François Margot Tepper School of Business Carnegie Mellon University

September 26, 2014

ISMP 2015: July 12-17, 2015

Organized by the Mathematical Optimization Society

Carnegie Mellon University and University of Pittsburgh

www.ismp2015.org

Abstract submission is open

Registration: Opens December 2014

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & g(x) \leq 0 \\ & x_i \in \mathbb{Z} \quad \text{for} \quad i \in I \\ & x \in \mathbb{R}^n \end{array}$$

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & g(x) \leq 0 \\ & x_i \in \mathbb{Z} \text{ for } i \in I \\ & x \in \mathbb{R}^n \end{array}$$

$$\pi : \text{ permutation of } \{1, \dots, n\}$$

$$\pi(x) = \pi(x_1, \dots, x_n) = (x_{\pi(1)}, \dots, x_{\pi(n)})$$

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & g(x) \leq 0 \\ & x_i \in \mathbb{Z} \quad \text{for} \quad i \in I \\ & x \in \mathbb{R}^n \end{array}$$

$$\pi$$
: permutation of $\{1, ..., n\}$
 $\pi(x) = \pi(x_1, ..., x_n) = (x_{\pi(1)}, ..., x_{\pi(n)})$

 π is a symmetry of the problem if

- x feasible $\Leftrightarrow \pi(x)$ feasible
- $f(x) = f(\pi(x))$

Special Case: Integer Linear Programming

Integer Linear Program (ILP):

min
$$c^T x$$

s.t. $Ax \ge b$ $A: m \times n$
 $x \in \{0, \dots, k\}^n$

Special Case: Integer Linear Programming

Integer Linear Program (ILP):

min
$$c^T x$$

s.t. $Ax \ge b$ $A: m \times n$
 $x \in \{0, \dots, k\}^n$

 π is a symmetry of the ILP if

• x feasible $\Leftrightarrow \pi(x)$ feasible

•
$$c^T x = c^T \pi(x)$$

Symmetry Group of the ILP

Example:

Symmetry Group of the ILP

Example:

Feasible solutions:

 $\begin{array}{rcl} (x_1, x_2, x_3, x_4) &\in & \{(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), \\ & & (1, 1, 0, 0), \ (1, 0, 1, 0), \ (0, 1, 1, 0), \ (1, 1, 1, 0)\} \end{array}$

Symmetry Group of the ILP

Example:

Feasible solutions:

 $\begin{array}{rcl} (x_1, x_2, x_3, x_4) &\in \{(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), \\ &\quad (1, 1, 0, 0), \ (1, 0, 1, 0), \ (0, 1, 1, 0), \ (1, 1, 1, 0)\} \end{array}$

 $\label{eq:G} \begin{array}{l} G : set of all symmetries of the ILP$ $$G$ = \{[1,2,3,4], [1,3,2,4], [2,1,3,4], [3,2,1,4], [2,3,1,4], [3,1,2,4]\}$ \end{array}$

Symmetry Group

G with composition of permutation is a group:

- composition of permutations in G is a permutation in G
- G has a neutral element (identity permutation I)
- $g \in G \Rightarrow$ there exists $h \in G$ such that $g \cdot h = h \cdot g = I$

Symmetry Group

 ${\boldsymbol{G}}$ with composition of permutation is a group:

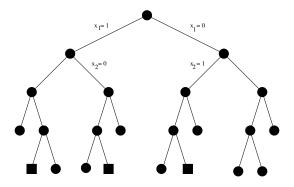
- composition of permutations in G is a permutation in G
- G has a neutral element (identity permutation I)
- $g \in G \Rightarrow$ there exists $h \in G$ such that $g \cdot h = h \cdot g = I$

Examples of symmetric ILPs:

- Coloring problems
- Network Design (with symmetric network)
- Flexible Manufacturing Operations (with identical machines)
- Design of statistical experiments
- Benchmark problems for QAP, Steiner Tree Problems

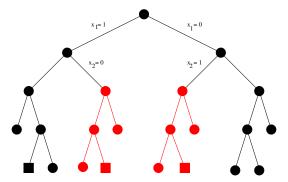
Branch-and-Bound for ILP

Branch-and-Bound tree for a symmetric problem: x_1, x_2 symmetric



Branch-and-Bound for ILP

Branch-and-Bound tree for a symmetric problem: x_1, x_2 symmetric



Problem:

|G| large \Rightarrow Most solution techniques become inefficient

Problem Characteristics

Problem	n	ź	LP	Group order	Comm. Solver
$OA_7(7, 2, 4, 7)$	128	-	112	645,120	45m
$CA_7(7, 2, 4, 7)$	128	113	112	645,120	2.5h
$PA_7(7, 2, 4, 7)$	128	-108	-112	645,120	> 4h
$OA_2(6, 3, 3, 2)$	729	-	54	33,592,320	> 4h
<i>cov</i> 1054	252	51	50	3,628,800	> 4h
<i>cov</i> 1174	330	17	15.71	39,916,800	> 4h
cod93	512	-40	-51.20	185,794,560	> 4h
<i>cod</i> 105	1024	-12	-18.29	371,5891,200	> 4h
<i>STS</i> 81	81	61	27	1,965,150,720	> 4h

• "small" number of variables

Problem Characteristics

Problem	n	ź	LP	Group order	Comm. Solver
$OA_7(7, 2, 4, 7)$	128	-	112	645,120	45m
$CA_7(7, 2, 4, 7)$	128	113	112	645,120	2.5h
$PA_7(7, 2, 4, 7)$	128	-108	-112	645,120	> 4h
$OA_2(6, 3, 3, 2)$	729	-	54	33,592,320	> 4h
<i>cov</i> 1054	252	51	50	3,628,800	> 4h
<i>cov</i> 1174	330	17	15.71	39,916,800	> 4h
cod93	512	-40	-51.20	185,794,560	> 4h
<i>cod</i> 105	1024	-12	-18.29	371,5891,200	> 4h
<i>STS</i> 81	81	61	27	1,965,150,720	> 4h

