Exercises on Chapter 3: Statistics and concentration inequalities

Mathematics of Data Science, M1 IDD

November-December 2024*

Dauphine | PSL 🔀

Exercise 3.1: With and without concentration inequalities

Suppose that we toss a fair coin (i.e. that has probability $\frac{1}{2}$ of landing on heads or tails) N times in an independent fashion. Let h_N be the number of times we obtain heads.

- a) Shown that $\mathbb{E}[h_N] = \frac{N}{2}$ and $\operatorname{Var}[h_N] = \frac{N}{4}$. Hint: Use the fact that if x and y are two independent random variables, then $\mathbb{E}[x+y] = \mathbb{E}[x] + \mathbb{E}[y]$ and $\operatorname{Var}[x+y] = \operatorname{Var}[x] + \operatorname{Var}[y]$.
- b) Apply Chebyshev's inequality to bound the probability of getting at least $\frac{3N}{4}$ heads.
- c) For this particular problem, one can derive the following Hoeffding-type inequality¹:

$$\mathbb{P}(h_N \ge t) \le \exp\left[-\frac{(2t-N)^2}{2N}\right].$$

Using this inequality, provide another bound on the probability of getting at least $\frac{3N}{4}$ heads. Compare this inequality with that of question b).

^{*}Version 2, last updated November 20, 2024.

¹To be described in class.

Exercise 3.2: Chernoff inequalities

In this exercise, we study another type of concentration inequalities than that seen in class called *Chernoff bounds* or *Chernoff inequalities*. In the general form, this inequality states that for any random variable y and any $t \in \mathbb{R}$, we have

$$\mathbb{P}(y \ge t) \le \min_{\lambda \ge 0} \mathbb{E}\left[\exp(\lambda(y-t))\right].$$
(1)

a) Proving (1) amounts to proving

$$\ln\left(\mathbb{P}\left(y \ge t\right)\right) \le \min_{\lambda \ge 0} \ln\left(\mathbb{E}\left[\exp(\lambda(y-t))\right]\right).$$
(2)

Justify that right-hand side of (2) is the solution to a convex optimization problem. To this end, you may use a generalization of the Hölder inequality from Exercise 1.8, that states that for any random variables w, z, we have

$$\mathbb{E}_{w,z}\left[w\,z\right] \le \mathbb{E}_{w}\left[|w|^{p}\right]^{1/p} \,\mathbb{E}_{z}\left[|z|^{q}\right]^{1/q}$$

any pair (p,q) such that p>1,q>1 and $\frac{1}{p}+\frac{1}{q}=1.$

b) Suppose that $y \sim \mathcal{N}(0,1)$. In that case, one can show that $\ln (\mathbb{E}[\exp(\lambda y)]) = \frac{\lambda^2}{2}$. Use this property to deduce from (1) that

$$\mathbb{P}(y \ge t) \le \exp\left(-\frac{t^2}{2}\right)$$

for any t > 0. What inequality do you obtain for $t \le 0$?

Exercise 3.3: Boosting

Suppose that we perform 2m independent runs of a randomized algorithm designed to solve a decision problem (e.g. is a given convex optimization problem feasible?). Because of the randomness, the algorithm is only correct with probability $\frac{1}{2} + \delta$ for some $\delta \in (0, 1)$. To make a decision, we choose the output returned by the majority of runs.

- a) Let y_i be a Bernoulli random variable such that $y_i = 1$ if the *i*th run returns the wrong output, and $y_i = 0$ otherwise. Compute $\mathbb{E}[y_i]$.
- b) Express the probability of making the right conclusion from the output of the 2m instances.
- c) Let $p \in [0,1)$. Using Hoeffding's inequality, show that the probability of making the right conclusion is at least 1-p when

$$m \ge \frac{1}{4\delta^2} \ln\left(\frac{1}{p}\right).$$

Exercise 3.4: Chernoff inequalities for vectors

In this exercise, we seek a Chernoff-type bound in a vector setting. More precisely, we consider a Gaussian vector $\boldsymbol{y} \sim \mathcal{N}(\boldsymbol{0}_{\mathbb{R}^n}, \boldsymbol{I}_n)$ and a nonempty polyhedral set defined by $\mathcal{C} = \{\boldsymbol{x} \in \mathbb{R}^n | \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}\}$ with $\boldsymbol{A} \in \mathbb{R}^{\ell \times n}$ and $\boldsymbol{b} \in \mathbb{R}^{\ell}$. Our goal is to provide a bound of the form

$$\mathbb{P}\left(\boldsymbol{y}\in\mathcal{C}\right)\leq\mathbb{E}\left[\exp\left(\boldsymbol{\lambda}^{\mathrm{T}}\boldsymbol{y}+\boldsymbol{\mu}\right)\right]$$
(3)

where $\lambda \in \mathbb{R}^n$ and $\mu \in \mathbb{R}$. As in the previous exercise, we would like to obtain the tightest bound possible.

