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Symmetry and Optimization

min f (x)
s.t. g(x) ≤ 0

xi ∈ Z for i ∈ I
x ∈ Rn

π : permutation of {1, . . . , n}
π(x) = π(x1, . . . , xn) = (xπ(1), . . . , xπ(n))

π is a symmetry of the problem if

• x feasible ⇔ π(x) feasible

• f (x) = f (π(x))
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Special Case: Integer Linear Programming

Integer Linear Program (ILP):

min cT x
s.t. Ax ≥ b A : m × n

x ∈ {0, . . . , k}n

π is a symmetry of the ILP if
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Symmetry Group of the ILP

Example:

min −x1 −x2 −x3 −x4

s.t. x1 +x2 +2x4 ≤ 2
x2 +x3 +2x4 ≤ 2

x1 +x3 +2x4 ≤ 2

x ∈ {0, 1}4

Feasible solutions:

(x1, x2, x3, x4) ∈ {(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1),

(1, 1, 0, 0), (1, 0, 1, 0), (0, 1, 1, 0), (1, 1, 1, 0)}

G : set of all symmetries of the ILP

G = {[1, 2, 3, 4], [1, 3, 2, 4], [2, 1, 3, 4], [3, 2, 1, 4], [2, 3, 1, 4], [3, 1, 2, 4]}



Symmetry Group of the ILP

Example:

min −x1 −x2 −x3 −x4

s.t. x1 +x2 +2x4 ≤ 2
x2 +x3 +2x4 ≤ 2

x1 +x3 +2x4 ≤ 2

x ∈ {0, 1}4

Feasible solutions:

(x1, x2, x3, x4) ∈ {(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1),

(1, 1, 0, 0), (1, 0, 1, 0), (0, 1, 1, 0), (1, 1, 1, 0)}

G : set of all symmetries of the ILP

G = {[1, 2, 3, 4], [1, 3, 2, 4], [2, 1, 3, 4], [3, 2, 1, 4], [2, 3, 1, 4], [3, 1, 2, 4]}



Symmetry Group of the ILP

Example:

min −x1 −x2 −x3 −x4

s.t. x1 +x2 +2x4 ≤ 2
x2 +x3 +2x4 ≤ 2

x1 +x3 +2x4 ≤ 2

x ∈ {0, 1}4

Feasible solutions:

(x1, x2, x3, x4) ∈ {(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1),

(1, 1, 0, 0), (1, 0, 1, 0), (0, 1, 1, 0), (1, 1, 1, 0)}

G : set of all symmetries of the ILP

G = {[1, 2, 3, 4], [1, 3, 2, 4], [2, 1, 3, 4], [3, 2, 1, 4], [2, 3, 1, 4], [3, 1, 2, 4]}



Symmetry Group

G with composition of permutation is a group:

• composition of permutations in G is a permutation in G

• G has a neutral element (identity permutation I )

• g ∈ G ⇒ there exists h ∈ G such that g · h = h · g = I

Examples of symmetric ILPs:

• Coloring problems

• Network Design (with symmetric network)

• Flexible Manufacturing Operations (with identical machines)

• Design of statistical experiments

• Benchmark problems for QAP, Steiner Tree Problems
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Branch-and-Bound for ILP

Branch-and-Bound tree for a symmetric problem: x1, x2 symmetric

x  = 1 x  = 0

x  = 1x  = 0

1 1

2 2

Problem:

|G | large ⇒ Most solution techniques become inefficient
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Problem Characteristics

Problem n ẑ LP Group order Comm. Solver
OA7(7, 2, 4, 7) 128 – 112 645,120 45m
CA7(7, 2, 4, 7) 128 113 112 645,120 2.5h
PA7(7, 2, 4, 7) 128 -108 -112 645,120 > 4h
OA2(6, 3, 3, 2) 729 – 54 33,592,320 > 4h

cov1054 252 51 50 3,628,800 > 4h
cov1174 330 17 15.71 39,916,800 > 4h
cod93 512 -40 -51.20 185,794,560 > 4h
cod105 1024 -12 -18.29 371,5891,200 > 4h
STS81 81 61 27 1,965,150,720 > 4h

