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Symmetry and Optimization

min f(x)

st. g(x) <0
x; €Z for el
x € R”

7 @ permutation of {1,..., n}
m(x) = 7(x1, ..oy Xn) = (Xn(1)s -+ Xn(n))

m is a symmetry of the problem if
e x feasible < 7(x) feasible
o f(x) = f(m(x))
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Special Case: Integer Linear Programming

Integer Linear Program (ILP):

min ¢’ x
st. Ax>b A:mxn
x€{0,...,k}"

m is a symmetry of the ILP if

e x feasible < 7(x) feasible

e c'x=cn(x)
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Example:
min —x; —X» —X3 —Xa
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min —x; —X» —X3 —Xa
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Symmetry Group of the ILP

Example:
min —x; —X» —X3 —Xa
s.t. X1 +xo +2x5 < 2
X2 +x3 +2x4 < 2
X1 +x3 +2x4 < 2
x € {0,1}*

Feasible solutions:
(XlaX2aX37X4) S {(0705070)7(]-’()7070)’(0)17070)7(0707170)a(07070a1)a
(1,1,0,0), (1,0,1,0), (0,1,1,0), (1,1,1,0)}

G : set of all symmetries of the ILP
G = {[17 27 374]7 [17 37 274]7 [27 17 374]7 [37 27 174]7 [27 37 174]7 [37 17 274]}
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e composition of permutations in G is a permutation in G
e G has a neutral element (identity permutation /)
e g€ G = thereexists he Gsuchthat g-h=h-g=1



Symmetry Group

G with composition of permutation is a group:
e composition of permutations in G is a permutation in G
e G has a neutral element (identity permutation /)
e g€ G = thereexists he Gsuchthat g-h=h-g=1

Examples of symmetric ILPs:

e Coloring problems

Network Design (with symmetric network)

Flexible Manufacturing Operations (with identical machines)

Design of statistical experiments

Benchmark problems for QAP, Steiner Tree Problems



Branch-and-Bound for ILP

Branch-and-Bound tree for a symmetric problem: xi, xo symmetric




Branch-and-Bound for ILP

Branch-and-Bound tree for a symmetric problem: xi, xo symmetric

Problem:

|G| large = Most solution techniques become inefficient



Problem Characteristics

Problem n z LP Group order | Comm. Solver
OA7(7,2,4,7) 128 - 112 645,120 45m
CA:(7,2,4,7) 128 | 113 112 645,120 2.5h
PA7(7,2,4,7) 128 | -108 -112 645,120 > 4h
0OA;(6,3,3,2) 729 - 54 33,592,320 > 4h

cov1054 252 51 50 3,628,800 > 4h

cov1174 330 17 | 15.71 39,916,800 > 4h
cod93 512 | -40 | -51.20 185,794,560 > 4h
cod105 1024 | -12 | -18.29 | 371,5891,200 > 4h
5TS81 81 61 27 | 1,965,150,720 > 4h

e “small” number of variables
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Problem Characteristics

Problem n z LP Group order | Comm. Solver
OA;(7,2,4,7) || 128 - 112 645,120 45m
CA:(7,2,4,7) || 128 | 113 112 645,120 2.5h
PA7(7,2,4,7) || 128 | -108 | -112 645,120 > 4h
OA;(6,3,3,2) || 729 - 54 33,592,320 > 4h
cov1054 252 | 51 50 3,628,300 > 4h
cov1174 330 | 17| 15.71 39,916,800 > 4h
cod93 512 | -40 | -51.20 | 185,794,560 > 4h
cod105 1024 | -12 | -18.29 | 371,5891,200 > 4h
STS81 81 | 61l 27 | 1,965,150,720 > 4h

e “small” number of variables

e “small” integrality gap

e large group




Detecting Symmetric ILPs

Automatic detection is hard:
e Symmetry is a property of the feasible set (empty = S")

e May consider symmetry of the LP formulation
(drawback: easy to destroy)



Detecting Symmetric ILPs

Automatic detection is hard:
e Symmetry is a property of the feasible set (empty = S")

e May consider symmetry of the LP formulation
(drawback: easy to destroy)

Generating G:
e Known from model
e Compute from formulation : Graph automorphism problem

e Usually, work with a subgroup



Constructing G: Graph Automorphism

Example:

min 17x
st. Ax>1 A : 0,1 matrix
x € {0,1}"
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Constructing G: Graph Automorphism

Example:

min 17x
st. Ax>1 A : 0,1 matrix
x € {0,1}"

0|AT : : —
a0 . Adjacency matrix of a bipartite graph

e Can handle arbitrary matrix using color classes for identical
entries

o Efficient (in practice) software for graph automorphism: Nauty

[McKay]



Constructing G (cont.)

