Complexity analysis in optimization (1/6)

Clément W. Royer

ED SDOSE Doctoral course

January 30, 2025

Dauphine | PSL 🛣 LAMSADE

Resources

- Resources via my webpage: https://www.lamsade.dauphine.fr/~croyer
- Slides, virtual boards, etc.

Logistics

- 4 sessions Thursday 1.45-5pm Jan. 30, Feb. 06, Feb. 13, Feb. 20.
- 2 sessions Wednesday 1.45-5pm Feb. 12, Feb. 19.
- Will try to cover relatively independent subjects during each session!

My ID card

- I'm Clément!
- At Dauphine since 2019.
- I got here via RER C.

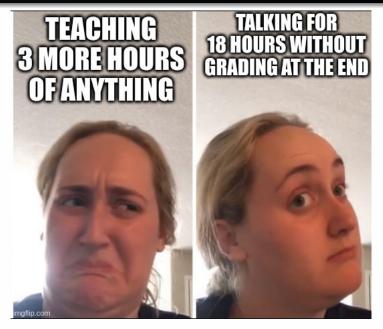
My ID card

- I'm Clément!
- At Dauphine since 2019.
- I got here via RER C.

What about you?

- First name.
- Your first year at Dauphine.
- How did you get to Dauphine today?

Why did I agree to give this course?



- This is my field of study!
- I am preparing my HDR on this!
- I think this is important (and cool).

What will I talk about?

Detailed (tentative) syllabus:

- Part 1 Basics of continuous optimization: Derivatives, optimality conditions, classes of functions and algorithms. Introduction to complexity in continuous optimization: convergence rates, worst-case complexity, connection to NP-hardness.
- Part 2 Complexity in convex optimization: basic complexity results for convex and strongly convex functions, acceleration, upper/lower bounds. Complexity in nonconvex optimization: results for first-order methods and limitations, second-order methods and beyond, upper/lower bounds.
- Part 3 Stochastic optimization: complexity results for stochastic gradient methods, lower/upper bounds. Games and saddle point problems: Complexity of gradient descent-ascent, open problems. Complexity in continuous VS discrete optimization: submodular optimization, recent advances in integer programming.
- Initial syllabus: Way too ambitious!
 Focus on (six) results.

What will I talk about?

Detailed (tentative) syllabus:

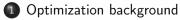
- Part 1 Basics of continuous optimization: Derivatives, optimality conditions, classes of functions and algorithms. Introduction to complexity in continuous optimization: convergence rates, worst-case complexity, connection to NP-hardness.
- Part 2 Complexity in convex optimization: basic complexity results for convex and strongly convex functions, acceleration, upper/lower bounds. Complexity in nonconvex optimization: results for first-order methods and limitations, second-order methods and beyond, upper/lower bounds.
- Part 3 Stochastic optimization: complexity results for stochastic gradient methods, lower/upper bounds. Games and saddle point problems: Complexity of gradient descent-ascent, open problems. Complexity in continuous VS discrete optimization: submodular optimization, recent advances in integer programming.
- Initial syllabus: Way too ambitious!
 Focus on (six) results.
- You can learn about complexity by others. I'll give you pointers to the literature!

What will I talk about?

Detailed (tentative) syllabus:

- Part 1 Basics of continuous optimization: Derivatives, optimality conditions, classes of functions and algorithms. Introduction to complexity in continuous optimization: convergence rates, worst-case complexity, connection to NP-hardness.
- Part 2 Complexity in convex optimization: basic complexity results for convex and strongly convex functions, acceleration, upper/lower bounds. Complexity in nonconvex optimization: results for first-order methods and limitations, second-order methods and beyond, upper/lower bounds.
- Part 3 Stochastic optimization: complexity results for stochastic gradient methods, lower/upper bounds. Games and saddle point problems: Complexity of gradient descent-ascent, open problems. Complexity in continuous VS discrete optimization: submodular optimization, recent advances in integer programming.
- Initial syllabus: Way too ambitious!
 Focus on (six) results.
- You can learn about complexity by others. I'll give you pointers to the literature!
- It will probably never be useful to you. I'll tell you how it was useful to me.

- Every session will have a key result.
- We'll prove it, possibly illustrate it, discuss what it means.
- I'll have a story to tell about this.



- 2 Complexity of gradient descent
- 3 Worst-case example
- 4 Newton's method and backstory

Optimization background

- 2 Complexity of gradient descent
- 3 Worst-case example
- 4 Newton's method and backstory

Unconstrained smooth minimization:

 $\underset{x \in \mathbb{R}^n}{\operatorname{minimize}} f(x)$

Unconstrained smooth minimization:

 $\min_{x \in \mathbb{R}^n} f(x)$

Assumptions on f

- f bounded below: $f(x) \ge f_{\text{low}}$.
- $f \ C^1$ (continuously differentiable): At every $x \in \mathbb{R}^n$, the gradient $\nabla f(x) \in \mathbb{R}^n$ exists.