- "small" number of variables
- "small" integrality gap

Problem Characteristics

Problem	n	ź	LP	Group order	Comm. Solver
$OA_7(7, 2, 4, 7)$	128	-	112	645,120	45m
$CA_7(7, 2, 4, 7)$	128	113	112	645,120	2.5h
$PA_7(7, 2, 4, 7)$	128	-108	-112	645,120	> 4h
$OA_2(6, 3, 3, 2)$	729	-	54	33,592,320	> 4h
<i>cov</i> 1054	252	51	50	3,628,800	> 4h
<i>cov</i> 1174	330	17	15.71	39,916,800	> 4h
cod93	512	-40	-51.20	185,794,560	> 4h
<i>cod</i> 105	1024	-12	-18.29	371,5891,200	> 4h
<i>STS</i> 81	81	61	27	1,965,150,720	> 4h

- "small" number of variables
- "small" integrality gap
- large group

Detecting Symmetric ILPs

Automatic detection is hard:

- Symmetry is a property of the feasible set (empty $\Rightarrow S^n$)
- May consider symmetry of the LP formulation (drawback: easy to destroy)

Detecting Symmetric ILPs

Automatic detection is hard:

- Symmetry is a property of the feasible set (empty $\Rightarrow S^n$)
- May consider symmetry of the LP formulation (drawback: easy to destroy)

Generating G:

- Known from model
- Compute from formulation : Graph automorphism problem
- Usually, work with a subgroup

Example:

$$\begin{array}{ll} \min & \mathbf{1}^T x \\ \text{s.t.} & Ax \ge 1 \\ & x \in \{0,1\}^n \end{array}$$

A: 0, 1 matrix

Example:

$$\begin{array}{ll} \min & \mathbf{1}^T x \\ \text{s.t.} & Ax \geq 1 \\ & x \in \{0,1\}^n \end{array} \qquad \qquad A: 0, 1 \text{ matrix} \\ \end{array}$$

$$\begin{pmatrix} 0 & A^T \\ \hline A & 0 \end{pmatrix}$$
: Adjacency matrix of a bipartite graph

Example:

$$\begin{array}{ll} \min & \mathbf{1}^{\mathcal{T}} x \\ \mathrm{s.t.} & A x \geq 1 \\ & x \in \{0,1\}^n \end{array} \qquad \qquad A: 0, 1 \text{ matrix} \\ \end{array}$$

$$\begin{pmatrix} 0 & A^T \\ \hline A & 0 \end{pmatrix}$$
: Adjacency matrix of a bipartite graph

• Can handle arbitrary matrix using color classes for identical entries

Example:

$$\begin{array}{ll} \min & \mathbf{1}^{\mathcal{T}} x \\ \text{s.t.} & A x \geq 1 \\ & x \in \{0,1\}^n \end{array} \qquad \qquad A: 0, 1 \text{ matrix} \\ \end{array}$$

$$\begin{pmatrix} 0 & A^T \\ \hline A & 0 \end{pmatrix}$$
: Adjacency matrix of a bipartite graph

- Can handle arbitrary matrix using color classes for identical entries
- Efficient (in practice) software for graph automorphism: Nauty

[McKay]

Constructing G (cont.)

Extension to Nonlinear Programs

[Liberti, 2010]

Library	# Instances	# G >1	% of library
MIPLIB3	62	22	35.4%
${\rm miplib}2003 \setminus {\rm miplib}3$	20	7	35.0%
GLOBALLIB	390	58	14.8%
MINLPLIB	197	32	16.2%
Total	669	112	16.7%

General Setting and Problems

Settings:

- Arbitrary symmetry group
- General integer variables

General Setting and Problems

Settings:

- Arbitrary symmetry group
- General integer variables

Problems:

- Finding optimal solution
- Optimality proof of known solution
- Finding all nonisomorphic optimal solutions

"Exact" Algorithms:

"Approximate" Algorithms:

"Exact" Algorithms:

- I: Perturbation
- II: Reformulations
- III: Symmetry breaking inequalities
- IV: Symmetry breaking during search
- V: Pruning the enumeration tree

"Approximate" Algorithms:

"Exact" Algorithms:

- I: Perturbation
- II: Reformulations
- III: Symmetry breaking inequalities
- IV: Symmetry breaking during search
- V: Pruning the enumeration tree

"Approximate" Algorithms:

- VI: Orbital branching
- VII: Dominance relations

"Exact" Algorithms:

- I: Perturbation
- II: Reformulations
- III: Symmetry breaking inequalities
- IV: Symmetry breaking during search
- V: Pruning the enumeration tree

"Approximate" Algorithms:

- VI: Orbital branching
- VII: Dominance relations

Can be used to enumerate all nonisomorphic solution

"Exact" Algorithms:

- I: Perturbation
- II: Reformulations
- III: Symmetry breaking inequalities
- IV: Symmetry breaking during search
- V: Pruning the enumeration tree

"Approximate" Algorithms:

- VI: Orbital branching
- VII: Dominance relations

Use local symmetry information

Approach I: Perturbation

Modify the objective function:

- Replace by lexicographic minimization $(c_i = 2^i, i = 1, ..., n)$
 - Works only for some problems
 - Numerical issues

Approach I: Perturbation

Modify the objective function:

- Replace by lexicographic minimization $(c_i = 2^i, i = 1, ..., n)$
 - Works only for some problems
 - Numerical issues
- Add small perturbation to destroy symmetry
 - Counterproductive when trying to prove infeasibility
 - Once optimal solution found, all problems are of this type

Approach I: Perturbation

Modify the objective function:

- Replace by lexicographic minimization $(c_i = 2^i, i = 1, ..., n)$
 - Works only for some problems
 - Numerical issues
- Add small perturbation to destroy symmetry
 - Counterproductive when trying to prove infeasibility
 - Once optimal solution found, all problems are of this type
- Perturbation using hierarchical functions related to symmetry-breaking constraints (only for *G* product of symmetric groups)
 - Good results for specific aplications.