• “small” number of variables

• “small” integrality gap

• large group
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Detecting Symmetric ILPs

Automatic detection is hard:

• Symmetry is a property of the feasible set (empty ⇒ Sn)

• May consider symmetry of the LP formulation
(drawback: easy to destroy)

Generating G :

• Known from model

• Compute from formulation : Graph automorphism problem

• Usually, work with a subgroup
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Constructing G : Graph Automorphism

Example:

min 1T x
s.t. Ax ≥ 1 A : 0, 1 matrix

x ∈ {0, 1}n

(
0 AT

A 0

)
: Adjacency matrix of a bipartite graph

• Can handle arbitrary matrix using color classes for identical
entries

• Efficient (in practice) software for graph automorphism: Nauty
[McKay]



Constructing G : Graph Automorphism

Example:

min 1T x
s.t. Ax ≥ 1 A : 0, 1 matrix

x ∈ {0, 1}n

(
0 AT

A 0

)
: Adjacency matrix of a bipartite graph

• Can handle arbitrary matrix using color classes for identical
entries

• Efficient (in practice) software for graph automorphism: Nauty
[McKay]



Constructing G : Graph Automorphism

Example:

min 1T x
s.t. Ax ≥ 1 A : 0, 1 matrix

x ∈ {0, 1}n

(
0 AT

A 0

)
: Adjacency matrix of a bipartite graph

• Can handle arbitrary matrix using color classes for identical
entries

• Efficient (in practice) software for graph automorphism: Nauty
[McKay]



Constructing G : Graph Automorphism

Example:

min 1T x
s.t. Ax ≥ 1 A : 0, 1 matrix

x ∈ {0, 1}n

(
0 AT

A 0

)
: Adjacency matrix of a bipartite graph

• Can handle arbitrary matrix using color classes for identical
entries

• Efficient (in practice) software for graph automorphism: Nauty
[McKay]



Constructing G (cont.)

Extension to Nonlinear Programs [Liberti, 2010]

Library # Instances #|G | > 1 % of library
miplib3 62 22 35.4%

miplib2003 \ miplib3 20 7 35.0%
globallib 390 58 14.8%
minlplib 197 32 16.2%

Total 669 112 16.7%



General Setting and Problems

Settings:

• Arbitrary symmetry group

• General integer variables

Problems:

• Finding optimal solution

• Optimality proof of known solution

• Finding all nonisomorphic optimal solutions
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Approaches

“Exact” Algorithms:

• I: Perturbation

• II: Reformulations

• III: Symmetry breaking inequalities

• IV: Symmetry breaking during search

• V: Pruning the enumeration tree

“Approximate” Algorithms:

• VI: Orbital branching

• VII: Dominance relations
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Approaches

“Exact” Algorithms:

• I: Perturbation

• II: Reformulations

• III: Symmetry breaking inequalities

• IV: Symmetry breaking during search

• V: Pruning the enumeration tree

“Approximate” Algorithms:

• VI: Orbital branching

• VII: Dominance relations

Use local symmetry information



Approach I: Perturbation

Modify the objective function:

• Replace by lexicographic minimization (ci = 2i , i = 1, . . . n)
• Works only for some problems
• Numerical issues

• Add small perturbation to destroy symmetry

• Counterproductive when trying to prove infeasibility
• Once optimal solution found, all problems are of this type

• Perturbation using hierarchical functions related to
symmetry-breaking constraints (only for G product of
symmetric groups)

• Good results for specific aplications.