Extension to Nonlinear Programs [Liberti, 2010]
Library # Instances  #|G| >1 % of library
MIPLIB3 62 22 35.4%
MIPLIB2003 \ MIPLIB3 20 7 35.0%
GLOBALLIB 390 58 14.8%
MINLPLIB 197 32 16.2%

Total 669 112 16.7%



General Setting and Problems

Settings:
e Arbitrary symmetry group

e General integer variables



General Setting and Problems

Settings:
e Arbitrary symmetry group

e General integer variables

Problems:
e Finding optimal solution
e Optimality proof of known solution

e Finding all nonisomorphic optimal solutions



Approaches

“Exact” Algorithms:

“Approximate” Algorithms:
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e |: Perturbation

e |I: Reformulations

[1l: Symmetry breaking inequalities

IV: Symmetry breaking during search

V: Pruning the enumeration tree

“Approximate” Algorithms:
e VI: Orbital branching

e VII: Dominance relations

Can be used to enumerate all nonisomorphic solution



Approaches

“Exact” Algorithms:
e |: Perturbation

e |I: Reformulations

[1l: Symmetry breaking inequalities

IV: Symmetry breaking during search

V: Pruning the enumeration tree

“Approximate” Algorithms:
e VI: Orbital branching

e VII: Dominance relations

Use local symmetry information



Approach I: Perturbation

Modify the objective function:
e Replace by lexicographic minimization (¢; =2/, i =1,...n)
e Works only for some problems
e Numerical issues
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e Add small perturbation to destroy symmetry

e Counterproductive when trying to prove infeasibility
e Once optimal solution found, all problems are of this type



Approach I: Perturbation

Modify the objective function:
e Replace by lexicographic minimization (¢; =2/, i =1,...n)
e Works only for some problems
e Numerical issues

e Add small perturbation to destroy symmetry

e Counterproductive when trying to prove infeasibility
e Once optimal solution found, all problems are of this type

e Perturbation using hierarchical functions related to
symmetry-breaking constraints (only for G product of
symmetric groups)

e Good results for specific aplications.

[Ghoniem, Sherali 2011]
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e Column generation

e Dantzig-Wolfe Decomposition

Example: Minimize # of identical machines to perform m tasks

e Column: subset of tasks that can be assigned to a single
machine

e Dantzig-Wolfe Decomposition: Minimize # subsets to cover
all tasks

[Barnhart, Johnson, Nemhauser, 1998]



Approach II: Reformulations for G = 8"

e Column generation

e Dantzig-Wolfe Decomposition

Example: Minimize # of identical machines to perform m tasks

e Column: subset of tasks that can be assigned to a single
machine

e Dantzig-Wolfe Decomposition: Minimize # subsets to cover
all tasks

[Barnhart, Johnson, Nemhauser, 1998]

Edge C0|0ring: [Nemhauser, Park, 1991]
Vertex Coloring: [Mehrotra, Trick, 1995]



Approach 1I: Reformulations by Lift-and-Relax

[6sterg5rd, Weakley, 2000]
[Ostergard, Blass, 2001]
[Ostergard, Wassermann, 2002]
[Ostergard, M., 2003]

[Linderoth, M., Thain, 2007]

Add integer variables y to the ILP: y = Zx

Project (relax) some (or all) of the x variables — ILP(x’, y)

Enumerate all nonisomorphic solutions (X', y) to ILP(x,
y y

Solve original ILP for each (X, y), adding constraints X’ = x’
and y = Zx



Approach 1I: Reformulations by orbit shrinking

[Fischetti, Liberti, 2013]