Approach II: Reformulations for $G = S^n$

- Column generation
- Dantzig-Wolfe Decomposition

Approach II: Reformulations for $G = S^n$

- Column generation
- Dantzig-Wolfe Decomposition

Example: Minimize # of identical machines to perform m tasks

- Column: subset of tasks that can be assigned to a single machine
- Dantzig-Wolfe Decomposition: Minimize # subsets to cover all tasks

[Barnhart, Johnson, Nemhauser, 1998]

Approach II: Reformulations for $G = S^n$

- Column generation
- Dantzig-Wolfe Decomposition

Example: Minimize # of identical machines to perform m tasks

- Column: subset of tasks that can be assigned to a single machine
- Dantzig-Wolfe Decomposition: Minimize # subsets to cover all tasks

[Barnhart, Johnson, Nemhauser, 1998]

Edge Coloring: Vertex Coloring:

[Nemhauser, Park, 1991]

[Mehrotra, Trick, 1995]

Approach II: Reformulations by Lift-and-Relax

[Östergård, Weakley, 2000] [Östergård, Blass, 2001] [Östergård, Wassermann, 2002]

[Östergård, M., 2003]

[Linderoth, M., Thain, 2007]

- Add integer variables y to the ILP: y = Zx
- Project (relax) some (or all) of the x variables $\rightarrow ILP(x', y)$
- Enumerate all nonisomorphic solutions (\bar{x}', \bar{y}) to ILP(x', y)
- Solve original ILP for each (\bar{x}', \bar{y}) , adding constraints $\bar{x}' = x'$ and $\bar{y} = Zx$

Approach II: Reformulations by orbit shrinking

[Fischetti, Liberti, 2013]

- G': subgroup of G
- Partition variables into orbits in G': $\{O_1, \ldots, O_t\}$
- For i = 1, ..., t add an integer variable $y_t = \sum_{j \in O_t} x_j$
- remove integrality restriction on x_j for all j
- For $x_j \in O_t$, replace x_j by $\frac{y_t}{|O_t|}$

Approach II: Reformulations by orbit shrinking

[Fischetti, Liberti, 2013]

- G': subgroup of G
- Partition variables into orbits in G': $\{O_1, \ldots, O_t\}$
- For i = 1, ..., t add an integer variable $y_t = \sum_{j \in O_t} x_j$
- remove integrality restriction on x_j for all j
- For $x_j \in O_t$, replace x_j by $\frac{y_t}{|O_t|}$
- Solves a "smaller" and "easier" ILP
- Significantly improves the LP relaxation lower bound

Approach III: Adding inequalities

Idea:

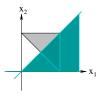
• Add inequalities remove some of the symmetry, keeping at least one optimal solution



Approach III: Adding inequalities

Idea:

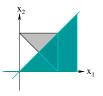
- Add inequalities remove some of the symmetry, keeping at least one optimal solution
- Usually: Intersect original formulation with a cone pointed at the origin



Approach III: Adding inequalities

Idea:

- Add inequalities remove some of the symmetry, keeping at least one optimal solution
- Usually: Intersect original formulation with a cone pointed at the origin



Drawbacks:

- Isomorphic solutions may remain feasible
- May create highly fractional LP relaxations

III Adding Inequalities (cont.)

Typical constraints: Let $O = \{x_1, x_2, \dots, x_t\}$ be one orbit in G

• If G restricted to O is the symmetric group S^t :

$$x_1 \ge x_2 \ge \ldots \ge x_t$$

Otherwise

$$x_1 \geq x_2, \quad x_1 \geq x_3, \quad \dots x_1 \geq x_t$$

Applications:

Selection of orbit

[Liberti 2010]

• Using group operation to use several orbits [Liberti, Ostrowski 2013]

Finding Symmetry Breaking Inequalities

Fundamental Region: closed set F in \mathbb{R}^n such that:

• $g(int(F)) \cap int(F) = \emptyset$, $\forall g \in G, g \neq I$

•
$$\bigcup_{g\in G} g(F) = \mathbb{R}^n$$

Finding Symmetry Breaking Inequalities

Fundamental Region: closed set F in \mathbb{R}^n such that:

• $g(int(F)) \cap int(F) = \emptyset$, $\forall g \in G, g \neq I$

•
$$\bigcup_{g\in G} g(F) = \mathbb{R}^n$$

Theorem:

- G symmetry group for polytope P
- F fundamental region

Then:

$$\min\{c^{\mathsf{T}}x \mid x \in P\} = \min\{c^{\mathsf{T}}x \mid x \in P \cap F\}$$

Finding Symmetry Breaking Inequalities (cont.)

Proposition: [Grove, Benson, 1985]

- G group of permutations of $\{1, \ldots, n\}$.
- z such that $g(z) \neq z$ for all $g \in G, g \neq I$.

Then

$$F = \{x \in \mathbb{R}^n \mid (g(z) - z) \cdot x \le 0, \ \forall g \in G, \ g \neq I\}$$

is a fundamental region for G.

Finding Symmetry Breaking Inequalities (cont.)

Proposition: [Grove, Benson, 1985]

- G group of permutations of $\{1, \ldots, n\}$.
- z such that $g(z) \neq z$ for all $g \in G, g \neq I$.

Then

$$F = \{x \in \mathbb{R}^n \mid (g(z) - z) \cdot x \le 0, \ \forall g \in G, \ g \neq I\}$$

is a fundamental region for G.