[Ghoniem, Sherali 2011]
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Approach II: Reformulations for G = Sn

• Column generation

• Dantzig-Wolfe Decomposition

Example: Minimize # of identical machines to perform m tasks

• Column: subset of tasks that can be assigned to a single
machine

• Dantzig-Wolfe Decomposition: Minimize # subsets to cover
all tasks

[Barnhart, Johnson, Nemhauser, 1998]

Edge Coloring: [Nemhauser, Park, 1991]

Vertex Coloring: [Mehrotra, Trick, 1995]
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Approach II: Reformulations by Lift-and-Relax

[Österg̊ard, Weakley, 2000]

[Österg̊ard, Blass, 2001]

[Österg̊ard, Wassermann, 2002]

[Österg̊ard, M., 2003]

[Linderoth, M., Thain, 2007]

• Add integer variables y to the ILP: y = Zx

• Project (relax) some (or all) of the x variables → ILP(x ′, y)

• Enumerate all nonisomorphic solutions (x̄ ′, ȳ) to ILP(x ′, y)

• Solve original ILP for each (x̄ ′, ȳ), adding constraints x̄ ′ = x ′

and ȳ = Zx



Approach II: Reformulations by orbit shrinking

[Fischetti, Liberti, 2013]

• G ′: subgroup of G

• Partition variables into orbits in G ′: {O1, . . . ,Ot}
• For i = 1, . . . , t add an integer variable yt =

∑
j∈Ot

xj

• remove integrality restriction on xj for all j

• For xj ∈ Ot , replace xj by yt
|Ot |

• Solves a “smaller” and “easier” ILP

• Significantly improves the LP relaxation lower bound
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Approach III: Adding inequalities

Idea:

• Add inequalities remove some of the symmetry, keeping at
least one optimal solution

• Usually: Intersect original formulation with a cone pointed at
the origin

x

x
2

1

Drawbacks:

• Isomorphic solutions may remain feasible

• May create highly fractional LP relaxations
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III Adding Inequalities (cont.)

Typical constraints: Let O = {x1, x2, . . . , xt} be one orbit in G

• If G restricted to O is the symmetric group St :

x1 ≥ x2 ≥ . . . ≥ xt

• Otherwise

x1 ≥ x2, x1 ≥ x3, . . . x1 ≥ xt

Applications:

• Selection of orbit [Liberti 2010]

• Using group operation to use several orbits [Liberti, Ostrowski 2013]



Finding Symmetry Breaking Inequalities

Fundamental Region: closed set F in Rn such that:

• g(int(F)) ∩ int(F) = ∅, ∀g ∈ G, g 6= I

•
⋃
g∈G

g(F ) = Rn

Theorem:

• G symmetry group for polytope P

• F fundamental region

Then:
min{cT x |x ∈ P} = min{cT x |x ∈ P ∩ F}
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Finding Symmetry Breaking Inequalities (cont.)

Proposition: [Grove, Benson, 1985]

• G group of permutations of {1, . . . , n}.
• z such that g(z) 6= z for all g ∈ G , g 6= I .

Then

F = {x ∈ Rn | (g(z)− z) · x ≤ 0, ∀g ∈ G , g 6= I}

is a fundamental region for G .

Example: G = S4

z = (0, 1, 2, 3)

g(z) = (1, 0, 2, 3)

⇒ (x2 + 2x3 + 3x4)− (x1 + 2x3 + 3x4) ≤ 0 ⇒
x1 ≥ x2
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III Adding Inequalities (cont.): Orbitopes

For packing or partitioning problems of the form:

Ax ≤ b
n∑

j=1

xij {=;≤} 1 ∀i = 1, . . . ,m

xij ≥ 0

Collect all variables in a 2-dimensional matrix:

X =

x1,1 x1,2 x1,3 . . . x1,n

x2,1 x2,2 x2,3 . . . x2,n

. . . . . . . . . . . . . . .

xm,1 xm,2 xm,3 . . . xm,n
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Orbitopes

If any permutation of the columns of X is a symmetry of the
problem:

• a family of symmetry breaking inequalities is known
(shifted column inequalities)

• polynomial time separation algorithm

• Describes the convex hull of non isomorphic solutions of

n∑
j=1

xij {=;≤} 1 ∀i = 1, . . . ,m

xij ≥ 0

[Kaibel, Pfetsch, 2006]

