
Complexity analysis in optimization (1/6)

Clément W. Royer

ED SDOSE Doctoral course

January 30, 2025

C. W. Royer Complexity analysis in optimization ED SDOSE 1



Warm-up

Resources
Resources via my webpage:
https://www.lamsade.dauphine.fr/∼croyer

Slides, virtual boards, etc.

Logistics
4 sessions Thursday 1.45-5pm Jan. 30, Feb. 06, Feb. 13, Feb. 20.
2 sessions Wednesday 1.45-5pm Feb. 12, Feb. 19.
Will try to cover relatively independent subjects during each session!

C. W. Royer Complexity analysis in optimization ED SDOSE 2



Breaking the ice

My ID card
I’m Clément!
At Dauphine since 2019.
I got here via RER C.

What about you?
First name.
Your first year at Dauphine.
How did you get to Dauphine today?

C. W. Royer Complexity analysis in optimization ED SDOSE 3



Breaking the ice

My ID card
I’m Clément!
At Dauphine since 2019.
I got here via RER C.

What about you?
First name.
Your first year at Dauphine.
How did you get to Dauphine today?

C. W. Royer Complexity analysis in optimization ED SDOSE 3



Why did I agree to give this course?

C. W. Royer Complexity analysis in optimization ED SDOSE 4



Why did I agree to give this course?

C. W. Royer Complexity analysis in optimization ED SDOSE 4



Why did I agree to give this course?

This is my field of study!
I am preparing my HDR on this!
I think this is important (and cool).

C. W. Royer Complexity analysis in optimization ED SDOSE 4



What will I talk about?

Initial syllabus: Way too ambitious!
Focus on (six) results.

You can learn about complexity by others.
I’ll give you pointers to the literature!
It will probably never be useful to you.
I’ll tell you how it was useful to me.

C. W. Royer Complexity analysis in optimization ED SDOSE 5



What will I talk about?

Initial syllabus: Way too ambitious!
Focus on (six) results.
You can learn about complexity by others.
I’ll give you pointers to the literature!

It will probably never be useful to you.
I’ll tell you how it was useful to me.

C. W. Royer Complexity analysis in optimization ED SDOSE 5



What will I talk about?

Initial syllabus: Way too ambitious!
Focus on (six) results.
You can learn about complexity by others.
I’ll give you pointers to the literature!
It will probably never be useful to you.
I’ll tell you how it was useful to me.

C. W. Royer Complexity analysis in optimization ED SDOSE 5



What I intend to do

Every session will have a key result.
We’ll prove it, possibly illustrate it, discuss what it means.
I’ll have a story to tell about this.

C. W. Royer Complexity analysis in optimization ED SDOSE 6



Today’s roadmap

1 Optimization background

2 Complexity of gradient descent

3 Worst-case example

4 Newton’s method and backstory

C. W. Royer Complexity analysis in optimization ED SDOSE 7



Roadmap

1 Optimization background

2 Complexity of gradient descent

3 Worst-case example

4 Newton’s method and backstory

C. W. Royer Complexity analysis in optimization ED SDOSE 8



Basic optimization problem

Unconstrained smooth minimization:

minimize
x∈Rn

f(x)

Assumptions on f

f bounded below: f(x) ≥ flow.

f C1 (continuously differentiable):
At every x ∈ Rn, the gradient ∇f(x) ∈ Rn exists.
f C1,1

L (aka L-smooth)

∀(x, y) ∈ (Rn)2, ∥∇f(y)−∇f(x)∥ ≤ L∥y − x∥.

The gradient is L-Lipschitz continuous.

C. W. Royer Complexity analysis in optimization ED SDOSE 9



Basic optimization problem

Unconstrained smooth minimization:

minimize
x∈Rn

f(x)

Assumptions on f

f bounded below: f(x) ≥ flow.
f C1 (continuously differentiable):
At every x ∈ Rn, the gradient ∇f(x) ∈ Rn exists.

f C1,1
L (aka L-smooth)

∀(x, y) ∈ (Rn)2, ∥∇f(y)−∇f(x)∥ ≤ L∥y − x∥.

The gradient is L-Lipschitz continuous.

C. W. Royer Complexity analysis in optimization ED SDOSE 9



Basic optimization problem

Unconstrained smooth minimization:

minimize
x∈Rn

f(x)

Assumptions on f

f bounded below: f(x) ≥ flow.
f C1 (continuously differentiable):
At every x ∈ Rn, the gradient ∇f(x) ∈ Rn exists.
f C1,1

L (aka L-smooth)

∀(x, y) ∈ (Rn)2, ∥∇f(y)−∇f(x)∥ ≤ L∥y − x∥.

The gradient is L-Lipschitz continuous.