Unconstrained smooth minimization:

 $\min_{x \in \mathbb{R}^n} f(x)$

Assumptions on f

- f bounded below: $f(x) \ge f_{\text{low}}$.
- $f \ C^1$ (continuously differentiable): At every $x \in \mathbb{R}^n$, the gradient $\nabla f(x) \in \mathbb{R}^n$ exists.
- $f \ \mathcal{C}_L^{1,1}$ (aka *L*-smooth)

$$\forall (x,y) \in (\mathbb{R}^n)^2, \|\nabla f(y) - \nabla f(x)\| \le L \|y - x\|.$$

The gradient is *L*-Lipschitz continuous.

Our goal: Solving the problem?

 $\mathop{\mathrm{minimize}}_{x\in\mathbb{R}^n}f(x)$

Definition: $x^* \in \mathbb{R}^n$ is

- a global minimum of f if $f(x^*) \leq f(x) \ \forall x \in \mathbb{R}^n$.
- a local minimum of f if $f(x^*) \leq f(x) \ \forall x$ close enough to x^* .
- A first-order stationary point of f satisfies $\|\nabla f(x^*)\| = 0$.

Our goal: Solving the problem?

 $\mathop{\mathrm{minimize}}_{x\in\mathbb{R}^n}f(x)$

Definition: $x^* \in \mathbb{R}^n$ is

- a global minimum of f if $f(x^*) \leq f(x) \ \forall x \in \mathbb{R}^n$.
- a local minimum of f if $f(x^*) \leq f(x) \ \forall x$ close enough to x^* .
- A first-order stationary point of f satisfies $\|\nabla f(x^*)\| = 0$.

A first "complexity" result

Under our assumptions,

Our goal: Solving the problem?

 $\mathop{\mathrm{minimize}}_{x\in\mathbb{R}^n}f(x)$

Definition: $x^* \in \mathbb{R}^n$ is

- a global minimum of f if $f(x^*) \leq f(x) \ \forall x \in \mathbb{R}^n$.
- a local minimum of f if $f(x^*) \leq f(x) \ \forall x$ close enough to x^* .
- A first-order stationary point of f satisfies $\|\nabla f(x^*)\| = 0$.

A first "complexity" result

Under our assumptions,

• Finding global minima of f is NP-hard in general.

 $\underset{x \in \mathbb{R}^n}{\operatorname{minimize}}\,f(x)$

Definition: $x^* \in \mathbb{R}^n$ is

- a global minimum of f if $f(x^*) \leq f(x) \ \forall x \in \mathbb{R}^n$.
- a local minimum of f if $f(x^*) \leq f(x) \ \forall x$ close enough to x^* .
- A first-order stationary point of f satisfies $\|\nabla f(x^*)\| = 0$.

A first "complexity" result

Under our assumptions,

- Finding global minima of f is NP-hard in general.
- Finding local minima of f is NP-hard in general.

Our real goal: Approximately solving the problem with good complexity

For any $\epsilon > 0$, $\bar{x} \in \mathbb{R}^n$ is an ϵ -stationary point if

 $\|\nabla f(\bar{x})\| \le \epsilon.$

Our real goal: Approximately solving the problem with good complexity

For any $\epsilon>0,\,\bar{x}\in\mathbb{R}^n$ is an $\epsilon\text{-stationary point if}$

 $\|\nabla f(\bar{x})\| \le \epsilon.$

Take-away

We can design iterative algorithms that compute an ϵ -stationary point

- In a number of iterations that scales as a polynomial in ϵ^{-1} .
- Using a number of evaluations that also scales as a polynomial in ϵ^{-1} .

Our real goal: Approximately solving the problem with good complexity

For any $\epsilon > 0$, $\bar{x} \in \mathbb{R}^n$ is an ϵ -stationary point if

 $\|\nabla f(\bar{x})\| \le \epsilon.$

Take-away

We can design iterative algorithms that compute an ϵ -stationary point

- In a number of iterations that scales as a polynomial in ϵ^{-1} .
- Using a number of evaluations that also scales as a polynomial in ϵ^{-1} .

This is what we call complexity analysis!

- When I learned optimization (\approx L3 courses in Dauphine):
 - Typical theory: Show that $\|\nabla f(x)\| \to 0$, with possibly fast convergence near a solution.
 - Classical results in a 1980s-1990s paper.
 - Influence from applied maths/control people.