[Kaibel, Peinhardt, Pfetsch, 2007]
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Isomorphism-free backtracking enumeration

[Butler, Ivanov, Kreher, Lam, Leon, McKay, Read, Stinson]

Example: Solving an ILP with 0, 1 variables:
a : node of the enumeration tree

F a
1 = {i | xi fixed to 1 at a}

F a
0 = {i | xi fixed to 0 at a}

Problems at a and b are isomorphic if

∃ g ∈ G with

g(F a
1 ) = F b

1 and g(F a
0 ) = F b

0

⇒ May prune one of a or b

[Bazaraa, Kirca, 1983]
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Approach IV: Symmetry Breaking During Search
(SBDS)

Constraint Programming Approach:

• Add constraints for each created node of the tree to forbid
isomorphic ones

• May require huge number of constraints

• Need to keep track of some of the visited nodes

• Symmetry Breaking During Search:
[Gent, Smith, 2002]

[Gent, Kelsey, et al. 2005]

• GAP SBDS: Group representation of the symmetries:
[Gent, Harvey, Kelsey 2002]

• SBDS-CP-LP hybrid [Petrie, Smith, 2004]
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Approach V: Pruning

Assumptions:

• Branch by partitioning the domain of a variable into k ≥ 2
subdomains

• Complete ordering of the sons (topological in drawing of tree)

Sought: Minimum interference with usual operations

• Freedom to restrict variable domains

• Freedom to choose the branching variable

• Freedom to choose the partitioning

• Pruning uses only information available at a single node of tree

Achievable if:

• Algorithm for restrictions is not be based on symmetry
considerations
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V.I: Left-of-path Mapping

• a: node of the tree

• F a
0 = {i | xi fixed to 0 at a} F a

1 = {i | xi fixed to 1 at a}

• Compare fixing at a with left sons issued from ancestors of a

• Prune a if there exists g ∈ G mapping a subset of F a
1 to F b

1

and a subset of F a
0 to F b

0

x = 0

x = 0x = 1

x = 1
3 3

7 7

x = 1 x = 0 x = 1 x = 0
228 8

a

F b
1 = {7} F b

0 = {3}

F a
1 = {2} F a

0 = {3, 7}

∃g ∈ G with g(3) = 3, g(2) = 7 ⇒ Prune node a
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V.I: Left-of-path Mapping (cont.)

• Backtrack Searching with Symmetry (BSS)
[Brown, Finkelstein, Purdom 1988, 1995]

Paper Description:
• General integer variables
• Branch by creating one son for each possible value of

branching variable

Implementation:
• Generic code working for any group
• Few numerical results

• Symmetry Breaking By Dominance Detection (SBDD)
[Fahle, Shamberger, Sellman 2001]

Paper Description:
• General integer variables
• Branch by arbitrary partition of domain of branching variable

Implementation:
• Ad hoc code for several applications
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V.II: Lexicomin Support Pruning (cont.)

• Isomorphism Pruning (IP)
[M 2002, 2003, 2003b, 2007]

Paper Description:
• General integer variables
• Branch by creating one son for each possible value of

branching variable
• Rigid branching scheme

Can be relaxed [Ostrowski 2007]

Implementation:
• Generic code working for any group
• Applications:

• covering designs [M 2003]

• orthogonal arrays [Bulutoglu, M 2007]

• edge coloring [M 2007]

• codes [Linderoth, Thain, M 2007]
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Left-of-path Mapping vs. Lexicomin Support

Bare bone comparison:

• Left-of-path mapping pruning ⊆ Lexicomin Support pruning

• Algorithms based on group representation are backtracking
algorithms with depth |F a

1 ∪ F a
0 | and |F a

1 | respectively

• Lexicomin Support clear winner

However:
Can set variables to 0 during backtracking. If there exists:

• F ⊆ F a
1

• b a left-ancestor of a

• g ∈ G with g(F ) = F b
1

then set to 0 all vars in g−1(F b
0 )

(0-setting)



Left-of-path Mapping vs. Lexicomin Support

Bare bone comparison:

• Left-of-path mapping pruning ⊆ Lexicomin Support pruning

• Algorithms based on group representation are backtracking
algorithms with depth |F a

1 ∪ F a
0 | and |F a

1 | respectively

• Lexicomin Support clear winner

However:
Can set variables to 0 during backtracking. If there exists:

• F ⊆ F a
1

• b a left-ancestor of a

• g ∈ G with g(F ) = F b
1

then set to 0 all vars in g−1(F b
0 )

(0-setting)



Left-of-path Mapping vs. Lexicomin Support

Bare bone comparison:

• Left-of-path mapping pruning ⊆ Lexicomin Support pruning

• Algorithms based on group representation are backtracking
algorithms with depth |F a

1 ∪ F a
0 | and |F a

1 | respectively

• Lexicomin Support clear winner

However:
Can set variables to 0 during backtracking. If there exists:

• F ⊆ F a
1

• b a left-ancestor of a

• g ∈ G with g(F ) = F b
1

then set to 0 all vars in g−1(F b
0 )

(0-setting)



Left-of-path Mapping vs. Lexicomin Support

Bare bone comparison:

• Left-of-path mapping pruning ⊆ Lexicomin Support pruning

• Algorithms based on group representation are backtracking
algorithms with depth |F a

1 ∪ F a
0 | and |F a

1 | respectively

• Lexicomin Support clear winner

However:
Can set variables to 0 during backtracking. If there exists:

• F ⊆ F a
1

• b a left-ancestor of a

• g ∈ G with g(F ) = F b
1

then set to 0 all vars in g−1(F b
0 )

(0-setting)



Left-of-path Mapping vs. Lexicomin Support

Bare bone comparison:

• Left-of-path mapping pruning ⊆ Lexicomin Support pruning

• Algorithms based on group representation are backtracking
algorithms with depth |F a

1 ∪ F a
0 | and |F a

1 | respectively

• Lexicomin Support clear winner

However:
Can set variables to 0 during backtracking. If there exists:

• F ⊆ F a
1

• b a left-ancestor of a

• g ∈ G with g(F ) = F b
1

then set to 0 all vars in g−1(F b
0 ) (0-setting)



Left-of-path Mapping vs. Lexicomin Support

If full 0-setting is done in Left-of-path mapping then

• Left-of-path mapping pruning = Lexicomin Support pruning

• More variables set to 0 by Left-of-path mapping than with
Lexicomin Support

• Much slower Left-of-path mapping checking than Lexicomin
Support checking for deep trees

BSS implementation of [Brown, Finkelstein, Purdom 1988, 1995]

• Fast comput. of generators of stabilizer of (F a
1 ∪ j ,F a

0 ) in G

• Does not always do full 0-setting

IP implementation of [M 2007]

• Fast computation of one orbit of stabilizer of F a
1 ∪ j in G

• Does not always do full 0-setting
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Approach VI: Orbital Branching

Recompute symmetry group at each node; use orbit information
for branching

Orbital Branching:

• Recompute symmetry group for free variables

• Compute partition of free variables into orbits

• Select one orbit O and one xi ∈ O;

• Branch:
either all vars in O fixed to 0 or xi = 1

[Ostrowski, Linderoth, Rossi, Smriglio 2007]
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Approach VI: Constraint Orbital Branching

[Ostrowski, Linderoth, Rossi, Smriglio, 2008, 2009, 2011]

aT x ≥ b : valid constraint of the LP, a ∈ Zn, b ∈ Z

Then

π(a)T x ≥ b : also valid constraint of the LP for all π ∈ G

Disjunction:

aT x ≤ b or π(a)T x ≥ b + 1 for all π ∈ G

• Particularly useful for instances built from smaller instances

• Can combine knowledge of all nonisomorphic solutions of
smaller instances

• Gives first proof of optimality for STS135 and STS243
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Approach VII: Dominance Relations

• Use MIP to detect assignment of variables that are dominated

• Limited efficiency for highly symmetric problems

[Fischetti, Toth, 1988]

