Feuille d'exercices 1 : Rappels d'algèbre linéaire

Algèbre linéaire et applications aux sciences des données, DL2 IASO Septembre 2024

Exercice 1.1: Un espace vectoriel

On note $\mathcal{F}(\mathbb{R},\mathbb{R})$ l'ensemble des fonctions de la variable réelle à valeurs dans \mathbb{R} .

- a) Montrer que $\mathcal{F}(\mathbb{R},\mathbb{R})$ muni de l'addition usuelle est un \mathbb{R} -espace vectoriel.
- b) Avec la même loi, est-ce un C-espace vectoriel ? Est-ce un Q-espace vectoriel ?

Exercice 1.2: Sous-espace vectoriel

On considère l'ensemble des imaginaires purs, noté

$$i\mathbb{R} := \{yi \mid y \in \mathbb{R}\}.$$

- a) Montrer que $i\mathbb{R}$ est un sous-espace vectoriel de \mathbb{C} en tant que \mathbb{R} -espace vectoriel.
- b) Justifier que ce n'est pas un sous-espace vectoriel de $\mathbb C$ en tant que $\mathbb C$ -espace vectoriel.

Exercice 1.3: Application moyenne

Soit l'application

$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \longmapsto \frac{1}{3}(x_1 + x_2 + x_3)$$

- a) Montrer que f est une application linéaire.
- b) Déterminer le noyau de f et son image.

c) Reprendre les questions a) et b) pour l'application

$$g: \quad \mathbb{R}^3 \quad \longrightarrow \quad \mathbb{R}^3$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \quad \longmapsto \quad \frac{1}{3} \begin{bmatrix} x_1 + x_2 + x_3 \\ x_1 + x_2 + x_3 \\ x_1 + x_2 + x_3 \end{bmatrix}.$$

d) Calculer les représentations matricielles de f et g dans les bases canoniques des espaces considérés.

Exercice 1.4: Matrices Toeplitz

On considère l'ensemble des matrices Toeplitz de $\mathbb{R}^{3\times 3}$, défini par

$$\mathcal{T} := \left\{ m{T} = egin{bmatrix} t_1 & t_2 & t_3 \ t_4 & t_1 & t_2 \ t_5 & t_4 & t_1 \end{bmatrix}, (t_1, t_2, t_3, t_4, t_5) \in \mathbb{R}^5
ight\}.$$

Ces matrices sont notamment utilisées pour définir les couches de certains réseaux de neurones (CNNs, ou *convolutional neural networks*).

- a) Montrer que l'ensemble \mathcal{T} est un sous-espace vectoriel de $\mathbb{R}^{3\times3}$.
- b) Soit une matrice $T \in \mathcal{T}$. Quelle application linéaire représente-t-elle dans la base canonique de \mathbb{R}^3 ?
- c) On considère maintenant le sous-ensemble de ${\mathcal T}$ donné par

$$\mathcal{C} := \left\{ oldsymbol{C} = egin{bmatrix} c_1 & c_2 & c_3 \ c_3 & c_1 & c_2 \ c_2 & c_3 & c_1 \end{bmatrix}, (c_1, c_2, c_3) \in \mathbb{R}^3
ight\}.$$

- (i) Justifier que l'ensemble $\mathcal C$ est un $\mathbb R$ -espace vectoriel.
- (ii) Montrer que l'application

$$f: \quad \mathbb{R}^3 \quad \longrightarrow \quad \mathcal{C}$$

$$\begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} \quad \longmapsto \quad \begin{bmatrix} c_1 & c_2 & c_3 \\ c_3 & c_1 & c_2 \\ c_2 & c_3 & c_1 \end{bmatrix}$$

est une application linéaire bijective.

Exercice 1.5: Centrage de données

On considère une matrice $\boldsymbol{X} = [x_{ij}] \in \mathbb{R}^{m \times n}$ représentant des données. On suppose que chaque ligne de \boldsymbol{X} contient des données propres à une personne et que chaque colonne représente un attribut particulier (par exemple des notes d'étudiant(e)s pour une UE). Pour chaque colonne $j \in \{1, \ldots, m\}$, on définit alors la moyenne de \boldsymbol{X} sur l'attribut j, comme la quantité

$$\mu_j(\boldsymbol{X}) := \frac{1}{m} \sum_{i=1}^m x_{ij}.$$

Le vecteur moyen associé à X est alors le vecteur $\mu(X) := [\mu_j(X)]_{j=1}^n \in \mathbb{R}^n$. On dit que l'on effectue un centrage des données lorsque l'on passe de la matrice X à la matrice

$$\overline{\boldsymbol{X}} := \begin{bmatrix} x_{11} - \mu_1(\boldsymbol{X}) & \cdots & x_{1n} - \mu_n(\boldsymbol{X}) \\ x_{21} - \mu_1(\boldsymbol{X}) & \cdots & x_{2n} - \mu_n(\boldsymbol{X}) \\ \vdots & \vdots & \vdots \\ x_{n1} - \mu_1(\boldsymbol{X}) & \cdots & x_{nn} - \mu_n(\boldsymbol{X}) \end{bmatrix}.$$

