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Introduction

Motivations from Comparative Genomics.

Find orthologous genes.
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Introduction

Motivations

» Graph approach to identify disjoint orthology sets in [WABI'11].

» Partition a vertex-colored graph in colorful components by
removing edges.

» Different optimization measures:

» Number of components in the solution [LATIN’14].
» Sum of the number of edges in the transitive closure [WABI'11].
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Introduction

Minimum Colorful Components (MCC)
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Remove edges to minimize the number of colorful components.
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Remove edges to minimize the number of colorful components.
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Maximum Edges in Transitive Closure (MEC)
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Introduction

Maximum Edges in Transitive Closure (MEC)
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Remove edges to have colorful components and maximize the
number of edges in the transitive closure.
Here: 3+1+6+34+64+6+1+1=27
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Introduction

Maximum Edges in Transitive Closure (MEC)
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Remove edges to have colorful components and maximize the
number of edges in the transitive closure.
Here: 3+34+6+6+3+6+1=28

6/21



Introduction

Parameterized Complexity

Problem: VERTEX COVER INDEPENDENT SET
Input: Graph G, integer k Graph G, integer k
Question: Cover edges with k ver- Find k independent ver-
tices tices

Example from D. Marx. 7/21
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Introduction

Parameterized Complexity

Problem: VERTEX COVER INDEPENDENT SET
Input: Graph G, integer k Graph G, integer k
Question: Cover edges with k ver- Find k independent ver-
tices tices
Compl.:
Complexity: NP-complete NP-complete
Brute-force: O(n¥) possibilities O(n*) possibilities
Smarter?:
O(2%n?) algorithm No f(k)n°() algorithm
exists
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Introduction

Fixed-Parameter Tractability
» Problem in FPT: any instance (/, k) solved in f(k) - |/|°.

» Examples:
» Solution of size k in a n-vertices graph.
» n voters for k candidates.
» Requests of size k in a n-sized database.
>
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Introduction

Fixed-Parameter Tractability
» Problem in FPT: any instance (/, k) solved in f(k) - |/|°.

» Examples:
» Solution of size k in a n-vertices graph.
» n voters for k candidates.
» Requests of size k in a n-sized database.
>

» Many way to parameterize.

» Solution size.

» Structure of the input.
>
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Introduction

How to obtain FPT algorithm?

Bounded-depth search trees

llustration D. Marx.
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Introduction

Kernelization

poly(|X], k)-time

Squirrel from [CFl{Ll\ll)PS ’ lr)]
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MCC

» Known:
> Not approximable within O(n'/Y4=2) [Larnv14].
» No nf(¥) algorithm (k number of components) [Larin'14].
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MCC

» Known:
> Not approximable within O(n'/Y4=2) [Larnv14].
» No nf(¥) algorithm (k number of components) [Larin'14].
> New:
» On trees, not approximable within 1.36 — ¢ but
2-approximable, FPT and polynomial kernel.
» Polynomial on paths but NP-hard for graph with distance to
disjoint paths 1.
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MCC

MCC in trees is Multicut in trees - Positive

» From a MCC instance on trees...
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MCC in trees is Multicut in trees - Positive

» From a MCC instance on trees...
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» ... create a instance of Multicut with the same tree and:
» (1,7),(1,8),(7,8),(2,5),(4,9) to separate.
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MCC

MCC in trees is Multicut in trees - Positive

» From a MCC instance on trees...

(1)
@ @ @
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> ... create a instance of Multicut with the same tree and:
» (1,7),(1,8),(7,8),(2,5),(4,9) to separate.

> k edges to cut <+ k + 1 colorful components in the tree.
» k3 (bi)-kernel.
> Solvable in O*(1.56%).
» 2-approximable.
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MCC in trees is Multicut in trees — Negative
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MCC in trees is Multicut in trees — Negative
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MCC in trees is Multicut in trees — Negative

/C\D'x_ /C\D'x_
299 °Le9e
O O O C‘) f C‘) O C‘)—@
@, AL/ @,
Terminals: (@,@),( , ), (", ) MCC

> k edges to cut <+ k + 1 colorful components
» MCC not approximable within 1.36 — £ unless P=NP.
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MCC hardness

VERTEX COVER:
MCC:
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MCC hardness

VERTEX COVER:
MCC:

> vertex cover of size k <+ k + 1 colorful components.
» NP-hard for graphs with distance to disjoint paths 1.
» No O(n"(M) algorithm for k=
> distance to disjoint paths (but poly on paths via DP),

> pathwidth,
> distance to interval graphs.
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MEC

» Known:
» APX-hard even with 3 colors [Iwoca’14]
» Not approximable within O(n'/3~¢), even for trees where each
color appears twice [Twoca’14].

» /2. OPT approximable [Iwoca’14].
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MEC

» Known:
» APX-hard even with 3 colors [Iwoca’14]
» Not approximable within O(n'/3~¢), even for trees where each
color appears twice [Twoca’14].
» V2 - OPT approximable [Twoca’14].
> New:
» FPT w.r.t. size of the solution.
» Kernel polynomial on trees, exponential on graphs.
» Polynomial on paths but NP-hard for graph with distance to
disjoint paths 1.

17/21



A poly-kernel for trees

» Suppose there is no 2 adjacent nodes with same color.
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A poly-kernel for trees

» Suppose there is no 2 adjacent nodes with same color.

5

v

If path of length 2k from root to leaf: trivial yes (matching).

v

If k ancestors of leafs: trivial yes (matching).

If an ancestor with v2k leafs of different colors: done.
» Remove all but one occurrence of each color for an ancestor.

Tree with O(k?) nodes.

v

v
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A kernel for graphs

» Can be extended to general graphs.
» Use a DFS giving a spanning tree.

» But gives exponential kernel.
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Conclusion

Open questions

» Kernel lower bound?

> Fine grained complexity?

v

More structural results?

v

Parameterization above guarantee?
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