Example: $G = S^4$

$$egin{aligned} & z = (0,1,2,3) \ & g(z) = (1,0,2,3) \ & \Rightarrow & (x_2+2x_3+3x_4) - (x_1+2x_3+3x_4) \leq 0 & \Rightarrow \ & x_1 \geq x_2 \end{aligned}$$

III Adding Inequalities (cont.): Orbitopes

For packing or partitioning problems of the form:

$$\begin{array}{rcl} A_{X} & \leq & b \\ \sum_{j=1}^{n} x_{ij} & \{=;\leq\} & 1 \\ x_{ij} & \geq & 0 \end{array} \qquad \forall i=1,\ldots,m$$

III Adding Inequalities (cont.): Orbitopes

For packing or partitioning problems of the form:

$$\begin{array}{lll} Ax & \leq & b \\ \sum\limits_{j=1}^n x_{ij} & \{=;\leq\} & 1 & \quad \forall i=1,\ldots,m \\ x_{ij} & \geq & 0 \end{array}$$

Collect all variables in a 2-dimensional matrix:

<i>X</i> =	<i>x</i> _{1,1}	<i>x</i> _{1,2}	<i>x</i> _{1,3}	 <i>x</i> _{1,<i>n</i>}
	<i>x</i> _{2,1}	<i>x</i> _{2,2}	<i>x</i> _{2,3}	 <i>x</i> _{2,<i>n</i>}
			•••	
	$x_{m,1}$	<i>x</i> _{<i>m</i>,2}	<i>x</i> _{<i>m</i>,3}	 x _{m,n}

Orbitopes

If any permutation of the columns of X is a symmetry of the problem:

Orbitopes

If any permutation of the columns of X is a symmetry of the problem:

- a family of symmetry breaking inequalities is known (*shifted column inequalities*)
- polynomial time separation algorithm
- Describes the convex hull of non isomorphic solutions of

$$\sum_{\substack{j=1\\ x_{ij}}}^{n} x_{ij} \quad \{=;\leq\} \quad 1 \qquad \forall i=1,\ldots,m$$

[Kaibel, Pfetsch, 2006]

[Kaibel, Peinhardt, Pfetsch, 2007]

Isomorphism-free backtracking enumeration

[Butler, Ivanov, Kreher, Lam, Leon, McKay, Read, Stinson]

Example: Solving an ILP with 0, 1 variables: *a* : node of the enumeration tree

 $F_1^a = \{i \mid x_i \text{ fixed to 1 at } a\}$ $F_0^a = \{i \mid x_i \text{ fixed to 0 at } a\}$

Isomorphism-free backtracking enumeration

[Butler, Ivanov, Kreher, Lam, Leon, McKay, Read, Stinson]

Example: Solving an ILP with 0, 1 variables: *a* : node of the enumeration tree

$$F_1^a = \{i \mid x_i \text{ fixed to 1 at } a\}$$
$$F_0^a = \{i \mid x_i \text{ fixed to 0 at } a\}$$

Problems at a and b are isomorphic if

$$\exists \ g \in G \ \text{with}$$

$$g(F_1^a) = F_1^b \qquad \text{and} \qquad g(F_0^a) = F_0^b$$

$$\Rightarrow \text{ May prune one of } a \text{ or } b$$

Constraint Programming Approach:

- Add constraints for each created node of the tree to forbid isomorphic ones
- May require huge number of constraints
- Need to keep track of some of the visited nodes

Constraint Programming Approach:

- Add constraints for each created node of the tree to forbid isomorphic ones
- May require huge number of constraints
- Need to keep track of some of the visited nodes
- Symmetry Breaking During Search:

[Gent, Smith, 2002]

[Gent, Kelsey, et al. 2005]

Constraint Programming Approach:

- Add constraints for each created node of the tree to forbid isomorphic ones
- May require huge number of constraints
- Need to keep track of some of the visited nodes
- Symmetry Breaking During Search:

[Gent, Smith, 2002]

[Gent, Kelsey, et al. 2005]

• GAP_SBDS: Group representation of the symmetries:

[Gent, Harvey, Kelsey 2002]

Constraint Programming Approach:

- Add constraints for each created node of the tree to forbid isomorphic ones
- May require huge number of constraints
- Need to keep track of some of the visited nodes
- Symmetry Breaking During Search:

[Gent, Smith, 2002]

[Gent, Kelsey, et al. 2005]

• GAP_SBDS: Group representation of the symmetries:

[Gent, Harvey, Kelsey 2002]

SBDS-CP-LP hybrid

[Petrie, Smith, 2004]

Approach V: Pruning

Assumptions:

- Branch by partitioning the domain of a variable into k ≥ 2 subdomains
- Complete ordering of the sons (topological in drawing of tree)

Approach V: Pruning

Assumptions:

- Branch by partitioning the domain of a variable into k ≥ 2 subdomains
- Complete ordering of the sons (topological in drawing of tree)

Sought: Minimum interference with usual operations

- Freedom to restrict variable domains
- Freedom to choose the branching variable
- Freedom to choose the partitioning
- Pruning uses only information available at a single node of tree

Approach V: Pruning

Assumptions:

- Branch by partitioning the domain of a variable into k ≥ 2 subdomains
- Complete ordering of the sons (topological in drawing of tree)

Sought: Minimum interference with usual operations

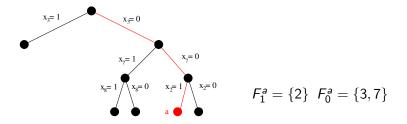
- Freedom to restrict variable domains
- Freedom to choose the branching variable
- Freedom to choose the partitioning
- Pruning uses only information available at a single node of tree

Achievable if:

• Algorithm for restrictions is not be based on symmetry considerations

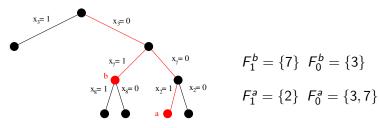
V.I: Left-of-path Mapping

- a: node of the tree
- $F_0^a = \{i \mid x_i \text{ fixed to } 0 \text{ at } a\}$ $F_1^a = \{i \mid x_i \text{ fixed to } 1 \text{ at } a\}$
- Compare fixing at a with left sons issued from ancestors of a



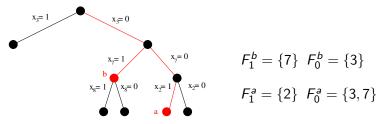
V.I: Left-of-path Mapping

- a: node of the tree
- $F_0^a = \{i \mid x_i \text{ fixed to } 0 \text{ at } a\}$ $F_1^a = \{i \mid x_i \text{ fixed to } 1 \text{ at } a\}$
- Compare fixing at a with left sons issued from ancestors of a
- Prune a if there exists g ∈ G mapping a subset of F₁^a to F₁^b and a subset of F₀^a to F₀^b