- a) Montrer que l'application $X \mapsto \overline{X}$ est une application linéaire de $\mathbb{R}^{m \times n}$ dans $\mathbb{R}^{m \times n}$.
- b) Montrer que $\mu(\overline{X})=0$.
- c) **Application :** On considère la matrice de données $\pmb{X} = \begin{bmatrix} 12 & 15 & 17 \\ 12 & 13 & 15 \\ 12 & 11 & 13 \end{bmatrix}$.
 - i) Calculer le vecteur moyen $\mu(X)$ et la version centrée de cette matrice \overline{X} .
 - ii) En utilisant ces quantités, justifier que le premier attribut du jeu de données n'est pas discriminant entre les différentes personnes.
 - iii) En utilisant ces quantités, justifier que le seconde personne du jeu de données est représentative de la moyenne.

Solutions

Solution de l'exercice 1.1: Un espace vectoriel

- a) Conformémement à la définition, il s'agit de vérifier tous les axiomes, qui sont valides grâce aux propriétés des réels.
- b) Il ne s'agit pas d'un \mathbb{C} -espace vectoriel car i.f est une fonction à valeurs complexes et non réelles. En revanche, comme $q.f \in \mathcal{F}(\mathbb{R},\mathbb{R})$ pour tout $q \in \mathbb{Q}$, il s'agit bien d'un \mathbb{Q} -espace vectoriel.

Solution de l'exercice 1.2: Sous-espace vectoriel

On considère l'ensemble des imaginaires purs, noté

$$\mathrm{i}\mathbb{R}:=\left\{ y\mathrm{i}\ |y\in\mathbb{R}\right\} .$$

- a) On vérifie sans peine que $\lambda.x+y\in i\mathbb{R}$ pour tout $\lambda\in\mathbb{R}$ et tous $(x,y)\in i\mathbb{R}^2$.
- b) Il suffit de remarquer que $i.x \in \mathbb{R}$ pour tout $x \in i\mathbb{R}$.

Solution de l'exercice 1.3: Application moyenne

a) Pour tous
$$x=\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}$$
 , $y=\begin{bmatrix}y_1\\y_2\\y_3\end{bmatrix}$ et $\lambda\in\mathbb{R}$, on a

$$f\left(\lambda \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}\right) = \frac{\lambda x_1 + \lambda x_2 + \lambda x_3 + y_1 + y_2 + y_3}{3} = \lambda f\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) + f\left(\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}\right).$$

b) En résolvant $f\left(\begin{bmatrix} x_1\\x_2\\x_3 \end{bmatrix}\right)=0$, on obtient que le noyau de f est l'ensemble

$$\ker(f) = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \middle| x_1 + x_2 + x_3 = 0 \right\}$$

tandis que l'image est par définition égale à

$$\operatorname{Im}(f) = \left\{ y \in \mathbb{R} \mid y = \frac{x_1 + x_2 + x_3}{3} \right\}.$$

Pour tout réel y, on observe que $y=f\left(\begin{bmatrix}y\\y\\y\end{bmatrix}\right)$. Par conséquent, l'image de f est égale à $\mathbb R$. Par le même procédé, on montre que l'image de f est l'ensemble des vecteurs dont les composantes sont égales.

- c) On montre de la même manière que précédemment que g est une application linéaire. Son noyau est identique à celui de f, en revanche son image est l'ensemble des vecteurs de \mathbb{R}^3 dont les composantes somment à 0.
- d) La représentation de f dans les bases canoniques de \mathbb{R}^3 et \mathbb{R} est

$$\begin{bmatrix} 1/3 & 1/3 & 1/3 \end{bmatrix}$$

tandis que celle de g est

$$\begin{bmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{bmatrix}.$$

Solution de l'exercice 1.4 : Matrices Toeplitz

a) Pour toutes matrices de \mathcal{T}^2 $\boldsymbol{T}=\begin{bmatrix}t_1 & t_2 & t_3\\t_4 & t_1 & t_2\\t_5 & t_4 & t_1\end{bmatrix}$ et $\boldsymbol{U}=\begin{bmatrix}u_1 & u_2 & u_3\\u_4 & u_1 & u_2\\u_5 & u_4 & u_1\end{bmatrix}$ et tout réel $\lambda\in\mathbb{R}$, la matrice $\lambda\boldsymbol{T}+\boldsymbol{U}$ est donnée

$$\begin{bmatrix} \lambda t_1 + u_1 & \lambda t_2 + u_2 & \lambda t_3 + u_3 \\ \lambda t_4 + u_4 & \lambda t_1 + u_1 & \lambda t_2 + u_2 \\ \lambda t_5 + u_5 & \lambda t_4 + u_4 & \lambda t_1 + u_1 \end{bmatrix},$$

qui est bien une matrice de Toeplitz, et par conséquent \mathcal{T} est un sous-espace vectoriel de $\mathbb{R}^{3\times3}$.

