation
Implicit function theorem applied to the first 3 KKT conditions.
Example: For any function ℓ of z∗,

DQℓ =
1

2

(
dz[z

∗]T + z∗ dT
z

)
where dz

dλ

dµ

 = −

Q GT diag(λ∗) AT

G diag(Gz∗ − h) 0
A 0 0

−1 Dz∗ℓT

0
0


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Nice OptNet example

Data (xi,yi)i=1,...,100, yi projection of xi of some set.
OptNet layer approximates yi with projection onto polytope

minimize
z∈Rn

∥z − x∥2 s.t. Gz ≤ h.

G,h learned through training (40 epochs).
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Roadmap

1 Crash course on neural networks
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Context: Continuous relaxations of combinatorial problems

Classical example: MaxCut (Goemans, Williamson ’95).
Problem: Given graph (V,E) with weighted edges, find a cut with
maximum edge weight.

Using graph Laplacian matrix L ∈ Rn×n, can be formulated as

maximize
x∈{−1,1}n

xTLx.

Equivalent to the continuous program

maximize
X∈Sn×n

trace(LTX) subject to Xii = 1,X ⪰ 0, rank(X) = 1.

Remove rank constraint: Get the SDP relaxation!

maximize
X∈Sn×n

trace(LTX) subject to Xii = 1,X ⪰ 0.
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From the relaxation to a solution

1 Solve Max-Cut SDP ⇒ Solution X∗ ⪰ 0, X∗
ii = 1.

2 Write X∗ = [vT
i vj ] with v1, . . . ,vn unit vectors in Rn.

3 Draw u uniformly at random in the unit sphere, and set

∀i = 1, . . . , n, x∗i =

{
−1 if uTvi ≤ 0
1 if uTvi > 0.

Guarantees
Randomized rounding above finds an 0.87856-approximation!
Similar guarantees can be obtained for other problems, such as
MAXSAT.
Challenge: SDPs are difficult to solve at scale.
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MaxSAT case

MAXSAT problem

Given m vectors {s̃i} ⊂ {−1, 0, 1}m, solve

maximize
ṽ∈{−1,1}n

m∑
j=1

n∨
i=1

1 {s̃ij ṽi > 0}

Continuous SDP relaxation

minimize
V ∈Rk×(n+1)

〈
STS,V TV

〉
s.t. ∥vi∥ = 1∀i = 1, . . . , n+ 1.

Relax ṽi into vi ∈ Rk, ∥vi∥ = 1.
Add a variable v0 to apply randomized rounding.
S built from the s̃i with scaling.
If k >

√
2n, recovers the original solution.
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SATNet (Wang et al. ’19)

Optimization solver
Use vector representation of SDP
matrix.
Cheap update, one vector at a time.
Amenable to batch parallelism.
Can differentiate through the solver!

SDP layer
Careful encoding of
backpropagation.
Continuous relaxation
and randomized rounding
encoded through
probability distributions.
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Cool SATNet example

Setup: Learn rules and fill out Sudoku grids, represented as vectors.
Convolutional networks treat grids as images, must learn the masked
bits.
Permuting the inputs does not change the rules to learn⇒Clear
advantage of SATNet.
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Summary: Implicit layers/Optimization solvers

Optimization solvers as a layer
Implicit layer paradigm.
Key: Allow for automatic differentiation.
Benefit: Parallelism+integration within a neural architecture.

Key examples: Essentially convex optimization solves

Quadratic programming layers (e.g. OptNet).
Relaxation of combinatorial problems (e.g. SATNet).
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