G': subgroup of G

e Partition variables into orbits in G": {O4,..., O}
e Fori=1,...,t add an integer variable y; = Z Xj
JEO:

e remove integrality restriction on x; for all j

For x; € O, replace x; by ﬁ



Approach 1I: Reformulations by orbit shrinking

[Fischetti, Liberti, 2013]
e G': subgroup of G
e Partition variables into orbits in G’: {O1,..., O}
e Fori=1,...,t add an integer variable y; = Z Xj
Jj€O:
e remove integrality restriction on x; for all j

e For x; € O, replace x; by ﬁ

e Solves a “smaller” and “easier” ILP

e Significantly improves the LP relaxation lower bound



Approach III: Adding inequalities

Idea:

e Add inequalities remove some of the symmetry, keeping at
least one optimal solution

X2

X
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Approach III: Adding inequalities
Idea:

e Add inequalities remove some of the symmetry, keeping at
least one optimal solution

e Usually: Intersect original formulation with a cone pointed at
the origin

X
X)
Drawbacks:

e |somorphic solutions may remain feasible

e May create highly fractional LP relaxations



IIT Adding Inequalities (cont.)

Typical constraints: Let O = {x1,x2,...,x:} be one orbit in G

e If G restricted to O is the symmetric group S*:

X1 2> X0 > ... > Xt

e Otherwise
X1 2 Xo, X1 2 X3, ...X1 2> Xt
Applications:
e Selection of orbit [Liberti 2010]

e Using group operation to use several orbits [Liberti, Ostrowski 2013]
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Fundamental Region: closed set F in R" such that:
e g(int(F))Nint(F) =0, Vge G,g#1
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Finding Symmetry Breaking Inequalities

Fundamental Region: closed set F in R" such that:
e g(int(F))Nint(F) =0, Vge G,g#1

« U e(F)=Rr"

geG

Theorem:
e G symmetry group for polytope P
e f fundamental region

Then:
min{c"x |x € P} =min{c"x [x € PN F}



Finding Symmetry Breaking Inequalities (cont.)

Proposition: [Grove, Benson, 1985]

e G group of permutations of {1,...,n}.

e z such that g(z) #zforall g € G,g # I.
Then

F={xeR"|(g(z) —2)-x<0,VgeG, g#l}

is a fundamental region for G.



Finding Symmetry Breaking Inequalities (cont.)

Proposition: [Grove, Benson, 1985]

e G group of permutations of {1,...,n}.

e z such that g(z) #zforall g € G,g # I.
Then

F={xcR"|(g(z) -2) x<0,Vge G, g#l}
is a fundamental region for G.

Example: G = S*

z=(0,1,2,3)
g(z) =(1,0,2,3)
= (X2 + 2x3 + 3X4) — (Xl + 2x3 + 3X4) <0 =

X1 2 X0



IIT Adding Inequalities (cont.): Orbitopes

For packing or partitioning problems of the form:
Ax < b
n
Zx,-j {=<} 1 Vi=1,...,m
j=1

X,'j > 0



IIT Adding Inequalities (cont.): Orbitopes

For packing or partitioning problems of the form:

Ax < b

n

d oxi =<3 1 Vi=1,...,m
j=1

X,'j Z 0

Collect all variables in a 2-dimensional matrix:

X1,1 | X12 | X13 | .- | Xi,n
X X X e X
X — | X1 2,2 2,3 2.n

Xm1l | Xm2 | Xm3 | --- | Xm,n




Orbitopes

If any permutation of the columns of X is a symmetry of the
problem:



Orbitopes

If any permutation of the columns of X is a symmetry of the
problem:

e a family of symmetry breaking inequalities is known
(shifted column inequalities)
e polynomial time separation algorithm

e Describes the convex hull of non isomorphic solutions of

n

Soxp (=<1 Vi=1..m
Jj=1

Xij > 0

[Kaibel, Pfetsch, 2006]

[Kaibel, Peinhardt, Pfetsch, 2007]



Isomorphism-free backtracking enumeration

[Butler, lvanov, Kreher, Lam, Leon, McKay, Read, Stinson]