V.I: Left-of-path Mapping

- a: node of the tree
- $F_0^a = \{i \mid x_i \text{ fixed to } 0 \text{ at } a\}$ $F_1^a = \{i \mid x_i \text{ fixed to } 1 \text{ at } a\}$
- Compare fixing at a with left sons issued from ancestors of a
- Prune a if there exists g ∈ G mapping a subset of F₁^a to F₁^b and a subset of F₀^a to F₀^b



 $\exists g \in G \text{ with } g(3) = 3, \ g(2) = 7 \Rightarrow \mathsf{Prune node } a$

V.I: Left-of-path Mapping (cont.)

• Backtrack Searching with Symmetry (BSS)

[Brown, Finkelstein, Purdom 1988, 1995]

• Symmetry Breaking By Dominance Detection (SBDD)

[Fahle, Shamberger, Sellman 2001]

V.I: Left-of-path Mapping (cont.)

• Backtrack Searching with Symmetry (BSS)

[Brown, Finkelstein, Purdom 1988, 1995]

Paper Description:

- General integer variables
- Branch by creating one son for each possible value of branching variable

• Symmetry Breaking By Dominance Detection (SBDD)

[Fahle, Shamberger, Sellman 2001]

Paper Description:

- General integer variables
- Branch by arbitrary partition of domain of branching variable

V.I: Left-of-path Mapping (cont.)

• Backtrack Searching with Symmetry (BSS)

[Brown, Finkelstein, Purdom 1988, 1995]

Paper Description:

- General integer variables
- Branch by creating one son for each possible value of branching variable

Implementation:

- Generic code working for any group
- Few numerical results
- Symmetry Breaking By Dominance Detection (SBDD)

[Fahle, Shamberger, Sellman 2001]

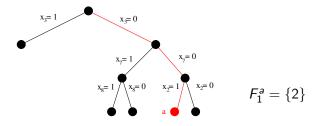
Paper Description:

- General integer variables
- Branch by arbitrary partition of domain of branching variable Implementation:
 - Ad hoc code for several applications

V.II: Lexicomin Support Pruning

[Butler, Ivanov, Kreher, Lam, Leon, McKay, Read, Stinson]

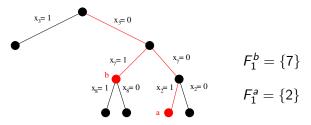
- a: node of the tree
- $F_1^a = \{i \mid x_i \text{ fixed to } 1 \text{ at } a\}$
- Compare fixing at a with left sons issued from ancestors of a



V.II: Lexicomin Support Pruning

[Butler, Ivanov, Kreher, Lam, Leon, McKay, Read, Stinson]

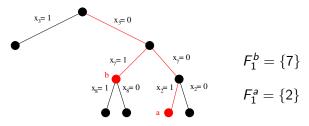
- a: node of the tree
- $F_1^a = \{i \mid x_i \text{ fixed to } 1 \text{ at } a\}$
- Compare fixing at a with left sons issued from ancestors of a
- Prune *a* if there exists $g \in G$ mapping a subset of F_1^a to F_1^b



V.II: Lexicomin Support Pruning

[Butler, Ivanov, Kreher, Lam, Leon, McKay, Read, Stinson]

- a: node of the tree
- $F_1^a = \{i \mid x_i \text{ fixed to } 1 \text{ at } a\}$
- Compare fixing at a with left sons issued from ancestors of a
- Prune *a* if there exists $g \in G$ mapping a subset of F_1^a to F_1^b



 $\exists g \in G \text{ with } g(2) = 7 \Rightarrow Prune node a$

V.II: Lexicomin Support Pruning (cont.)

• Isomorphism Pruning (IP)

[M 2002, 2003, 2003b, 2007]

V.II: Lexicomin Support Pruning (cont.)

Isomorphism Pruning (IP)

[M 2002, 2003, 2003b, 2007]

Paper Description:

- General integer variables
- Branch by creating one son for each possible value of branching variable
- Rigid branching scheme

V.II: Lexicomin Support Pruning (cont.)

Isomorphism Pruning (IP)

[M 2002, 2003, 2003b, 2007]

Paper Description:

- General integer variables
- Branch by creating one son for each possible value of branching variable
- Rigid branching scheme

V.II: Lexicomin Support Pruning (cont.)

Isomorphism Pruning (IP)

[M 2002, 2003, 2003b, 2007]

Paper Description:

- General integer variables
- Branch by creating one son for each possible value of branching variable
- Rigid branching scheme Can be relaxed

[Ostrowski 2007]

V.II: Lexicomin Support Pruning (cont.)

Isomorphism Pruning (IP)

[M 2002, 2003, 2003b, 2007]

Paper Description:

- General integer variables
- Branch by creating one son for each possible value of branching variable
- Rigid branching scheme Can be relaxed

Implementation:

- Generic code working for any group
- Applications:
 - covering designs
 - orthogonal arrays
 - edge coloring
 - codes

[Ostrowski 2007]

[M 2003] [Bulutoglu, M 2007] [M 2007] [Linderoth, Thain, M 2007]

Bare bone comparison:

• Left-of-path mapping pruning \subseteq Lexicomin Support pruning

Bare bone comparison:

- Left-of-path mapping pruning \subseteq Lexicomin Support pruning
- Algorithms based on group representation are backtracking algorithms with depth $|F_1^a\cup F_0^a|$ and $|F_1^a|$ respectively

Bare bone comparison:

- Left-of-path mapping pruning \subseteq Lexicomin Support pruning
- Algorithms based on group representation are backtracking algorithms with depth $|F_1^a \cup F_0^a|$ and $|F_1^a|$ respectively
- Lexicomin Support clear winner

Bare bone comparison:

- Left-of-path mapping pruning \subseteq Lexicomin Support pruning
- Algorithms based on group representation are backtracking algorithms with depth $|F_1^a\cup F_0^a|$ and $|F_1^a|$ respectively
- Lexicomin Support clear winner

However:

Can set variables to 0 during backtracking. If there exists:

•
$$F \subseteq F_1^a$$

• b a left-ancestor of a

•
$$g \in G$$
 with $g(F) = F_1^b$

then set to 0 all vars in $g^{-1}(F_0^b)$

Bare bone comparison:

- Left-of-path mapping pruning \subseteq Lexicomin Support pruning
- Algorithms based on group representation are backtracking algorithms with depth $|F_1^a \cup F_0^a|$ and $|F_1^a|$ respectively
- Lexicomin Support clear winner

However:

Can set variables to 0 during backtracking. If there exists:

•
$$F \subseteq F_1^a$$

• *b* a left-ancestor of *a*

•
$$g \in G$$
 with $g(F) = F_1^b$

then set to 0 all vars in $g^{-1}(F^b_0)$

(0-setting)

If full 0-setting is done in Left-of-path mapping then

• Left-of-path mapping pruning = Lexicomin Support pruning

If full 0-setting is done in Left-of-path mapping then

- Left-of-path mapping pruning = Lexicomin Support pruning
- More variables set to 0 by Left-of-path mapping than with Lexicomin Support

If full 0-setting is done in Left-of-path mapping then

- Left-of-path mapping pruning = Lexicomin Support pruning
- More variables set to 0 by Left-of-path mapping than with Lexicomin Support
- Much slower Left-of-path mapping checking than Lexicomin Support checking for deep trees

If full 0-setting is done in Left-of-path mapping then

- Left-of-path mapping pruning = Lexicomin Support pruning
- More variables set to 0 by Left-of-path mapping than with Lexicomin Support
- Much slower Left-of-path mapping checking than Lexicomin Support checking for deep trees

BSS implementation of

[Brown, Finkelstein, Purdom 1988, 1995]

- Fast comput. of generators of stabilizer of $(F_1^a \cup j, F_0^a)$ in G
- Does not always do full 0-setting

If full 0-setting is done in Left-of-path mapping then

- Left-of-path mapping pruning = Lexicomin Support pruning
- More variables set to 0 by Left-of-path mapping than with Lexicomin Support
- Much slower Left-of-path mapping checking than Lexicomin Support checking for deep trees

BSS implementation of

[Brown, Finkelstein, Purdom 1988, 1995]

- Fast comput. of generators of stabilizer of $(F_1^a \cup j, F_0^a)$ in G
- Does not always do full 0-setting

IP implementation of

- Fast computation of one orbit of stabilizer of $F_1^a \cup j$ in G
- Does not always do full 0-setting

[M 2007]

Recompute symmetry group at each node; use orbit information for branching

Recompute symmetry group at each node; use orbit information for branching Orbital Branching:

Recompute symmetry group at each node; use orbit information for branching Orbital Branching:

• Recompute symmetry group for free variables

Recompute symmetry group at each node; use orbit information for branching Orbital Branching:

- Recompute symmetry group for free variables
- Compute partition of free variables into orbits

Recompute symmetry group at each node; use orbit information for branching

Orbital Branching:

- Recompute symmetry group for free variables
- Compute partition of free variables into orbits
- Select one orbit \mathcal{O} and one $x_i \in \mathcal{O}$;

Recompute symmetry group at each node; use orbit information for branching

Orbital Branching:

- Recompute symmetry group for free variables
- Compute partition of free variables into orbits
- Select one orbit \mathcal{O} and one $x_i \in \mathcal{O}$;
- Branch:

either all vars in \mathcal{O} fixed to 0 or $x_i = 1$

[Ostrowski, Linderoth, Rossi, Smriglio, 2008, 2009, 2011]

 $a^T x \ge b$: valid constraint of the LP, $a \in \mathbb{Z}^n, b \in \mathbb{Z}$

[Ostrowski, Linderoth, Rossi, Smriglio, 2008, 2009, 2011]

$$a^T x \ge b$$
: valid constraint of the LP, $a \in \mathbb{Z}^n, b \in \mathbb{Z}$
hen

Т

 $\pi(a)^T x \ge b$: also valid constraint of the LP for all $\pi \in \mathbf{G}$

[Ostrowski, Linderoth, Rossi, Smriglio, 2008, 2009, 2011]

$$a^T x \ge b$$
: valid constraint of the LP, $a \in \mathbb{Z}^n, b \in \mathbb{Z}$
Then

 $\pi(a)^T x \ge b$: also valid constraint of the LP for all $\pi \in \mathbf{G}$

Disjunction:

$$a^T x \leq b$$
 or $\pi(a)^T x \geq b+1$ for all $\pi \in \mathbf{G}$

[Ostrowski, Linderoth, Rossi, Smriglio, 2008, 2009, 2011]

$$a^T x \ge b$$
: valid constraint of the LP, $a \in \mathbb{Z}^n, b \in \mathbb{Z}$
Then

 $\pi(a)^T x \ge b$: also valid constraint of the LP for all $\pi \in \mathbf{G}$

Disjunction:

$$\mathbf{a}^{\mathsf{T}} \mathbf{x} \leq \mathbf{b}$$
 or $\pi(\mathbf{a})^{\mathsf{T}} \mathbf{x} \geq \mathbf{b} + 1$ for all $\pi \in \mathbf{G}$

- Particularly useful for instances built from smaller instances
- Can combine knowledge of all nonisomorphic solutions of smaller instances
- Gives first proof of optimality for STS135 and STS243

Approach VII: Dominance Relations

- Use MIP to detect assignment of variables that are dominated
- Limited efficiency for highly symmetric problems

[Fischetti, Toth, 1988]

[Fischetti, Salvagnin, 2007]

ISOP-1.2

Code implementing:

- Group representation: Schreier-Sims table, set stabilizer computation
- Branch-and-Bound with isomorphism pruning
 - Based on code Bcp of COIN-OR
 - Use CPLEX as LP solver
 - Input: problem description (sparse LP), group description (Schreier-Sims table), upper bound *UB*
 - output: Either one optimal solution with value < UB or list of all nonisomorphic solutions with value < UB
 - more than 50 options for branching selection, bound propagation, etc.
 - More than 100 instances of highly symmetric problems (BIBD, COD, OA, STS)

Available from:

http://wpweb2.tepper.cmu.edu/fmargot/source_code.html

Automatic generation of 11 codes using various options.

