Feuille d'exercices 7 : Matrices orthogonales

Algèbre linéaire et applications aux sciences des données, DL2 IASO

Version 2, décembre 2024

Exercice 7.1: Deux sous-espaces

Soit $A \in \mathbb{R}^{m \times n}$ une matrice. On note a_1, \ldots, a_m les lignes de A en tant que vecteurs de \mathbb{R}^m , c'est-à-dire qu'on a

$$oldsymbol{A} = egin{bmatrix} oldsymbol{a}_1^{
m T} \ dots \ oldsymbol{a}_m^{
m T} \end{bmatrix}.$$

- a) Montrer que $\mathrm{vect}(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_m)$ et $\ker(\boldsymbol{A})$ sont des sous-espaces orthogonaux.
- b) Quelle propriété vue en cours vient-on de redémontrer ?

Exercice 7.2: Matrices de projection

Soient les matrices $\mathbf{Q}_1 = \frac{1}{3} \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix} \in \mathbb{R}^{3 \times 1}$ et $\mathbf{Q}_3 = \frac{1}{3} \begin{bmatrix} 2 & 2 & -1 \\ 2 & -1 & 2 \\ -1 & 2 & 2 \end{bmatrix} \in \mathbb{R}^{3 \times 3}$.

- a) Les matrices $m{P}_3 = m{Q}_3^{\mathrm{T}} m{Q}_3$ et $m{P}_1 = m{Q}_1^{\mathrm{T}} m{Q}_1$ sont-elle orthogonales ?
- b) Calculer la projection du vecteur $v = \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}$ sur $\operatorname{vect} \left(\begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix} \right)$.

Exercice 7.3: Matrices de Householder

La matrice de Householder en dimension n est définie comme la matrice

$$m{H}_n = m{I}_n - 2m{u}_nm{u}_n^{
m T}$$
 où $m{u}_n = egin{bmatrix} 1/\sqrt{n} \ dots \ 1/\sqrt{n} \end{bmatrix}$.

- a) Justifier que $oldsymbol{H}_n$ est symétrique.
- b) Montrer que $m{H}_n^2 = m{I}_n$. Pourquoi cela implique-t-il que la matrice est orthogonale ?
- c) On considère le cas n=3. Montrer que $H_3u_3=-u_3$, et que $H_3v=v$ pour tout $v\in\mathbb{R}^3$ orthogonal à u_3 .

Exercice 7.4: Projection polynômiale

Soit l'espace vectoriel $\mathbb{R}_2[X]$ des polynômes de degré au plus 2 muni du produit scalaire

$$\forall (P,Q) \in \mathbb{R}_2[X]^2, \qquad \langle P,Q \rangle := \int_{-1}^1 P(X)Q(X) \, dX.$$

NB: On notera que $\int_{-1}^1 X^{2p} dX = \frac{2}{2p+1}$ et $\int_{-1}^1 X^{2p+1} dX = 0$ pour tout $p \in \mathbb{N}$.

- a) Justifier que $(P_1,P_2)=(\frac{1}{\sqrt{2}},\sqrt{\frac{3}{2}}X)$ est une famille orthonormale de vecteurs.
- b) Projeter le polynôme $\pi(X) = X^2$ sur $\text{vect}(\{P_1, P_2\})$.
- c) Comment utiliser cette projection pour former une base orthonormée de vecteurs de $\mathbb{R}_2[X]$?