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Motivations from Comparative Genomics.

Find orthologous genes.

[Trends in Genetics]
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Motivations

I Graph approach to identify disjoint orthology sets in [WABI’11].

I Partition a vertex-colored graph in colorful components by
removing edges.

I Different optimization measures:
I Number of components in the solution [LATIN’14].
I Sum of the number of edges in the transitive closure [WABI’11].

4/21



Introduction MCC MEC Conclusion

Minimum Colorful Components (MCC)

Remove edges to minimize the number of colorful components.

Remove edges to have colorful components and maximize the
number of edges in the transitive closure.
Here: 3 + 1 + 6 + 3 + 6 + 6 + 1 + 1 = 27
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Maximum Edges in Transitive Closure (MEC)

Remove edges to have colorful components and maximize the
number of edges in the transitive closure.
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number of edges in the transitive closure.
Here: 3 + 3 + 6 + 6 + 3 + 6 + 1 = 28

6/21



Introduction MCC MEC Conclusion

Parameterized Complexity

Problem: Vertex Cover Independent Set
Input: Graph G , integer k Graph G , integer k

Question: Cover edges with k ver-
tices

Find k independent ver-
tices

Compl.:

Complexity: NP-complete NP-complete
Brute-force: O(nk) possibilities O(nk) possibilities

Smarter?:
O(2kn2) algorithm No f (k)nO(1) algorithm

exists

Example from D. Marx. 7/21
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Fixed-Parameter Tractability
I Problem in FPT: any instance (I , k) solved in f (k) · |I |c .

I Examples:
I Solution of size k in a n-vertices graph.
I n voters for k candidates.
I Requests of size k in a n-sized database.
I ...

I Many way to parameterize.
I Solution size.

I Structure of the input.
I ...
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How to obtain FPT algorithm?

Illustration D. Marx.
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Kernelization

n X

k

X ′

k ′

f (k)

g(k)

poly(|X |, k)-time

Squirrel from [CFKLMPPS’15]
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MCC

I Known:
I Not approximable within O(n1/14−ε) [Latin’14].
I No nf (k) algorithm (k number of components) [Latin’14].

I New:
I On trees, not approximable within 1.36− ε but

2-approximable, FPT and polynomial kernel.
I Polynomial on paths but NP-hard for graph with distance to

disjoint paths 1.
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MCC in trees is Multicut in trees - Positive

I From a MCC instance on trees...

7 8 9

5

3

1

4

6

2

I ... create a instance of Multicut with the same tree and:
I (1, 7), (1, 8), (7, 8), (2, 5), (4, 9) to separate.

I k edges to cut ↔ k + 1 colorful components in the tree.

I k3 (bi)-kernel.
I Solvable in O∗(1.56k).
I 2-approximable.
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MCC in trees is Multicut in trees – Negative

Terminals: ( , ), ( , ), ( , )

MCC

I k edges to cut ↔ k + 1 colorful components

I MCC not approximable within 1.36− ε unless P=NP.
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MCC hardness

Vertex Cover:

MCC:

I vertex cover of size k ↔ k + 1 colorful components.
I NP-hard for graphs with distance to disjoint paths 1.

I No O(nf (k)) algorithm for k=
I distance to disjoint paths (but poly on paths via DP),
I pathwidth,
I distance to interval graphs.
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MEC

I Known:
I APX-hard even with 3 colors [Iwoca’14]

I Not approximable within O(n1/3−ε), even for trees where each
color appears twice [Iwoca’14].

I
√

2 · OPT approximable [Iwoca’14].

I New:
I FPT w.r.t. size of the solution.
I Kernel polynomial on trees, exponential on graphs.
I Polynomial on paths but NP-hard for graph with distance to

disjoint paths 1.
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A poly-kernel for trees

I Suppose there is no 2 adjacent nodes with same color.

...

I If path of length 2k from root to leaf: trivial yes (matching).

I If k ancestors of leafs: trivial yes (matching).

I If an ancestor with
√

2k leafs of different colors: done.

I Remove all but one occurrence of each color for an ancestor.

I Tree with O(k2) nodes.
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A kernel for graphs

I Can be extended to general graphs.

I Use a DFS giving a spanning tree.

I But gives exponential kernel.
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Open questions

I Kernel lower bound?

I Fine grained complexity?

I More structural results?

I Parameterization above guarantee?
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