Example: Solving an ILP with 0, 1 variables:
a : node of the enumeration tree

F? ={i| x; fixed to 1 at a}

Fs = {i | xi fixed to 0 at a}



Isomorphism-free backtracking enumeration

[Butler, lvanov, Kreher, Lam, Leon, McKay, Read, Stinson]

Example: Solving an ILP with 0, 1 variables:
a : node of the enumeration tree

F? ={i| x; fixed to 1 at a}

Fs = {i | xi fixed to 0 at a}

Problems at a and b are isomorphic if
J g € G with
g(F{)=FY and  g(F3)=F¢
=- May prune one of a or b

[Bazaraa, Kirca, 1983]



Approach 1V: Symmetry Breaking During Search
(SBDS)

Constraint Programming Approach:

e Add constraints for each created node of the tree to forbid
isomorphic ones

e May require huge number of constraints

e Need to keep track of some of the visited nodes



Approach 1V: Symmetry Breaking During Search
(SBDS)

Constraint Programming Approach:

e Add constraints for each created node of the tree to forbid
isomorphic ones

e May require huge number of constraints

e Need to keep track of some of the visited nodes

e Symmetry Breaking During Search:

[Gent, Smith, 2002]

[Gent, Kelsey, et al. 2005]



Approach 1V: Symmetry Breaking During Search
(SBDS)

Constraint Programming Approach:

e Add constraints for each created node of the tree to forbid
isomorphic ones

e May require huge number of constraints
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Approach 1V: Symmetry Breaking During Search

(SBDS)

Constraint Programming Approach:

Add constraints for each created node of the tree to forbid
isomorphic ones

May require huge number of constraints

Need to keep track of some of the visited nodes

Symmetry Breaking During Search:

[Gent, Smith, 2002]
[Gent, Kelsey, et al. 2005]

GAP_SBDS: Group representation of the symmetries:
[Gent, Harvey, Kelsey 2002]

SBDS-CP-LP hyb”d [Petrie, Smith, 2004]
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e Branch by partitioning the domain of a variable into k > 2
subdomains

e Complete ordering of the sons (topological in drawing of tree)
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Sought: Minimum interference with usual operations
e Freedom to restrict variable domains
e Freedom to choose the branching variable
e Freedom to choose the partitioning

e Pruning uses only information available at a single node of tree



Approach V: Pruning

Assumptions:

e Branch by partitioning the domain of a variable into k > 2
subdomains

e Complete ordering of the sons (topological in drawing of tree)

Sought: Minimum interference with usual operations
e Freedom to restrict variable domains
e Freedom to choose the branching variable
e Freedom to choose the partitioning

e Pruning uses only information available at a single node of tree

Achievable if:

e Algorithm for restrictions is not be based on symmetry
considerations



V.I: Left-of-path Mapping

e a: node of the tree
e F§ ={i| x fixed to 0 at a} F{ = {i | x; fixed to 1 at a}

e Compare fixing at a with left sons issued from ancestors of a

= =037
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Compare fixing at a with left sons issued from ancestors of a
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= =037




V.I: Left-of-path Mapping

a: node of the tree
F§ ={i| x; fixed to 0 at a} F{ = {i | x; fixed to 1 at a}

Compare fixing at a with left sons issued from ancestors of a

Prune a if there exists g € G mapping a subset of F{ to F
and a subset of FZ to F?

FP={7} Fg ={3}

Fi={2} FF={37}

Jdg € G with g(3) =3, g(2) =7 = Prune node a



V.I: Left-of-path Mapping (cont.)

e Backtrack Searching with Symmetry (BSS)

[Brown, Finkelstein, Purdom 1988, 1995]

e Symmetry Breaking By Dominance Detection (SBDD)

[Fahle, Shamberger, Sellman 2001]



V.I: Left-of-path Mapping (cont.)

e Backtrack Searching with Symmetry (BSS)
[Brown, Finkelstein, Purdom 1988, 1995]
Paper Description:
e General integer variables
e Branch by creating one son for each possible value of
branching variable

e Symmetry Breaking By Dominance Detection (SBDD)
[Fahle, Shamberger, Sellman 2001]
Paper Description:
e General integer variables
e Branch by arbitrary partition of domain of branching variable