Available from:

http://wpweb2.tepper.cmu.edu/fmargot/source_code.html

Automatic generation of 11 codes using various options.

Important options active in precompiled codes:

- NO_SOL_XO_0: All variables are in a single orbit of G
- ALL_SOL: Output all nonisomoprhic solutions

Available from:

http://wpweb2.tepper.cmu.edu/fmargot/source_code.html

Automatic generation of 11 codes using various options.

Important options active in precompiled codes:

- NO_SOL_XO_0: All variables are in a single orbit of G
- ALL_SOL: Output all nonisomoprhic solutions

Main Options:

- FREE_BRANCHING: Selected branching variable freely
- FREE_STAB_GRP: Compute a Schreier-Sims representation of the stabilizer

If FREE_BRANCHING

- If FREE_BRANCH_GRP
 - FB_SCORE_KEEP_SYM: ks keep largest group order
 - FB_SCORE_KEEP_SYM_NONZ: keep largest group order when not fixing to 0
 - FB_SCORE_BREAK_SYM: bs keep smallest group order
 - FB_SCORE_BREAK_SYM_NONZ: keep smallest group order when not fixing to 0
 - FB_SCORE_MAX_PROD: mp keep max product of current orbit and largest orbit in sons

- Otherwise (not FREE_BRANCH_GRP)
 - orig: order vars by given indexing
 - orig+fix: order vars by given indexing, do strong fixing
 - FB_SCORE_LARGEST_ORB: 10 order vars according to orbit sizes
 - FB_SCORE_LARGEST_LP_ORB: **lplo** order vars according to largest sum of LP values in orbit
 - FB_SCORE_STRONG: str5 use strong branching/fixing at depth multiple of a constant

CPU Time

code	avg.	std dev	min	max	ΤL
orig	26.55	63.54	0.00	360.10	0
orig+fix	122.91	635.05	0.00	5,757.60	0
str5	26.56	67.94	0.00	459.20	0
ks	328.06	1,360.54	0.00	10,004.60	0
bs	924.33	3,733.70	0.00	27,500.00	7
lo	275.87	1,391.94	0.00	12,859.10	2
lplo	409.36	2,522.26	0.00	23,938.40	6
mp	611.11	2,384.66	0.00	18,880.20	5

- 94 "easy" instances
- enumerate all nonisomorphic solutions
- TL: not finished in 10h

CPU Time

code	avg.	std dev	min	max	ΤL
orig	26.55	63.54	0.00	360.10	0
orig+fix	122.91	635.05	0.00	5,757.60	0
str5	26.56	67.94	0.00	459.20	0
ks	328.06	1,360.54	0.00	10,004.60	0
bs	924.33	3,733.70	0.00	27,500.00	7
lo	275.87	1,391.94	0.00	12,859.10	2
lplo	409.36	2,522.26	0.00	23,938.40	6
mp	611.11	2,384.66	0.00	18,880.20	5

- 94 "easy" instances
- enumerate all nonisomorphic solutions
- TL: not finished in 10h

Nodes

code	avg.	std dev	min	max	ΤL
orig	27,759.84	123,184.01	11.00	944,517.00	0
orig+fix	6,277.61	21,386.44	11.00	160,363.00	0
str5	28,838.34	126,534.00	11.00	972,642.00	0
ks	29,332.57	127,451.56	11.00	1,150,059.00	0
bs	34,816.05	122,522.98	11.00	727,348.00	7
lo	99,046.55	396,735.30	11.00	294,3748.00	2
lplo	52,473.76	189,442.26	13.00	1,101,518.00	6
mp	28,123.15	131,512.86	13.00	1,180,263.00	5

- 94 "easy" instances
- enumerate all nonisomorphic solutions
- TL: not finished in 10h

Nodes

code	avg.	std dev	min	max	ΤL
orig	27,759.84	123,184.01	11.00	944,517.00	0
orig+fix	6,277.61	21,386.44	11.00	160,363.00	0
str5	28,838.34	126,534.00	11.00	972,642.00	0
ks	29,332.57	127,451.56	11.00	1,150,059.00	0
bs	34,816.05	122,522.98	11.00	727,348.00	7
lo	99,046.55	396,735.30	11.00	294,3748.00	2
lplo	52,473.76	189,442.26	13.00	1,101,518.00	6
mp	28,123.15	131,512.86	13.00	1,180,263.00	5

- 94 "easy" instances
- enumerate all nonisomorphic solutions
- TL: not finished in 10h

Group Operations

[Butler, Cannon, Lam, Kreher, Stinson, Leon]

$$egin{aligned} G_0 &= G \ G_1 &= \{g \in G_0 \mid g(1) = 1\} \ U_1 &= \mathrm{orb}(1, G_0) \ G_2 &= \{g \in G_1 \mid g(2) = 2\} \ U_2 &= \mathrm{orb}(2, G_1) \ \cdots \ G_n &= \{g \in G_{n-1} \mid g(n) = n\} \ U_n &= \mathrm{orb}(n, G_{n-1}) \end{aligned}$$

Group Operations

[Butler, Cannon, Lam, Kreher, Stinson, Leon]

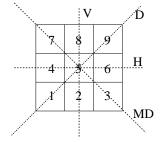
$$egin{aligned} G_0 &= G \ G_1 &= \{g \in G_0 \mid g(1) = 1\} & U_1 = \operatorname{orb}(1, G_0) \ G_2 &= \{g \in G_1 \mid g(2) = 2\} & U_2 = \operatorname{orb}(2, G_1) \ \dots \ G_n &= \{g \in G_{n-1} \mid g(n) = n\} & U_n = \operatorname{orb}(n, G_{n-1}) \end{aligned}$$