b) Si T s'écrit $\begin{bmatrix} t_1 & t_2 & t_3 \\ t_4 & t_1 & t_2 \\ t_5 & t_4 & t_1 \end{bmatrix}$, alors T représente l'endomorphisme $t \in \mathcal{L}(\mathbb{R}^3)$ tel que

$$\forall \boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \qquad t(\boldsymbol{x}) = \begin{bmatrix} t_1 x_1 + t_2 x_2 + t_3 x_3 \\ t_4 x_1 + t_1 x_2 + t_2 x_3 \\ t_5 x_1 + t_4 x_2 + t_1 x_3 \end{bmatrix}.$$

c) Soit une matrice $T\in\mathcal{T}$. Quelle application linéaire représente-t-elle dans la base canonique de \mathbb{R}^3 ?

d)

- (i) On procède de la même manière qu'en question a) en observant que $\lambda C + D \in \mathcal{C}$ pour toutes matrices C et D de \mathcal{C} et pour tout réel \mathbb{R} .
- (ii) L'application est injective : soit $m{c} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$ tel que $f(m{c}) = \mathbf{0}_{\mathbb{R}^{3 \times 3}}$. Alors la première ligne de $f(m{c})$ est nulle, d'où $c_1 = c_2 = c_3 = 0$ et $m{c} = \mathbf{0}$.

L'application est surjective : Pour toute matrice $m{C} = egin{bmatrix} c_1 & c_2 & c_3 \\ c_3 & c_1 & c_2 \\ c_2 & c_3 & c_1 \end{bmatrix} \in \mathcal{C}$, on a $m{C} = \begin{pmatrix} c_1 & c_2 & c_3 \\ c_3 & c_1 & c_2 \\ c_2 & c_3 & c_1 \end{pmatrix}$

$$f\left(\begin{bmatrix}c_1\\c_2\\c_3\end{bmatrix}\right).$$

Au final, on conclut que f est bijective.

Solution de l'exercice 1.5: Centrage de données

a) Il s'agit de vérifier que pour tout $\lambda \in \mathbb{R}$ et pour toutes matrices $X \in \mathbb{R}^{m \times n}$ et $Y \in \mathbb{R}^{m \times n}$, on a $\overline{\lambda X + Y} = \lambda \overline{X} + \overline{Y}$. Pour cela, on vérifie que pour tout $j = 1, \dots, n$, on a

$$\mu_j(\lambda \boldsymbol{X} + \boldsymbol{Y}) = \lambda \mu_j(\boldsymbol{X}) + \mu_j(\boldsymbol{Y})$$

par linéarité des opérations matricielles.

b) Pour tout $j=1,\ldots,n$, en notant $\{\bar{x}_ij\}$ les coefficients de $\overline{\boldsymbol{X}}$, on a :

$$\mu_{j}(\overline{X}) = \frac{1}{m} \sum_{i=1}^{m} \bar{x}_{ij}$$

$$= \frac{1}{m} \sum_{i=1}^{m} (x_{ij} - \mu_{j}(X))$$

$$= \left(\frac{1}{m} \sum_{i=1}^{m} x_{ij}\right) - \mu_{j}(X)$$

$$= \mu_{j}(X) - \mu_{j}(X) = 0.$$

- c) **Application :** On considère la matrice de données $m{X} = egin{bmatrix} 12 & 15 & 17 \\ 12 & 13 & 15 \\ 12 & 11 & 13 \end{bmatrix}$.
 - i) Calculer le vecteur moyen $\mu(X)$ et la version centrée de cette matrice \overline{X} .
 - ii) Le calcul donne

$$\mu(\boldsymbol{X}) = \begin{bmatrix} 12 \\ 13 \\ 15 \end{bmatrix} \quad \text{et} \quad \overline{\boldsymbol{X}} = \begin{bmatrix} 0 & 2 & 2 \\ 0 & 0 & 0 \\ 0 & -2 & -2 \end{bmatrix}.$$

- iii) La première colonne de \overline{X} est nulle, car $\mu_1(X) = x_{i1}$ pour tout i. On voit alors que la première valeur ne différencie pas les individus.
- iv) La seconde ligne de X est nulle car $\mu(X)$ est égale à (la transposée de) cette ligne. Le second individu est donc identique à l'individu moyen.