V.I: Left-of-path Mapping (cont.)

e Backtrack Searching with Symmetry (BSS)

[Brown, Finkelstein, Purdom 1988, 1995]
Paper Description:

e General integer variables
e Branch by creating one son for each possible value of
branching variable

Implementation:
e Generic code working for any group
e Few numerical results
e Symmetry Breaking By Dominance Detection (SBDD)

[Fahle, Shamberger, Sellman 2001]
Paper Description:

e General integer variables
e Branch by arbitrary partition of domain of branching variable

Implementation:
e Ad hoc code for several applications
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[Butler, lvanov, Kreher, Lam, Leon, McKay, Read, Stinson]
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V.II: Lexicomin Support Pruning

[Butler, lvanov, Kreher, Lam, Leon, McKay, Read, Stinson]

a: node of the tree
F? ={i| x fixed to 1 at a}

Compare fixing at a with left sons issued from ancestors of a

Prune a if there exists g € G mapping a subset of F}’ to Flb

dg € G with g(2) =7 = Prune node a
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V.II: Lexicomin Support Pruning (cont.)

e Isomorphism Pruning (IP)

[M 2002, 2003, 2003b, 2007]

Paper Description:

o General integer variables

e Branch by creating one son for each possible value of
branching variable

e Rigid branching scheme
Can be relaxed [Ostrowski 2007]



V.II:

Lexicomin Support Pruning (cont.)

e Isomorphism Pruning (IP)

[M 2002, 2003, 2003b, 2007]

Paper Description:

o General integer variables

e Branch by creating one son for each possible value of
branching variable

e Rigid branching scheme
Can be relaxed [Ostrowski 2007]

Implementation:

e Generic code working for any group
e Applications:

e covering designs [M 2003]
e orthogonal arrays [Bulutoglu, M 2007]
e edge coloring [M 2007]

codes [Linderoth, Thain, M 2007]
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Left-of-path Mapping vs. Lexicomin Support

Bare bone comparison:
e Left-of-path mapping pruning C Lexicomin Support pruning
e Algorithms based on group representation are backtracking
algorithms with depth |F7 U Fg| and |F{| respectively

e Lexicomin Support clear winner

However:
Can set variables to 0 during backtracking. If there exists:

e FCF;
e b a left-ancestor of a
e g€ G with g(F)=F}
then set to 0 all vars in g~ 1(Ff) (0-setting)
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Left-of-path Mapping vs. Lexicomin Support

If full O-setting is done in Left-of-path mapping then
e Left-of-path mapping pruning = Lexicomin Support pruning

e More variables set to 0 by Left-of-path mapping than with
Lexicomin Support

e Much slower Left-of-path mapping checking than Lexicomin
Support checking for deep trees

BSS implementation of [Brown, Finkelstein, Purdom 1988, 1995]
e Fast comput. of generators of stabilizer of (F{ U, F§) in G

e Does not always do full O-setting

IP implementation of [M 2007]
e Fast computation of one orbit of stabilizer of Ff U in G

e Does not always do full 0-setting
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Recompute symmetry group at each node; use orbit information
for branching
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Approach VI: Orbital Branching

Recompute symmetry group at each node; use orbit information
for branching
Orbital Branching:

e Recompute symmetry group for free variables

e Compute partition of free variables into orbits

e Select one orbit O and one x; € O;

e Branch:
either all vars in O fixed to 0 or xi=1

[Ostrowski, Linderoth, Rossi, Smriglio 2007]
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Approach VI: Constraint Orbital Branching

[Ostrowski, Linderoth, Rossi, Smriglio, 2008, 2009, 2011]

a’x > b : valid constraint of the LP, a € Z*,b € Z
Then

m(a)Tx > b: also valid constraint of the LP for all 7 € G

Disjunction:

a’x<b or m(a)'x>b+1forallme G

e Particularly useful for instances built from smaller instances

e Can combine knowledge of all nonisomorphic solutions of
smaller instances

e Gives first proof of optimality for STS135 and STS243



Approach VII: Dominance Relations

e Use MIP to detect assignment of variables that are dominated

e Limited efficiency for highly symmetric problems

[Fischetti, Toth, 1988]