[Fischetti, Salvagnin, 2007]



ISOP-1.2

Code implementing:

• Group representation: Schreier-Sims table, set stabilizer
computation

• Branch-and-Bound with isomorphism pruning
• Based on code Bcp of COIN-OR
• Use Cplex as LP solver
• Input: problem description (sparse LP), group description

(Schreier-Sims table), upper bound UB
• output: Either one optimal solution with value < UB or list of

all nonisomorphic solutions with value < UB
• more than 50 options for branching selection, bound

propagation, etc.
• More than 100 instances of highly symmetric problems (BIBD,

COD, OA, STS)



ISOP-1.2 (cont.)

Available from:
http://wpweb2.tepper.cmu.edu/fmargot/source code.html

Automatic generation of 11 codes using various options.

Important options active in precompiled codes:

• NO SOL X0 0: All variables are in a single orbit of G

• ALL SOL: Output all nonisomoprhic solutions

Main Options:

• FREE BRANCHING: Selected branching variable freely

• FREE STAB GRP: Compute a Schreier-Sims representation of
the stabilizer
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ISOP-1.2 (cont.)

If FREE BRANCHING

• If FREE BRANCH GRP

• FB SCORE KEEP SYM: ks keep largest group order
• FB SCORE KEEP SYM NONZ: keep largest group order when not

fixing to 0
• FB SCORE BREAK SYM: bs keep smallest group order
• FB SCORE BREAK SYM NONZ: keep smallest group order when

not fixing to 0
• FB SCORE MAX PROD: mp keep max product of current orbit and

largest orbit in sons



ISOP-1.2 (cont.)

• Otherwise (not FREE BRANCH GRP)
• orig: order vars by given indexing
• orig+fix: order vars by given indexing, do strong fixing
• FB SCORE LARGEST ORB: lo order vars according to orbit sizes
• FB SCORE LARGEST LP ORB: lplo order vars according to

largest sum of LP values in orbit
• FB SCORE STRONG: str5 use strong branching/fixing at depth

multiple of a constant



CPU Time

code avg. std dev min max TL

orig 26.55 63.54 0.00 360.10 0
orig+fix 122.91 635.05 0.00 5,757.60 0
str5 26.56 67.94 0.00 459.20 0
ks 328.06 1,360.54 0.00 10,004.60 0
bs 924.33 3,733.70 0.00 27,500.00 7
lo 275.87 1,391.94 0.00 12,859.10 2
lplo 409.36 2,522.26 0.00 23,938.40 6
mp 611.11 2,384.66 0.00 18,880.20 5

• 94 “easy” instances

• enumerate all nonisomorphic solutions

• TL: not finished in 10h



CPU Time

code avg. std dev min max TL

orig 26.55 63.54 0.00 360.10 0
orig+fix 122.91 635.05 0.00 5,757.60 0
str5 26.56 67.94 0.00 459.20 0
ks 328.06 1,360.54 0.00 10,004.60 0
bs 924.33 3,733.70 0.00 27,500.00 7
lo 275.87 1,391.94 0.00 12,859.10 2
lplo 409.36 2,522.26 0.00 23,938.40 6
mp 611.11 2,384.66 0.00 18,880.20 5

• 94 “easy” instances

• enumerate all nonisomorphic solutions

• TL: not finished in 10h



Nodes

code avg. std dev min max TL

orig 27,759.84 123,184.01 11.00 944,517.00 0
orig+fix 6,277.61 21,386.44 11.00 160,363.00 0
str5 28,838.34 126,534.00 11.00 972,642.00 0
ks 29,332.57 127,451.56 11.00 1,150,059.00 0
bs 34,816.05 122,522.98 11.00 727,348.00 7
lo 99,046.55 396,735.30 11.00 294,3748.00 2
lplo 52,473.76 189,442.26 13.00 1,101,518.00 6
mp 28,123.15 131,512.86 13.00 1,180,263.00 5

• 94 “easy” instances

• enumerate all nonisomorphic solutions

• TL: not finished in 10h
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Group Operations