- a) Using that $\mathbb{P}(\boldsymbol{y} \in \mathcal{C}) = \mathbb{E}[1_{\mathcal{C}}(\boldsymbol{y})]$, justify that any pair $(\boldsymbol{\lambda}, \mu) \in \mathbb{R}^n \times \mathbb{R}$ satisfying $\exp(\boldsymbol{\lambda}^T \boldsymbol{y} + \mu) \ge 1_{\mathcal{C}}(\boldsymbol{y})$ for every $\boldsymbol{y} \in \mathbb{R}^n$ also satisfies (3) with $-\boldsymbol{\lambda}^T \boldsymbol{y} \le \mu \ \forall \boldsymbol{y} \in \mathcal{C}$.
- b) By considering logarithms, show that

$$\ln\left(\mathbb{P}\left(\boldsymbol{y}\in\mathcal{C}\right)\right)\leq\min_{\boldsymbol{\lambda}\in\mathbb{R}^{n}}\left\{S_{\mathcal{C}}(-\boldsymbol{\lambda})+\ln\mathbb{E}\left[e^{\boldsymbol{\lambda}^{\mathrm{T}}\boldsymbol{z}}\right]\right\},$$
(4)

with $S_{\mathcal{C}}: \boldsymbol{y} \mapsto \max_{\boldsymbol{x} \in \mathcal{C}} \boldsymbol{y}^{\mathrm{T}} \boldsymbol{x}$.

c) Since \boldsymbol{y} is Gaussian, we have that $\ln(\mathbb{E}\left[\exp\left(\boldsymbol{\lambda}^{\mathrm{T}}\boldsymbol{y}\right)\right]) = \frac{\boldsymbol{\lambda}^{\mathrm{T}}\boldsymbol{\lambda}}{2}$ for any $\boldsymbol{\lambda}$. In addition, we can show that

$$S_{\mathcal{C}}(oldsymbol{y}) = \min_{oldsymbol{u} \in \mathbb{R}^\ell} \left\{ oldsymbol{b}^{\mathrm{T}} oldsymbol{u} ig| oldsymbol{A}^{\mathrm{T}} oldsymbol{u} = oldsymbol{y}, oldsymbol{u} \geq oldsymbol{0}
ight\}$$

for any $y \in \mathbb{R}^n$. Show then that the right-hand side of (4) corresponds to the optimal value of the quadratic problem

minimize_{$$\lambda \in \mathbb{R}^n, v \in \mathbb{R}^\ell$$} $b^{\mathrm{T}}v + \frac{\|\lambda\|^2}{2}$
s.t. $v \ge 0,$ (5)
 $A^{\mathrm{T}}v + \lambda = 0$

d) The problem (5) is equivalent to

$$\underset{\boldsymbol{v}\in\mathbb{R}^{\ell}}{\operatorname{minimize}}\,\boldsymbol{b}^{\mathrm{T}}\boldsymbol{v} + \frac{\|\boldsymbol{A}^{\mathrm{T}}\boldsymbol{v}\|^{2}}{2} \quad \text{s.t.} \quad \boldsymbol{v}\geq\boldsymbol{0}, \tag{6}$$

where we reformulated the problem so as to eliminate the λ variables while preserving the same optimal value.

i) Using that same reformulation technique, show that the dual of problem (6) is equivalent to

$$\begin{array}{ll} \text{maximize}_{\boldsymbol{x} \in \mathbb{R}^m} & -\frac{\|\boldsymbol{x}\|^2}{2} \\ \text{s.t.} & \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}. \end{array}$$
(7)

- ii) Justify that the optimal value of problem (7) is $-\frac{1}{2}$ dist $(0, C)^2$, where dist $(a, C) = \min_{y \in C} ||y a||$.
- iii) Strong duality holds for problem (6). Using this property, provide a closed-form expression for (4) and (3).