[Fischetti, Salvagnin, 2007]



ISOP-1.2

Code implementing:

e Group representation: Schreier-Sims table, set stabilizer
computation
e Branch-and-Bound with isomorphism pruning
e Based on code Bcp of COIN-OR
e Use CPLEX as LP solver
e Input: problem description (sparse LP), group description
(Schreier-Sims table), upper bound UB
e output: Either one optimal solution with value < UB or list of
all nonisomorphic solutions with value < UB
e more than 50 options for branching selection, bound
propagation, etc.
e More than 100 instances of highly symmetric problems (BIBD,
COD, OA, STS)
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ISOP-1.2 (cont.)

Available from:
http://wpweb2.tepper.cmu.edu/fmargot/source_code.html

Automatic generation of 11 codes using various options.

Important options active in precompiled codes:
e NO_SOL_X0_0: All variables are in a single orbit of G
e ALL_SOL: Qutput all nonisomoprhic solutions

Main Options:
e FREE BRANCHING: Selected branching variable freely

e FREE_STAB_GRP: Compute a Schreier-Sims representation of
the stabilizer



ISOP-1.2 (cont.)

If FREE_BRANCHING
e |f FREE_BRANCH_GRP

FB_SCORE_KEEP_SYM: ks keep largest group order
FB_SCORE_KEEP_SYM_NONZ: keep largest group order when not
fixing to 0

FB_SCORE_BREAK_SYM: bs keep smallest group order
FB_SCORE_BREAK_SYM _NONZ: keep smallest group order when
not fixing to 0

FB_SCORE_MAX_PROD: mp keep max product of current orbit and
largest orbit in sons



ISOP-1.2 (cont.)

¢ Otherwise (not FREE_.BRANCH_GRP)

orig: order vars by given indexing

orig+fix: order vars by given indexing, do strong fixing
FB_SCORE_LARGEST_ORB: 1o order vars according to orbit sizes
FB_SCORE_LARGEST_LP_ORB: 1plo order vars according to
largest sum of LP values in orbit

FB_SCORE_STRONG: str5 use strong branching/fixing at depth
multiple of a constant



CPU Time

code avg. std dev  min max TL
orig 26.55 63.54 0.00 360.10 0
orig+fix | 122.91 635.05 0.00 5,757.60 0
strb 26.56 67.94 0.00 459.20 0
ks 328.06 1,360.54 0.00 10,004.60 0
bs 924.33 3,733.70 0.00 27,500.00 7
lo 275.87 1,391.94 0.00 12,859.10 2
lplo 409.36 2,522.26 0.00 23,938.40 6
mp 611.11 2,384.66 0.00 18,880.20 5

e 94 “easy” instances

e enumerate all nonisomorphic solutions
e TL: not finished in 10h
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Nodes

code avg. std dev min max TL
orig 27,759.84 123,184.01 11.00 944,517.00 0
orig+fix | 6,277.61  21,386.44 11.00 160,363.00 0
strb 28,838.34 126,534.00 11.00 972,642.00 0
ks 29,332,657 127,451.56 11.00 1,150,059.00 0
bs 34,816.05 122,522.98 11.00 727,348.00 7
lo 99,046.55 396,735.30 11.00 294,3748.00 2
lplo 52,473.76 189,442.26 13.00 1,101,518.00 6
mp 28,123.15 131,512.86 13.00 1,180,263.00 5
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Nodes

code avg. std dev min max TL
orig 27,759.84 123,184.01 11.00 944,517.00 0
orig+fix | 6,277.61  21,386.44 11.00 160,363.00 0
strb 28,838.34 126,534.00 11.00 972,642.00 0
ks 29,332,567 127,451.56 11.00 1,150,059.00 0
bs 34,816.05 122,522.98 11.00 727,348.00 7
lo 99,046.55 396,735.30 11.00 294,3748.00 2
lplo 52,473.76 189,442.26 13.00 1,101,518.00 6
mp 28,123.15 131,512.86 13.00 1,180,263.00 5

e 94 “easy” instances

e enumerate all nonisomorphic solutions
e TL: not finished in 10h



Group Operations

[Butler, Cannon, Lam, Kreher, Stinson, Leon]

