Parameterized Complexity and Approximation Issues for the Colorful Components Problems

Riccardo Dondi¹ <u>Florian Sikora</u>²

¹Universita degli Studi di Bergamo – Italy ²LAMSADE, Université Paris Dauphine, CNRS – France

CiE 2016

Parameterized Complexity and Approximation Issues for the Colorful Components Problems

Riccardo Dondi¹ Florian Sikora²

¹Universita degli Studi di Bergamo – Italy ²LAMSADE, Université Paris Dauphine, CNRS – France

CiE 2016

Outline

Introduction

MCC

MEC

Motivations from Comparative Genomics.

Find orthologous genes.

[TRENDS IN GENETICS]

MC

Motivations

- ► Graph approach to identify disjoint orthology sets in [WABI'11].
- Partition a vertex-colored graph in colorful components by removing edges.
- Different optimization measures:
 - ▶ Number of components in the solution [LATIN'14].
 - ► Sum of the number of edges in the transitive closure [WABI'11].

Minimum Colorful Components (MCC)

Remove edges to **minimize** the number of **colorful** components.

Minimum Colorful Components (MCC)

Remove edges to **minimize** the number of **colorful** components.

Maximum Edges in Transitive Closure (MEC)

Maximum Edges in Transitive Closure (MEC)

Remove edges to have **colorful** components and **maximize** the number of edges in the transitive closure. Here: 3 + 1 + 6 + 3 + 6 + 6 + 1 + 1 = 27

Maximum Edges in Transitive Closure (MEC)

Remove edges to have **colorful** components and **maximize** the number of edges in the transitive closure. Here: 3 + 3 + 6 + 6 + 3 + 6 + 1 = 28

Problem: Input: Question: VERTEX COVER Graph *G*, integer *k* Cover edges with *k* vertices INDEPENDENT SET Graph G, integer kFind k independent vertices

Example from D. Marx.

Problem: Input: Question: VERTEX COVER Graph *G*, integer *k* Cover edges with *k* vertices

Compl.: Complexity: Brute-force:

NP-complete $O(n^k)$ possibilities

INDEPENDENT SET Graph *G*, integer *k* Find *k* independent vertices

NP-complete $O(n^k)$ possibilities

Problem: Input: Question: VERTEX COVER Graph G, integer kCover edges with k vertices

Compl.: Complexity: Brute-force: Smarter?:

NP-complete $O(n^k)$ possibilities

 $O(2^k n^2)$ algorithm

INDEPENDENT SET Graph G, integer kFind k independent vertices

NP-complete $O(n^k)$ possibilities

No $f(k)n^{O(1)}$ algorithm exists

Fixed-Parameter Tractability

• Problem in FPT: any instance (I, k) solved in $f(k) \cdot |I|^c$.

- Examples:
 - ▶ Solution of size *k* in a *n*-vertices graph.
 - n voters for k candidates.
 - ▶ Requests of size *k* in a *n*-sized database.
 - ▶ ...

Fixed-Parameter Tractability

• Problem in FPT: any instance (I, k) solved in $f(k) \cdot |I|^c$.

- Examples:
 - ▶ Solution of size *k* in a *n*-vertices graph.
 - n voters for k candidates.
 - ▶ Requests of size *k* in a *n*-sized database.
 - ▶ ...
- Many way to parameterize.
 - Solution size.

Fixed-Parameter Tractability

• Problem in FPT: any instance (I, k) solved in $f(k) \cdot |I|^c$.

- Examples:
 - ▶ Solution of size *k* in a *n*-vertices graph.
 - n voters for k candidates.
 - ▶ Requests of size *k* in a *n*-sized database.
 - ▶ ...
- Many way to parameterize.
 - Solution size.
 - Structure of the input.

How to obtain FPT algorithm?

Illustration D. Marx.

Kernelization

Squirrel from [CFKLMPPS'15]

Outline

Introduction

MCC

MEC

MCC

- Known:
 - Not approximable within $O(n^{1/14-\varepsilon})$ [LATIN'14].
 - No $n^{f(k)}$ algorithm (k number of components) [LATIN'14].