- When I learned optimization (\approx L3 courses in Dauphine):
 - Typical theory: Show that $\|\nabla f(x)\| \to 0$, with possibly fast convergence near a solution.
 - Classical results in a 1980s-1990s paper.
 - Influence from applied maths/control people.
- How I teach it now (\approx M2 courses in Dauphine)
 - Given $\epsilon > 0$, how fast can you find a point such that $\|\nabla f(x)\| \le \epsilon$?
 - Finite-time guarantees: popular since late 2000s, now very standard in continuous optimization papers.
 - Blame it on ML/Theoretical CS people!

2 Complexity of gradient descent

Newton's method and backstory

Using the gradient

Problem: minimize $x \in \mathbb{R}^n f(x)$, $f \mathcal{C}_L^{1,1}$.

• At any point $x \in \mathbb{R}^n$, we have

$$f(y) \approx f(x) + \nabla f(x)^{\mathrm{T}}(y-x)$$

when y is close to x.

Using the gradient

Problem: minimize_{$x \in \mathbb{R}^n$} f(x), $f \mathcal{C}_L^{1,1}$.

• At any point $x \in \mathbb{R}^n$, we have

$$f(y) \approx f(x) + \nabla f(x)^{\mathrm{T}}(y-x)$$

when y is close to x.

• By Lipschitz-continuity of the gradient,

$$\forall x, y, \qquad f(y) \le f(x) + \nabla f(x)^{\mathrm{T}}(y-x) + \frac{L}{2} \|y-x\|^2.$$

Optimality conditions

- If a point x is a minimum of f, then $\|\nabla f(x)\| = 0$.
- If $\|\nabla f(x)\| > 0$ and $\alpha > 0$ is small enough, then $f(x \alpha \nabla f(x)) < f(x)$ (basis of gradient descent).

Algorithm $(x_0 \in \mathbb{R}^n, \epsilon > 0)$ For $k = 0, 1, 2, \dots$

- If $\|\nabla f(x_k)\| \leq \epsilon$, stop and return x_k .
- Otherwise, compute $\alpha_k > 0$ and set $x_{k+1} = x_k \alpha_k \nabla f(x_k)$.

Algorithm $(x_0 \in \mathbb{R}^n, \epsilon > 0)$ For k = 0, 1, 2, ...

- If $\|\nabla f(x_k)\| \leq \epsilon$, stop and return x_k .
- Otherwise, compute $\alpha_k > 0$ and set $x_{k+1} = x_k \alpha_k \nabla f(x_k)$.

• Cost: Evaluating $\nabla f(x_k)$ +Computing α_k .

Iteration complexity

Key lemma

If $\alpha_k < \frac{2}{L}$, then

$$f(x_k - \alpha_k \nabla f(x_k)) \le f(x_k) - (\alpha_k - \frac{L}{2}\alpha_k^2) \|\nabla f(x_k)\|^2 < f(x_k).$$

Theorem (Nesterov '04, Gaviano & Lera '02)

If $\alpha_k = \alpha = \frac{1}{L}$, then the method stops after at most

$$\left\lceil \frac{2L(f(x_0) - f_{\text{low}})}{\epsilon^2} \right\rceil = \mathcal{O}(\epsilon^{-2})$$

iterations/gradient evaluations.

Armijo backtracking line search

Set α_k as the largest value $\alpha \in \{1, \theta, \theta^2, \dots\}$ such that

$$f(x_k - \alpha \nabla f(x_k)) < f(x_k) - c\alpha \|\nabla f(x_k)\|^2$$

for $\theta \in (0,1)$ and $c \in (0,1)$.

Line search termination

The line-search terminates with

$$\alpha_k \ge \frac{2\theta(1-c)}{L}.$$

Iteration complexity

With line search, the method terminates after at most

$$\underbrace{\frac{L(f(x_0) - f_{\text{low}})}{2\theta c(1 - c)}}_{C_1} \epsilon^{-2} = \mathcal{O}(\epsilon^{-2})$$

iterations.

 \Rightarrow Same order without knowledge of L!

Iteration complexity

With line search, the method terminates after at most

$$\underbrace{\frac{L(f(x_0) - f_{\text{low}})}{2\theta c(1 - c)}}_{C_1} \epsilon^{-2} = \mathcal{O}(\epsilon^{-2})$$

iterations.

 \Rightarrow Same order without knowledge of L!

Evaluation complexity

With line search, the method terminates after at most

• $C_1 \epsilon^{-2}$ gradient evaluations.

•
$$\log_{ heta}\left(rac{2(1-c)}{L}
ight)\epsilon^{-2}$$
 function evaluations.