C. W. Royer Complexity analysis in optimization ED SDOSE 9



Our goal: Solving the problem?

minimize
x∈Rn

f(x)

Definition: x∗ ∈ Rn is
a global minimum of f if f(x∗) ≤ f(x) ∀x ∈ Rn.
a local minimum of f if f(x∗) ≤ f(x) ∀x close enough to x∗.
A first-order stationary point of f satisfies ∥∇f(x∗)∥ = 0.

A first “complexity” result
Under our assumptions,

Finding global minima of f is NP-hard in general.
Finding local minima of f is NP-hard in general.

C. W. Royer Complexity analysis in optimization ED SDOSE 10



Our goal: Solving the problem?

minimize
x∈Rn

f(x)

Definition: x∗ ∈ Rn is
a global minimum of f if f(x∗) ≤ f(x) ∀x ∈ Rn.
a local minimum of f if f(x∗) ≤ f(x) ∀x close enough to x∗.
A first-order stationary point of f satisfies ∥∇f(x∗)∥ = 0.

A first “complexity” result
Under our assumptions,

Finding global minima of f is NP-hard in general.
Finding local minima of f is NP-hard in general.

C. W. Royer Complexity analysis in optimization ED SDOSE 10



Our goal: Solving the problem?

minimize
x∈Rn

f(x)

Definition: x∗ ∈ Rn is
a global minimum of f if f(x∗) ≤ f(x) ∀x ∈ Rn.
a local minimum of f if f(x∗) ≤ f(x) ∀x close enough to x∗.
A first-order stationary point of f satisfies ∥∇f(x∗)∥ = 0.

A first “complexity” result
Under our assumptions,

Finding global minima of f is NP-hard in general.

Finding local minima of f is NP-hard in general.

C. W. Royer Complexity analysis in optimization ED SDOSE 10



Our goal: Solving the problem?

minimize
x∈Rn

f(x)

Definition: x∗ ∈ Rn is
a global minimum of f if f(x∗) ≤ f(x) ∀x ∈ Rn.
a local minimum of f if f(x∗) ≤ f(x) ∀x close enough to x∗.
A first-order stationary point of f satisfies ∥∇f(x∗)∥ = 0.

A first “complexity” result
Under our assumptions,

Finding global minima of f is NP-hard in general.
Finding local minima of f is NP-hard in general.

C. W. Royer Complexity analysis in optimization ED SDOSE 10



Our real goal: Approximately solving the problem with good
complexity

For any ϵ > 0, x̄ ∈ Rn is an ϵ-stationary point if

∥∇f(x̄)∥ ≤ ϵ.

Take-away
We can design iterative algorithms that compute an ϵ-stationary point

In a number of iterations that scales as a polynomial in ϵ−1.
Using a number of evaluations that also scales as a polynomial in ϵ−1.

This is what we call complexity analysis!

C. W. Royer Complexity analysis in optimization ED SDOSE 11



Our real goal: Approximately solving the problem with good
complexity

For any ϵ > 0, x̄ ∈ Rn is an ϵ-stationary point if

∥∇f(x̄)∥ ≤ ϵ.

Take-away
We can design iterative algorithms that compute an ϵ-stationary point

In a number of iterations that scales as a polynomial in ϵ−1.
Using a number of evaluations that also scales as a polynomial in ϵ−1.

This is what we call complexity analysis!

C. W. Royer Complexity analysis in optimization ED SDOSE 11



Our real goal: Approximately solving the problem with good
complexity

For any ϵ > 0, x̄ ∈ Rn is an ϵ-stationary point if

∥∇f(x̄)∥ ≤ ϵ.

Take-away
We can design iterative algorithms that compute an ϵ-stationary point

In a number of iterations that scales as a polynomial in ϵ−1.
Using a number of evaluations that also scales as a polynomial in ϵ−1.

This is what we call complexity analysis!

C. W. Royer Complexity analysis in optimization ED SDOSE 11



A bit of history

When I learned optimization (≈ L3 courses in Dauphine):
Typical theory: Show that ∥∇f(x)∥ → 0, with possibly fast
convergence near a solution.
Classical results in a 1980s-1990s paper.
Influence from applied maths/control people.

How I teach it now (≈ M2 courses in Dauphine)

Given ϵ > 0, how fast can you find a point such that ∥∇f(x)∥ ≤ ϵ?
Finite-time guarantees: popular since late 2000s, now very standard in
continuous optimization papers.
Blame it on ML/Theoretical CS people!

C. W. Royer Complexity analysis in optimization ED SDOSE 12



A bit of history

When I learned optimization (≈ L3 courses in Dauphine):
Typical theory: Show that ∥∇f(x)∥ → 0, with possibly fast
convergence near a solution.
Classical results in a 1980s-1990s paper.
Influence from applied maths/control people.

