Parameterized Complexity and Approximation Issues for the Colorful Components Problems

Riccardo Dondi ${ }^{1} \quad$ Florian Sikora ${ }^{2}$
${ }^{1}$ Universita degli Studi di Bergamo - Italy
${ }^{2}$ LAMSADE, Université Paris Dauphine, CNRS - France

CiE 2016

Parameterized Complexity and Approximation Issues for the Colorful Components Problems

Riccardo Dondi ${ }^{1} \quad$ Florian Sikora ${ }^{2}$
${ }^{1}$ Universita degli Studi di Bergamo - Italy
${ }^{2}$ LAMSADE, Université Paris Dauphine, CNRS - France

CiE 2016

Outline

Introduction

MCC

MEC

Motivations from Comparative Genomics.

Find orthologous genes.

[Trends in Genetics]

Motivations

- Graph approach to identify disjoint orthology sets in [WABI'11].
- Partition a vertex-colored graph in colorful components by removing edges.
- Different optimization measures:
- Number of components in the solution [LATIN'14].
- Sum of the number of edges in the transitive closure [WABI'11].

Minimum Colorful Components (MCC)

Remove edges to minimize the number of colorful components.

Minimum Colorful Components (MCC)

Remove edges to minimize the number of colorful components.

Maximum Edges in Transitive Closure (MEC)

Maximum Edges in Transitive Closure (MEC)

Remove edges to have colorful components and maximize the number of edges in the transitive closure. Here: $3+1+6+3+6+6+1+1=27$

Maximum Edges in Transitive Closure (MEC)

Remove edges to have colorful components and maximize the number of edges in the transitive closure.
Here: $3+3+6+6+3+6+1=28$

Parameterized Complexity

Problem:
Input:
Question:

Compl.:

Vertex Cover
Graph G, integer k
Cover edges with k vertices

Independent Set Graph G, integer k Find k independent vertices

Parameterized Complexity

Problem:	VERTEX COVER
Input:	Graph G, integer k
Question:	Cover edges with k ver-
tices	
Compl.:	

Independent Set Graph G, integer k Find k independent vertices

NP-complete

Parameterized Complexity

Problem:	Vertex Cover
Input:	Graph G, integer k
Question:	Cover edges with k ver-
	tices
Compl.:	
Complexity:	NP-complete
Brute-force:	$O\left(n^{k}\right)$ possibilities

Independent Set Graph G, integer k Find k independent vertices

NP-complete
$O\left(n^{k}\right)$ possibilities

Parameterized Complexity

Problem:
Input:
Question: Cover edges with k ver-

Compl.:
Complexity: NP-complete
Brute-force: $O\left(n^{k}\right)$ possibilities
Smarter?:
tices
Vertex Cover
Graph G, integer k

$O\left(2^{k} n^{2}\right)$ algorithm

Independent Set Graph G, integer k
Find k independent vertices

NP-complete
$O\left(n^{k}\right)$ possibilities
No $f(k) n^{O(1)}$ algorithm exists

Fixed-Parameter Tractability

- Problem in FPT: any instance (I, k) solved in $f(k) \cdot|I|^{c}$.

- Examples:
- Solution of size k in a n-vertices graph.
- n voters for k candidates.
- Requests of size k in a n-sized database.
- ...

Fixed-Parameter Tractability

- Problem in FPT: any instance (I, k) solved in $f(k) \cdot|I|^{c}$.

- Examples:
- Solution of size k in a n-vertices graph.
- n voters for k candidates.
- Requests of size k in a n-sized database.
- ...
- Many way to parameterize.
- Solution size.

Fixed-Parameter Tractability

- Problem in FPT: any instance (I, k) solved in $f(k) \cdot|I|^{c}$.

- Examples:
- Solution of size k in a n-vertices graph.
- n voters for k candidates.
- Requests of size k in a n-sized database.
- ...
- Many way to parameterize.
- Solution size.
- Structure of the input.

How to obtain FPT algorithm?

Kernelization

Squirrel from [CFKLMPPS'15]

Outline

Introduction

MCC

MEC

MCC

- Known:
- Not approximable within $O\left(n^{1 / 14-\varepsilon}\right)$ [Latin'14].
- No $n^{f(k)}$ algorithm (k number of components) [Latin'14].

MCC

- Known:
- Not approximable within $O\left(n^{1 / 14-\varepsilon}\right)$ [Latin'14].
- No $n^{f(k)}$ algorithm (k number of components) [Latin'14].
- New:
- On trees, not approximable within $1.36-\varepsilon$ but 2-approximable, FPT and polynomial kernel.
- Polynomial on paths but NP-hard for graph with distance to disjoint paths 1.

MCC in trees is Multicut in trees - Positive

- From a MCC instance on trees...

MCC in trees is Multicut in trees - Positive

- From a MCC instance on trees...

- ... create a instance of Multicut with the same tree and:
- $(1,7),(1,8),(7,8),(2,5),(4,9)$ to separate.