[Butler, Cannon, Lam, Kreher, Stinson, Leon]

G0 = G
G1 = {g ∈ G0 | g(1) = 1} U1 = orb(1,G0)
G2 = {g ∈ G1 | g(2) = 2} U2 = orb(2,G1)
. . .
Gn = {g ∈ Gn−1 | g(n) = n} Un = orb(n,Gn−1)

Schreier-Sims Table:
T : n × n table of permutations

Tij 6= ∅ ⇔ ∃ g ∈ Gi−1 with g(i) = j
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Schreier-Sims Table Example

G0 = {I ,R90,R180,R270,H,V ,D,MD}
G1 = {I ,D} U1 = {1, 3, 7, 9}
G2 = {I} U2 = {2, 4}
Gi = {I} Ui = {i} for all i ≥ 3

H

V D

MD

7 98

4 5 6

321

1 2 3 4 5 6 7 8 9

1 I V R270 R180
2 I D
3 I
4 I
5 I
6 I
7 I
8 I
9 I



Schreier-Sims Table Properties

• First row is orb(1,G )

• g ∈ G ⇔ g = g1 · g2 · . . . · gn with gi ∈ row i
(unique, strong generators)

• |G | = |U1| · |U2| · . . . · |Un|
• Construction Algorithm from generators (O(n4) per generator)

• β : permutation, G0 = G , Gi = {g ∈ Gi−1 | g(β[i ]) = β[i ]}
Algorithms for changing the base exists (O(n6))
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Schreier-Sims Table with Base

β = [1, 5, 7, 2, 9, 8, 3, 6, 4]
H

V D

MD

7 98

4 5 6

321

1 2 3 4 5 6 7 8 9

1 I V R270 R180
2 I
3 I
4 I
5 I
6 I
7 D I
8 I
9 I



Re-usable code: Binary variables only

clean orbit in xstab( int g deg,

mygroup g,

int *cv orb,

int *list orb,

int *card list orb,

int base ind)

• Compute orbit of g→base[base ind] in stabilizer of
g→base[0..base ind-1] in g

• returns 1 if no var in the orbit is set to 0 and base ind can be
fixed to 1

• returns 0 otherwise



Re-usable code: General integer variables

clean korbit in xstab( int g deg,

mygroup g,

int *cv orb,

int *list orb,

int *card list orb,

int base ind,

int *max val, /* max val still allowed for each var */

int **max val date, /* entry [w, j] # variables set to > 0

when value w was excluded for xj*/
int *glob stop,

int k upbnd, /* Upper bound for integer variables */

int **part mat orb) /* if not NULL, store all orbits */

• Compute orbit of g→base[base ind] in stabilizer of
g→base[0..base ind-1] in g

• returns 1 if no var in the orbit is set to 0 and base ind can be fixed
to max val[base ind]

• returns 0 otherwise



Computation of orb(f , stab(F a
1 ,G ))

β = [ ., ., .,︸ ︷︷ ︸
F a

1

f , ., .︸ ︷︷ ︸
free

, ., ., .︸ ︷︷ ︸
F a

0

]

g ∈ stab(F a
1 ,G )⇒ g = gβ[1] · gβ[2] · . . . · gβ[|F a

1 |] · gf · h

with

• g(β[i ]) in row β[i ] of T for i = 1, . . . , |F a
1 |

• g(f ) in row f of T

• h(f ) = f

• h(β[i ]) = β[i ] for i = 1, . . . , |F a
1 |

Use Backtracking to explore all

p = gβ[1] · gβ[2] · . . . · gβ[|F a
1 |] · gf

If p(F a
1 ) = F a

1 , add p(f ) to the orbit of f

Complexity: O(n · |F a
1 |!)
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Computation of Stabilizer

Theorem [Luks], [Hoffman]

Computing stab(S ,G ) is as hard as deciding if two graphs are
isomorphic

Algorithm: Backtracking similar to previous one.

Complexity: O(n · |F a
1 |!)