How I teach it now (≈ M2 courses in Dauphine)
Given ϵ > 0, how fast can you find a point such that ∥∇f(x)∥ ≤ ϵ?
Finite-time guarantees: popular since late 2000s, now very standard in
continuous optimization papers.
Blame it on ML/Theoretical CS people!

C. W. Royer Complexity analysis in optimization ED SDOSE 12



Roadmap

1 Optimization background

2 Complexity of gradient descent

3 Worst-case example

4 Newton’s method and backstory

C. W. Royer Complexity analysis in optimization ED SDOSE 13



Using the gradient

Problem: minimizex∈Rn f(x), f C1,1
L .

At any point x ∈ Rn, we have

f(y) ≈ f(x) +∇f(x)T(y − x)

when y is close to x.

By Lipschitz-continuity of the gradient,

∀x, y, f(y) ≤ f(x) +∇f(x)T(y − x) +
L

2
∥y − x∥2.

Optimality conditions

If a point x is a minimum of f , then ∥∇f(x)∥ = 0.
If ∥∇f(x)∥ > 0 and α > 0 is small enough, then
f(x− α∇f(x)) < f(x) (basis of gradient descent).

C. W. Royer Complexity analysis in optimization ED SDOSE 14



Using the gradient

Problem: minimizex∈Rn f(x), f C1,1
L .

At any point x ∈ Rn, we have

f(y) ≈ f(x) +∇f(x)T(y − x)

when y is close to x.
By Lipschitz-continuity of the gradient,

∀x, y, f(y) ≤ f(x) +∇f(x)T(y − x) +
L

2
∥y − x∥2.

Optimality conditions

If a point x is a minimum of f , then ∥∇f(x)∥ = 0.
If ∥∇f(x)∥ > 0 and α > 0 is small enough, then
f(x− α∇f(x)) < f(x) (basis of gradient descent).

C. W. Royer Complexity analysis in optimization ED SDOSE 14



Gradient descent

Algorithm(x0 ∈ Rn, ϵ > 0)
For k = 0, 1, 2, . . .

If ∥∇f(xk)∥ ≤ ϵ, stop and return xk.
Otherwise, compute αk > 0 and set xk+1 = xk − αk∇f(xk).

Cost: Evaluating ∇f(xk)+Computing αk.

C. W. Royer Complexity analysis in optimization ED SDOSE 15



Gradient descent

Algorithm(x0 ∈ Rn, ϵ > 0)
For k = 0, 1, 2, . . .

If ∥∇f(xk)∥ ≤ ϵ, stop and return xk.
Otherwise, compute αk > 0 and set xk+1 = xk − αk∇f(xk).

Cost: Evaluating ∇f(xk)+Computing αk.

C. W. Royer Complexity analysis in optimization ED SDOSE 15



Iteration complexity

Key lemma

If αk < 2
L , then

f(xk − αk∇f(xk)) ≤ f(xk)− (αk −
L

2
α2
k)∥∇f(xk)∥2 < f(xk).

Theorem (Nesterov ’04, Gaviano & Lera ’02)

If αk = α = 1
L , then the method stops after at most⌈

2L(f(x0)− flow)

ϵ2

⌉
= O(ϵ−2)

iterations/gradient evaluations.

C. W. Royer Complexity analysis in optimization ED SDOSE 16



Line-search variant

Armijo backtracking line search

Set αk as the largest value α ∈ {1, θ, θ2, . . . } such that

f(xk − α∇f(xk)) < f(xk)− cα∥∇f(xk)∥2

for θ ∈ (0, 1) and c ∈ (0, 1).

Line search termination
The line-search terminates with

αk ≥ 2θ(1− c)

L
.

C. W. Royer Complexity analysis in optimization ED SDOSE 17



Line-search variant

Iteration complexity
With line search, the method terminates after at most

L(f(x0)− flow)

2θ c(1− c)︸ ︷︷ ︸
C1

ϵ−2 = O(ϵ−2)

iterations.
⇒ Same order without knowledge of L!

Evaluation complexity
With line search, the method terminates after at most

C1ϵ
−2 gradient evaluations.

logθ

(
2(1−c)

L

)
ϵ−2 function evaluations.

C. W. Royer Complexity analysis in optimization ED SDOSE 18



Line-search variant

Iteration complexity
With line search, the method terminates after at most

L(f(x0)− flow)

2θ c(1− c)︸ ︷︷ ︸
C1

ϵ−2 = O(ϵ−2)

iterations.
⇒ Same order without knowledge of L!

Evaluation complexity
With line search, the method terminates after at most

C1ϵ
−2 gradient evaluations.

logθ

(
2(1−c)

L

)
ϵ−2 function evaluations.

C. W. Royer Complexity analysis in optimization ED SDOSE 18



Roadmap

1 Optimization background

2 Complexity of gradient descent

3 Worst-case example

4 Newton’s method and backstory

C. W. Royer Complexity analysis in optimization ED SDOSE 19



From upper to lower bounds

We have shown that gradient descent takes at most O(ϵ−2) iterations
to get ∥∇f(xk)∥ ≤ ϵ...

