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Exercise 3.1: With and without concentration inequalities

Suppose that we toss a fair coin (i.e. that has probability 1
2 of landing on heads or tails) N times in

an independent fashion. Let hN be the number of times we obtain heads.

a) Shown that E [hN ] = N
2 and Var [hN ] = N

4 .
Hint: Use the fact that if x and y are two independent random variables, then
E [x+ y] = E [x] + E [y] and Var [x+ y] = Var [x] + Var [y].

b) Apply Chebyshev’s inequality to bound the probability of getting at least 3N
4 heads.

c) For this particular problem, one can derive the following Hoeffding-type inequality1:

P (hN ≥ t) ≤ exp

[
−(2t−N)2

2N

]
.

Using this inequality, provide another bound on the probability of getting at least 3N
4 heads.

Compare this inequality with that of question b).

∗Version 2, last updated November 20, 2024.
1To be described in class.
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Exercise 3.2: Chernoff inequalities

In this exercise, we study another type of concentration inequalities than that seen in class called
Chernoff bounds or Chernoff inequalities. In the general form, this inequality states that for any
random variable y and any t ∈ R, we have

P (y ≥ t) ≤ min
λ≥0

E [exp(λ(y − t))] . (1)

a) Proving (1) amounts to proving

ln (P (y ≥ t)) ≤ min
λ≥0

ln (E [exp(λ(y − t))]) . (2)

Justify that right-hand side of (2) is the solution to a convex optimization problem. To this end,
you may use a generalization of the Hölder inequality from Exercise 1.8, that states that for any
random variables w, z, we have

Ew,z [w z] ≤ Ew [|w|p]1/p Ez [|z|q]1/q

any pair (p, q) such that p > 1, q > 1 and 1
p + 1

q = 1.

b) Suppose that y ∼ N (0, 1). In that case, one can show that ln (E [exp(λy)]) = λ2

2 . Use this
property to deduce from (1) that

P (y ≥ t) ≤ exp

(
− t2

2

)
for any t > 0. What inequality do you obtain for t ≤ 0?

Exercise 3.3: Boosting

Suppose that we perform 2m independent runs of a randomized algorithm designed to
solve a decision problem (e.g. is a given convex optimization problem feasible?). Because
of the randomness, the algorithm is only correct with probability 1

2+δ for some δ ∈ (0, 1).
To make a decision, we choose the output returned by the majority of runs.

a) Let yi be a Bernoulli random variable such that yi = 1 if the ith run returns the
wrong output, and yi = 0 otherwise. Compute E [yi].

b) Express the probability of making the right conclusion from the output of the 2m
instances.

c) Let p ∈ [0, 1). Using Hoeffding’s inequality, show that the probability of making
the right conclusion is at least 1− p when

m ≥ 1

4δ2
ln

(
1

p

)
.
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Exercise 3.4: Chernoff inequalities for vectors

In this exercise, we seek a Chernoff-type bound in a vector setting. More precisely, we
consider a Gaussian vector y ∼ N (0Rn , In) and a nonempty polyhedral set defined by
C = {x ∈ Rn|Ax ≤ b} with A ∈ Rℓ×n and b ∈ Rℓ. Our goal is to provide a bound of
the form

P (y ∈ C) ≤ E
[
exp

(
λTy + µ

)]
(3)

where λ ∈ Rn and µ ∈ R. As in the previous exercise, we would like to obtain the
tightest bound possible.

a) Using that P (y ∈ C) = E [1C(y)], justify that any pair (λ, µ) ∈ Rn × R satisfying
exp

(
λTy + µ

)
≥ 1C(y) for every y ∈ Rn also satisfies (3) with −λTy ≤ µ ∀y ∈ C.

b) By considering logarithms, show that

ln (P (y ∈ C)) ≤ min
λ∈Rn

{
SC(−λ) + lnE

[
eλ

Tz
]}

, (4)

with SC : y 7→ maxx∈C y
Tx.

c) Since y is Gaussian, we have that ln(E
[
exp

(
λTy

)]
) = λTλ

2 for any λ. In addition,
we can show that

SC(y) = min
u∈Rℓ

{
bTu

∣∣ATu = y,u ≥ 0
}

for any y ∈ Rn. Show then that the right-hand side of (4) corresponds to the
optimal value of the quadratic problem

minimizeλ∈Rn,v∈Rℓ bTv + ∥λ∥2
2

s.t. v ≥ 0,

ATv + λ = 0.

(5)

d) The problem (5) is equivalent to

minimize
v∈Rℓ

bTv +
∥ATv∥2

2
s.t. v ≥ 0, (6)

where we reformulated the problem so as to eliminate the λ variables while pre-
serving the same optimal value.

i) Using that same reformulation technique, show that the dual of problem (6) is
equivalent to

maximizex∈Rm −∥x∥2
2

s.t. Ax ≤ b.
(7)

ii) Justify that the optimal value of problem (7) is−1
2dist(0, C)

2, where dist(a, C) =
miny∈C ∥y − a∥.

iii) Strong duality holds for problem (6). Using this property, provide a closed-form
expression for (4) and (3).