Schreier-Sims Table: $T: n \times n$ table of permutations

$$T_{ij} \neq \emptyset \Leftrightarrow \exists g \in G_{i-1} \text{ with } g(i) = j$$

Schreier-Sims Table Example

$$\begin{array}{ll} G_0 = \{I, R_{90}, R_{180}, R_{270}, H, V, D, MD\} \\ G_1 = \{I, D\} & U_1 = \{1, 3, 7, 9\} \\ G_2 = \{I\} & U_2 = \{2, 4\} \\ G_i = \{I\} & U_i = \{i\} \text{ for all } i \geq 3 \end{array}$$



	1	2	3	4	5	6	7	8	9
1	1		V				R ₂₇₀		R ₁₈₀
2		1		D					
3			1						
4				1					
5					1				
6						1			
7							1		
8								1	
9									1

• First row is orb(1, G)

- First row is orb(1, *G*)
- $g \in G \Leftrightarrow g = g_1 \cdot g_2 \cdot \ldots \cdot g_n$ with $g_i \in \text{row } i$ (unique, strong generators)

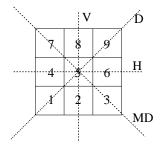
- First row is orb(1, G)
- $g \in G \Leftrightarrow g = g_1 \cdot g_2 \cdot \ldots \cdot g_n$ with $g_i \in \text{row } i$ (unique, strong generators)

•
$$|G| = |U_1| \cdot |U_2| \cdot \ldots \cdot |U_n|$$

- First row is orb(1, G)
- $g \in G \Leftrightarrow g = g_1 \cdot g_2 \cdot \ldots \cdot g_n$ with $g_i \in \text{row } i$ (unique, strong generators)
- $|G| = |U_1| \cdot |U_2| \cdot \ldots \cdot |U_n|$
- Construction Algorithm from generators $(O(n^4)$ per generator)

- First row is orb(1, G)
- $g \in G \Leftrightarrow g = g_1 \cdot g_2 \cdot \ldots \cdot g_n$ with $g_i \in \text{row } i$ (unique, strong generators)
- $|G| = |U_1| \cdot |U_2| \cdot \ldots \cdot |U_n|$
- Construction Algorithm from generators (O(n⁴) per generator)
- β : permutation, $G_0 = G$, $G_i = \{g \in G_{i-1} \mid g(\beta[i]) = \beta[i]\}$ Algorithms for changing the base exists $(O(n^6))$

Schreier-Sims Table with Base



 $\beta = [1, 5, 7, 2, 9, 8, 3, 6, 4]$

	1	2	3	4	5	6	7	8	9
1	1		V				R ₂₇₀		R ₁₈₀
2		1							
3			1						
4				1					
5					1				
6						1			
7	1		D				1		
8	1							1	
9									1

Re-usable code: Binary variables only

clean_orbit_in_xstab(int g_deg,

mygroup g,

- int *cv_orb,
- int *list_orb,
- int *card_list_orb,

int base_ind)

- Compute orbit of $g \rightarrow base[base_ind]$ in stabilizer of $g \rightarrow base[0..base_ind-1]$ in g
- returns 0 otherwise

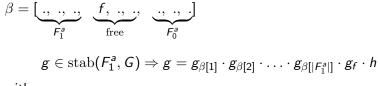
Re-usable code: General integer variables

```
clean_korbit_in_xstab( int g_deg,
mygroup g,
int *cv_orb,
int *list_orb,
int *card_list_orb,
int base_ind,
int *max_val, /* max val still allowed for each var */
int **max_val_date, /* entry [w, j] # variables set to > 0
                         when value w was excluded for x_i * /
int *glob_stop,
int k_upbnd, /* Upper bound for integer variables */
int **part_mat_orb)
                       /* if not NULL, store all orbits */
```

- Compute orbit of g→base[base_ind] in stabilizer of g→base[0..base_ind-1] in g
- returns 1 if no var in the orbit is set to 0 and base_ind can be fixed to max_val[base_ind]
- returns 0 otherwise

Computation of $orb(f, stab(F_1^a, G))$

Computation of $orb(f, stab(F_1^a, G))$



with

- $g(\beta[i])$ in row $\beta[i]$ of T for $i = 1, \dots, |F_1^a|$
- g(f) in row f of T
- h(f) = f
- $h(\beta[i]) = \beta[i]$ for $i = 1, ..., |F_1^a|$

Computation of $orb(f, stab(F_1^a, G))$

$$\beta = \underbrace{[\dots, \dots, \dots, f_1, \dots, f_{f_1}, \dots, f_{f_0}]}_{F_1^a} \underbrace{f, \dots, \dots, f_0^a}_{F_0^a}$$
$$g \in \operatorname{stab}(F_1^a, G) \Rightarrow g = g_{\beta[1]} \cdot g_{\beta[2]} \cdot \dots \cdot g_{\beta[|F_1^a|]} \cdot g_f \cdot h$$

with

- $g(\beta[i])$ in row $\beta[i]$ of T for $i = 1, \dots, |F_1^a|$
- g(f) in row f of T
- h(f) = f
- $h(\beta[i]) = \beta[i]$ for $i = 1, ..., |F_1^a|$

Use Backtracking to explore all

$$p = g_{\beta[1]} \cdot g_{\beta[2]} \cdot \ldots \cdot g_{\beta[|F_1^a|]} \cdot g_f$$

If $p(F_1^a) = F_1^a$, add p(f) to the orbit of fComplexity: $O(n \cdot |F_1^a|!)$

Computation of Stabilizer

Theorem

```
[Luks], [Hoffman]
```

Computing stab(S, G) is as hard as deciding if two graphs are isomorphic

Algorithm: Backtracking similar to previous one.

```
Complexity: O(n \cdot |F_1^a|!)
```