...but that bound may be far from the best possible bound:
O(ϵ−143535) is also a valid upper bound!
A line of work has focused on finding worst-case examples for which
the bound is attained.

C. W. Royer Complexity analysis in optimization ED SDOSE 20



From upper to lower bounds

We have shown that gradient descent takes at most O(ϵ−2) iterations
to get ∥∇f(xk)∥ ≤ ϵ...
...but that bound may be far from the best possible bound:
O(ϵ−143535) is also a valid upper bound!

A line of work has focused on finding worst-case examples for which
the bound is attained.

C. W. Royer Complexity analysis in optimization ED SDOSE 20



From upper to lower bounds

We have shown that gradient descent takes at most O(ϵ−2) iterations
to get ∥∇f(xk)∥ ≤ ϵ...
...but that bound may be far from the best possible bound:
O(ϵ−143535) is also a valid upper bound!
A line of work has focused on finding worst-case examples for which
the bound is attained.

C. W. Royer Complexity analysis in optimization ED SDOSE 20



The Cartis-Gould-Toint example

A pathological, 1-dimensional function.
Gradient descent does take O(ϵ−2) iterations!

C. W. Royer Complexity analysis in optimization ED SDOSE 21



How bad-looking is this function?

“Some steps on a sandy dune” (Ph. Toint).
Built by Hermite interpolation.

C. W. Royer Complexity analysis in optimization ED SDOSE 22



Roadmap

1 Optimization background

2 Complexity of gradient descent

3 Worst-case example

4 Newton’s method and backstory

C. W. Royer Complexity analysis in optimization ED SDOSE 23



How did I came across these results?

2012: First optimization course (as Master student).
Learn about gradient descent and Newton’s method.
No complexity but local convergence/practical results.
Newton outperforms gradient descent!

2013: Master thesis on optimization

Start reading about complexity (but not the focus);
Discover the Cartis/Gould/Toint paper.
Learn that Newton can be as bad as gradient descent!

C. W. Royer Complexity analysis in optimization ED SDOSE 24



How did I came across these results?

2012: First optimization course (as Master student).
Learn about gradient descent and Newton’s method.
No complexity but local convergence/practical results.
Newton outperforms gradient descent!

2013: Master thesis on optimization
Start reading about complexity (but not the focus);
Discover the Cartis/Gould/Toint paper.
Learn that Newton can be as bad as gradient descent!

C. W. Royer Complexity analysis in optimization ED SDOSE 24



My history with complexity (Pt. 1)

Semi-plenary: Coralia Cartis.
Started reading a lot more complexity papers of hers afterwards.
Not all were useful to me during the PhD.

C. W. Royer Complexity analysis in optimization ED SDOSE 25



Striking result: Newton’s method

Newton’s method
While ∥∇f(xk)∥ ≤ ϵ,

xk+1 = xk − αk

[
∇2f(xk)

]−1∇f(xk)

Not always well-defined.
Not always convergent.
Works often well in practice.

And yet...

Newton’s method terminates in at most O(ϵ−2) iterations.
There exists a function on which Newton’s method takes at least
O(ϵ−2) iterations!

C. W. Royer Complexity analysis in optimization ED SDOSE 26



Striking result: Newton’s method

Newton’s method
While ∥∇f(xk)∥ ≤ ϵ,

xk+1 = xk − αk

[
∇2f(xk)

]−1∇f(xk)

Not always well-defined.
Not always convergent.
Works often well in practice.

And yet...

Newton’s method terminates in at most O(ϵ−2) iterations.
There exists a function on which Newton’s method takes at least
O(ϵ−2) iterations!

C. W. Royer Complexity analysis in optimization ED SDOSE 26



Summary

Complexity: Certificate that you reach a given criterion in finite time.
Complexity analysis Drives the modern theory of optimization
algorithms.
Worst-case examples Give lower bounds that match the upper
bounds.

Next up
This was all in the nonconvex setting.
We will look (back in time) at the convex setting.

C. W. Royer Complexity analysis in optimization ED SDOSE 27



Summary

Complexity: Certificate that you reach a given criterion in finite time.
Complexity analysis Drives the modern theory of optimization
algorithms.
Worst-case examples Give lower bounds that match the upper
bounds.

Next up
This was all in the nonconvex setting.
We will look (back in time) at the convex setting.

C. W. Royer Complexity analysis in optimization ED SDOSE 27



That’s all for now!

Thank you!

C. W. Royer Complexity analysis in optimization ED SDOSE 28


	Introduction
	Optimization background
	Complexity of gradient descent
	Worst-case example
	Newton's method and backstory
	Conclusions