Go=6G
G = {g € Go | g(l) = 1} U = Ol“b(l, Go)
Gy, = {g € Gy ‘ g(2) = 2} U, = 01‘b(2, Gl)

Gn,={g € Gp_1 | g(n) = n} U, = orb(n, Go—1)



Group Operations

[Butler, Cannon, Lam, Kreher, Stinson, Leon]

Go=6G
G = {g € Go | g(l) = 1} U = Ol“b(l, Go)
Gy, = {g € Gy ‘ g(2) = 2} U, = 01‘b(2, Gl)

Gn,={g € Gp_1 | g(n) = n} U, = orb(n, Go—1)

Schreier-Sims Table:
T : n x n table of permutations

Ty #0 < 3ge Gy with g(i)=



Schreier-Sims Table Example

Go = {/, Roo, Rig0, Ra70, H, V', D, MD}

Glz{/,D} U1:{17377>9}
G = {/} Up = {2,4}
G ={l} Ui ={i} forall i >3

© 0~ G BWN

A- ad H
= ) 0
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Schreier-Sims Table Properties

e First row is orb(1, G)

cegeceGeg=g1-8"... 8 with gi € row |
(unique, strong generators)
o |Gl =|U]-|Ua|-...-|Us

e Construction Algorithm from generators (O(n*) per generator)

e (3 : permutation, Go = G, G; = {g € Gj_1 | g(B[i]) = B[]}
Algorithms for changing the base exists (O(n°))



Schreier-Sims Table with Base
7 : 9

S
(o))

B =1[1,5,7,2,9,8,3,6,4] P AR

1 / v Ro70 Riso
2 !

3 !

4 [

5 !

6 !

7 D []

8

9




Re-usable code: Binary variables only

clean orbit_in xstab( int g deg,
mygroup g,

int
int
int
int

*cv_orb,
*list_orb,
*card_list_orb,
base_ind)

Compute orbit of g—base[base_ind] in stabilizer of
g—base[0..base_ind-1] in g

returns 1 if no var in the orbit is set to 0 and base_ind can be
fixed to 1

returns O otherwise



Re-usable code: General integer variables

clean korbit_in_xstab( int g_deg,

mygroup g,

int *cv_orb,

int *list_orb,

int *card_list_orb,

int base_ind,

int *max_val, /* max val still allowed for each var */

int **max_val_date, /* entry [w, j] # variables set to > 0
when value w was excluded for Xx;*/

int *glob_stop,

int k_upbnd, /* Upper bound for integer variables */

int **part_mat_orb) /* if not NULL, store all orbits */

e Compute orbit of g—base[base_ind] in stabilizer of
g—base[0..base_ind-1] in g

e returns 1 if no var in the orbit is set to 0 and base_ind can be fixed
to max_val[base_ind]

e returns 0 otherwise
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B=1ur s Fror o]

F: free Fs

g € stab(F{, G) = g = gspu] - 8pp2) -+~ 8p[IFg|) - &7~ h
with
(Bl]) inrow B[i] of T fori=1,...,|F|
(f)inrow f of T
(fy="F
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Computation of orb(f,stab(F{, G))

IBZ Yoty f’ Y AR A
N—— ‘._/]

F: free Fs

g € stab(F{, G) = g = gspu] - 8pp2) -+~ 8p[IFg|) - &7~ h
with
Bli]) in row B[i] of T fori=1,...,|F|
f)inrow f of T
)
[

ﬁf])Zﬁ[]for/—l - |FT|
Use Backtracking to explore all
P = 8b[1] " 8p[2] " - - - " BBIIF7I] - &F

If p(F{) = F{, add p(f) to the orbit of f
Complexity: O(n - |F?|!)



Computation of Stabilizer

Theorem [Luks], [Hoffman]
Computing stab(S, G) is as hard as deciding if two graphs are
isomorphic

Algorithm: Backtracking similar to previous one.

Complexity: O(n-|F{|!)