Doptimization background

- 2 Complexity of gradient descent
- Worst-case example

• We have shown that gradient descent takes at most $\mathcal{O}(\epsilon^{-2})$ iterations to get $\|\nabla f(x_k)\| \leq \epsilon...$

- We have shown that gradient descent takes at most $\mathcal{O}(\epsilon^{-2})$ iterations to get $\|\nabla f(x_k)\| \leq \epsilon...$
- ...but that bound may be far from the best possible bound: $\mathcal{O}(\epsilon^{-143535})$ is also a valid upper bound!

- We have shown that gradient descent takes at most $\mathcal{O}(\epsilon^{-2})$ iterations to get $\|\nabla f(x_k)\| \leq \epsilon...$
- ...but that bound may be far from the best possible bound: $\mathcal{O}(\epsilon^{-143535})$ is also a valid upper bound!
- A line of work has focused on finding worst-case examples for which the bound is attained.

The Cartis-Gould-Toint example

SIAM J. OPTIM. Vol. 20, No. 6, pp. 2833-2852 © 2010 Society for Industrial and Applied Mathematics

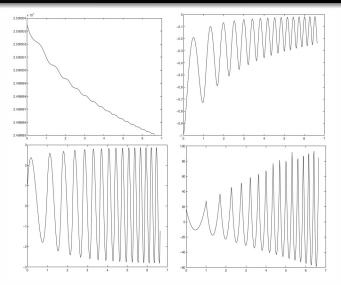
ON THE COMPLEXITY OF STEEPEST DESCENT, NEWTON'S AND REGULARIZED NEWTON'S METHODS FOR NONCONVEX UNCONSTRAINED OPTIMIZATION PROBLEMS*

C. CARTIS[†], N. I. M. GOULD[‡], AND PH. L. TOINT[§]

Abstract. It is shown that the steepest-descent and Newton's methods for unconstrained nonconvex optimization under standard assumptions may both require a number of iterations and function evaluations arbitrarily close to $O(\epsilon^{-2})$ to drive the norm of the gradient below ϵ . This shows that the upper bound of $O(\epsilon^{-2})$ evaluations known for the steepest descent is tight and that Newton's method may be as slow as the steepest-descent method in the worst case. The improved evaluation complexity bound of $O(\epsilon^{-3/2})$ evaluations known for cubically regularized Newton's methods is also shown to be tight.

- A pathological, 1-dimensional function.
- Gradient descent does take $\mathcal{O}(\epsilon^{-2})$ iterations!

How bad-looking is this function?



- "Some steps on a sandy dune" (Ph. Toint).
- Built by Hermite interpolation.

C. W. Royer

- D Optimization background
- 2 Complexity of gradient descent
- 3 Worst-case example
- 4 Newton's method and backstory

- 2012: First optimization course (as Master student).
 - Learn about gradient descent and Newton's method.
 - No complexity but local convergence/practical results.
 - Newton outperforms gradient descent!

- 2012: First optimization course (as Master student).
 - Learn about gradient descent and Newton's method.
 - No complexity but local convergence/practical results.
 - Newton outperforms gradient descent!
- 2013: Master thesis on optimization
 - Start reading about complexity (but not the focus);
 - Discover the Cartis/Gould/Toint paper.
 - Learn that Newton can be as bad as gradient descent!

My history with complexity (Pt. 1)

- Semi-plenary: Coralia Cartis.
- Started reading a lot more complexity papers of hers afterwards.
- Not all were useful to me during the PhD.

Striking result: Newton's method

Newton's method

While $\|\nabla f(x_k)\| \leq \epsilon$,

$$x_{k+1} = x_k - \alpha_k \left[\nabla^2 f(x_k)\right]^{-1} \nabla f(x_k)$$

- Not always well-defined.
- Not always convergent.
- Works often well in practice.

Striking result: Newton's method

Newton's method

While $\|\nabla f(x_k)\| \leq \epsilon$,

$$x_{k+1} = x_k - \alpha_k \left[\nabla^2 f(x_k)\right]^{-1} \nabla f(x_k)$$

- Not always well-defined.
- Not always convergent.
- Works often well in practice.

And yet...

- \bullet Newton's method terminates in at most $\mathcal{O}(\epsilon^{-2})$ iterations.
- There exists a function on which Newton's method takes at least $\mathcal{O}(\epsilon^{-2})$ iterations!

- Complexity: Certificate that you reach a given criterion in finite time.
- **Complexity analysis** Drives the modern theory of optimization algorithms.
- Worst-case examples Give lower bounds that match the upper bounds.

- Complexity: Certificate that you reach a given criterion in finite time.
- **Complexity analysis** Drives the modern theory of optimization algorithms.
- Worst-case examples Give lower bounds that match the upper bounds.

Next up

- This was all in the *nonconvex* setting.
- We will look (back in time) at the *convex* setting.

That's all for now!

Thank you!