MCC in trees is Multicut in trees - Positive

- From a MCC instance on trees...

- ... create a instance of Multicut with the same tree and:
- $(1,7),(1,8),(7,8),(2,5),(4,9)$ to separate.

MCC in trees is Multicut in trees - Positive

- From a MCC instance on trees...

- ... create a instance of Multicut with the same tree and:
- $(1,7),(1,8),(7,8),(2,5),(4,9)$ to separate.
- k edges to cut $\leftrightarrow k+1$ colorful components in the tree.

MCC in trees is Multicut in trees - Positive

- From a MCC instance on trees...

- ... create a instance of Multicut with the same tree and:
- $(1,7),(1,8),(7,8),(2,5),(4,9)$ to separate.
- k edges to cut $\leftrightarrow k+1$ colorful components in the tree.
- k^{3} (bi)-kernel.
- Solvable in $O^{*}\left(1.56^{k}\right)$.
- 2-approximable.

MCC in trees is Multicut in trees - Negative

MCC in trees is Multicut in trees - Negative

Terminals: $(\odot, \odot),(, \odot),(\odot$,

MCC

MCC in trees is Multicut in trees - Negative

Terminals: $(\odot, \bullet),(, \bullet),(\odot$,

MCC

- k edges to cut $\leftrightarrow k+1$ colorful components

MCC in trees is Multicut in trees - Negative

Terminals: $(\odot, \bullet),(, \bullet),(\odot$,

MCC

- k edges to cut $\leftrightarrow k+1$ colorful components
- MCC not approximable within $1.36-\varepsilon$ unless $P=N P$.

MCC hardness

MCC:

MCC hardness

MCC:

MCC hardness

MCC:

MCC hardness

MCC:

MCC hardness

MCC:

- vertex cover of size $k \leftrightarrow k+1$ colorful components.

MCC hardness

MCC:

- vertex cover of size $k \leftrightarrow k+1$ colorful components.
- NP-hard for graphs with distance to disjoint paths 1.

MCC hardness

Vertex Cover:

MCC:

- vertex cover of size $k \leftrightarrow k+1$ colorful components.
- NP-hard for graphs with distance to disjoint paths 1.
- No $O\left(n^{f(k)}\right)$ algorithm for $k=$
- distance to disjoint paths (but poly on paths via DP),
- pathwidth,
- distance to interval graphs.

Outline

Introduction

MEC

MEC

- Known:
- APX-hard even with 3 colors [Iwoca'14]
- Not approximable within $O\left(n^{1 / 3-\varepsilon}\right)$, even for trees where each color appears twice [IwocA'14].
- $\sqrt{2 \cdot O P T}$ approximable [Iwoca $\left.{ }^{\prime} 14\right]$.

MEC

- Known:
- APX-hard even with 3 colors [Iwoca'14]
- Not approximable within $O\left(n^{1 / 3-\varepsilon}\right)$, even for trees where each color appears twice [Iwoca' 14$]$.
- $\sqrt{2 \cdot O P T}$ approximable [Iwoca $\left.{ }^{\prime} 14\right]$.
- New:
- FPT w.r.t. size of the solution.
- Kernel polynomial on trees, exponential on graphs.
- Polynomial on paths but NP-hard for graph with distance to disjoint paths 1.

A poly-kernel for trees

- Suppose there is no 2 adjacent nodes with same color.

A poly-kernel for trees

- Suppose there is no 2 adjacent nodes with same color.

- If path of length $2 k$ from root to leaf: trivial yes (matching).

A poly-kernel for trees

- Suppose there is no 2 adjacent nodes with same color.

- If path of length $2 k$ from root to leaf: trivial yes (matching).
- If k ancestors of leafs: trivial yes (matching).

A poly-kernel for trees

- Suppose there is no 2 adjacent nodes with same color.

- If path of length $2 k$ from root to leaf: trivial yes (matching).
- If k ancestors of leafs: trivial yes (matching).
- If an ancestor with $\sqrt{2 k}$ leafs of different colors: done.

A poly-kernel for trees

- Suppose there is no 2 adjacent nodes with same color.

- If path of length $2 k$ from root to leaf: trivial yes (matching).
- If k ancestors of leafs: trivial yes (matching).
- If an ancestor with $\sqrt{2 k}$ leafs of different colors: done.
- Remove all but one occurrence of each color for an ancestor.

A poly-kernel for trees

- Suppose there is no 2 adjacent nodes with same color.

- If path of length $2 k$ from root to leaf: trivial yes (matching).
- If k ancestors of leafs: trivial yes (matching).
- If an ancestor with $\sqrt{2 k}$ leafs of different colors: done.
- Remove all but one occurrence of each color for an ancestor.
- Tree with $O\left(k^{2}\right)$ nodes.

A kernel for graphs

- Can be extended to general graphs.
- Use a DFS giving a spanning tree.
- But gives exponential kernel.

Open questions

- Kernel lower bound?
- Fine grained complexity?
- More structural results?
- Parameterization above guarantee?

Merci!