MC

ME

MCC

- Known:
 - Not approximable within $O(n^{1/14-\varepsilon})$ [LATIN'14].
 - No $n^{f(k)}$ algorithm (k number of components) [LATIN'14].
- ► New:
 - On trees, not approximable within 1.36 ε but 2-approximable, FPT and polynomial kernel.
 - Polynomial on paths but NP-hard for graph with distance to disjoint paths 1.

▶ From a MCC instance on trees...

► From a MCC instance on trees...

... create a instance of Multicut with the same tree and:
 (1,7), (1,8), (7,8), (2,5), (4,9) to separate.

► From a MCC instance on trees...

... create a instance of Multicut with the same tree and:
 (1,7), (1,8), (7,8), (2,5), (4,9) to separate.

► From a MCC instance on trees...

- ... create a instance of Multicut with the same tree and:
 (1,7), (1,8), (7,8), (2,5), (4,9) to separate.
- k edges to cut \leftrightarrow k + 1 colorful components in the tree.

▶ From a MCC instance on trees...

- ... create a instance of Multicut with the same tree and:
 (1,7), (1,8), (7,8), (2,5), (4,9) to separate.
- k edges to cut \leftrightarrow k + 1 colorful components in the tree.
 - k^3 (bi)-kernel.
 - ▶ Solvable in *O**(1.56^{*k*}).
 - 2-approximable.

• k edges to cut \leftrightarrow k + 1 colorful components

• k edges to cut $\leftrightarrow k + 1$ colorful components

• MCC not approximable within $1.36 - \varepsilon$ unless P=NP.

MCC:

MCC:

MCC:

• vertex cover of size $k \leftrightarrow k + 1$ colorful components.

- vertex cover of size $k \leftrightarrow k + 1$ colorful components.
- ▶ NP-hard for graphs with distance to disjoint paths 1.

- vertex cover of size $k \leftrightarrow k + 1$ colorful components.
- ▶ NP-hard for graphs with distance to disjoint paths 1.
 - No $O(n^{f(k)})$ algorithm for k=
 - distance to disjoint paths (but poly on paths via DP),
 - pathwidth,
 - distance to interval graphs.

Outline

Introduction

MCC

MEC

MEC

- Known:
 - ► APX-hard even with 3 colors [Iwoca'14]
 - Not approximable within O(n^{1/3-ε}), even for trees where each color appears twice [Iwoca'14].
 - $\sqrt{2 \cdot OPT}$ approximable [Iwoca'14].

MEC

Known:

- ► APX-hard even with 3 colors [Iwoca'14]
- Not approximable within O(n^{1/3−ε}), even for trees where each color appears twice [IwocA'14].
- $\sqrt{2 \cdot OPT}$ approximable [Iwoca'14].
- New:
 - **FPT** w.r.t. size of the solution.
 - ► Kernel polynomial on trees, exponential on graphs.
 - Polynomial on paths but NP-hard for graph with distance to disjoint paths 1.

► Suppose there is no 2 adjacent nodes with same color.

▶ If **path of length** 2k from root to leaf: trivial yes (matching).

- ▶ If **path of length** 2k from root to leaf: trivial yes (matching).
- ▶ If *k* ancestors of leafs: trivial yes (matching).

- ▶ If **path of length** 2k from root to leaf: trivial yes (matching).
- ▶ If *k* ancestors of leafs: trivial yes (matching).
- If an ancestor with $\sqrt{2k}$ leafs of different colors: done.

- ▶ If **path of length** 2k from root to leaf: trivial yes (matching).
- ▶ If *k* ancestors of leafs: trivial yes (matching).
- If an ancestor with $\sqrt{2k}$ leafs of different colors: done.
 - ▶ Remove all but one occurrence of each color for an ancestor.

- ▶ If **path of length** 2k from root to leaf: trivial yes (matching).
- ▶ If *k* ancestors of leafs: trivial yes (matching).
- If an ancestor with $\sqrt{2k}$ leafs of different colors: done.
 - Remove all but one occurrence of each color for an ancestor.
- Tree with $O(k^2)$ nodes.

A kernel for graphs

- Can be extended to general graphs.
- Use a DFS giving a spanning tree.
- But gives exponential kernel.

Open questions

- Kernel lower bound?
- Fine grained complexity?
- More structural results?
- Parameterization above guarantee?

Merci!