# Social Data Exploration

# Sihem Amer-Yahia DR CNRS @ LIG

Sihem.Amer-Yahia@imag.fr

Big Data & Optimization Workshop 12ème Séminaire POC LIP6 Dec 5<sup>th</sup>, 2014

### Collaborative data model



### MovieLens instances

| ID | Title                | Genre | Director            | Name | Gender | Location | Rating |
|----|----------------------|-------|---------------------|------|--------|----------|--------|
| 1  | Titanic              | Drama | James<br>Cameron    | Amy  | Female | New York | 8.5    |
| 2  | Schindler'<br>s List | Drama | Steven<br>Speilberg | John | Male   | New York | 7.0    |

| ID | Title               | Genre | Director            | Name | Gender | Location | Tags              |
|----|---------------------|-------|---------------------|------|--------|----------|-------------------|
| 1  | Titanic             | Drama | James<br>Cameron    | Amy  | Female | New York | love,<br>Oscar    |
| 2  | Schindler's<br>List | Drama | Steven<br>Speilberg | John | Male   | New York | history,<br>Oscar |

#### More on MovieLens datasets

#### http://grouplens.org/datasets/movielens/

#### MovieLens 100k

100,000 ratings from 1000 users on 1700 movies.

- README.txt
- ml-100k.zip
- Index of unzipped files

#### MovieLens 1M

1 million ratings from 6000 users on 4000 movies.

- README.txt
- ml-1m.zip

#### MovieLens 10M

10 million ratings and 100,000 tag applications applied to 10,000 movies by 72,000 users.

- README.html
- ml-10m.zip

# Social Data Exploration

- Rating exploration
  - Meaningful Interpretations of Collaborative Ratings
- Tag exploration
  - Who Tags What? An Analysis Framework
- Perspectives

#### Meaningful Interpretations of Collaborative Ratings



#### Data Model

- Collaborative rating site: Set of Items, Set of Users, Ratings
  - Rating tuple: <item attributes, user attributes, rating>

| ID | Title               | Genre | Director            | Name | Gender | Location | Rating |
|----|---------------------|-------|---------------------|------|--------|----------|--------|
| 1  | Titanic             | Drama | James<br>Cameron    | Amy  | Female | New York | 8.5    |
| 2  | Schindler's<br>List | Drama | Steven<br>Speilberg | John | Male   | New York | 7.0    |

- Group: Set of ratings describable by a set of attribute values
- Notion of group based on data cube
  - OLAP literature for mining multidimensional data

#### Exploration Space



Each node/cuboid in lattice is a group

A = Gender: Male

B = Age: Young

C = Location: CA

D = Occupation: Student

#### **Task**

Quickly identify
"good" groups in the
lattice that help analysts
understand ratings
effectively

Partial Rating Lattice for a Movie

(M:Male, Y:Young, CA:California, S:Student)

### DEM: Meaningful Description Mining

- For an input item covering  $R_I$  ratings, return set C of groups, such that:  $\frac{\operatorname{description error}}{\operatorname{error}(C, R_I)}$  is minimized, subject to:
  - |C| ≤ k;
  - coverage  $coverage(C, R_I) \ge \alpha$

#### **Description Error**

Measures how well a group average rating approximates each individual rating belonging to it

$$\begin{split} \mathtt{error}(C,R_I) &= \Sigma_{r \in R_I}(E_r) \\ &= \Sigma_{r \in R_I} \operatorname{avg}(|r.s - \operatorname{avg}_{c \in C \land r \lessdot c}(c)|) \end{split}$$

Coverage: measures percentage of ratings covered by returned groups

DEM is NP-Hard: proof details in [1]

[1] MRI: Meaningful Interpretations of Collaborative Ratings, S. Amer-Yahia, Mahashweta Das, Gautam Das and Cong Yu. In the Proceedings of the International Conference on Very Large Databases (PVLDB), 2011.

### DEM: Meaningful Description Mining

 Identify groups of reviewers who consistently share similar ratings on items



### DEM: Meaningful Description Mining

Theorem 1. The decision version of the problem of meaningful description mining (DEM) is NP-Complete even for boolean databases, where each attribute  $ia_j$  in  $\mathcal{I}_A$  and each attribute  $ua_j$  in  $\mathcal{U}_A$  takes either 0 or 1.

To verify NP-completeness, we reduce the Exact 3-Set Cover problem (EC3) to the decision version of our problem. EC3 is the problem of finding an exact cover for a finite set U, where each of the subsets available for use contain exactly 3 elements. The EC3 problem is proved to be NP-Complete by a reduction from the Three Dimensional Matching problem in computational complexity theory

#### DEM Algorithms

#### Exact Algorithm (E-DEM)

 Brute-force enumerating all possible combinations of cuboids in lattice to return the exact (i.e., optimal) set as rating descriptions

#### Random Restart Hill Climbing Algorithm

- Often fails to satisfy Coverage constraint; Large number of restarts required
- Need an algorithm that optimizes both Coverage and Description Error constraints simultaneously

Randomized Hill Exploration Algorithm (RHE-DEM)















- For an input item covering R<sub>I</sub>+ R<sub>I</sub> ratings, return set C of cuboids, such that:
  - difference balance balance  $(C, R_I^+, R_I^-)$  is minimized, subject to:
    - $|C| \le k$ ;
    - coverage $(C, R_I^+) \ge \alpha \cap \text{coverage}(C, R_I^-) \ge \alpha$

#### **Difference Balance**

Measures whether the positive and negative ratings are "mingled together" (high balance) or "separated apart" (low balance)

$$\begin{aligned} & \mathtt{balance}(C, R_I^+, R_I^-) &= m \times \Sigma_{r_1 \in R_I^+, r_2 \in R_I^-} I_{(r_1, r_2)} \\ & \mathtt{where:} \ m = \frac{1}{|R_I^+| \times |R_I^-|}, \\ & \mathtt{indicator} \ I_{(r_1, r_2)} = 1 \\ & \mathtt{iff} \ \ \mathtt{at} \ \ \mathtt{least \ one \ cuboid \ in} \ \ C \ \mathtt{covers} \ r_1, r_2 \end{aligned}$$

#### Coverage

Measures the percentage of +/- ratings covered by returned groups

- DIM is NP-Hard: proof details in [1]
- [1] S. Amer-Yahia, Mahashweta Das, Gautam Das, Cong Yu: MRI: Meaningful Interpretations of Collaborative Ratings,. In PVLDB 2011.

 Identify groups of reviewers who consistently disagree on item ratings





#### Black Swan (2010)

R 108 min - Drama | Mystery | Thriller - 17 December 2010 (USA)



Ratings: **8.3**/10 from **156,148** users Metascore: **79**/100 Reviews: 892 user | 523 critic | 42 from Metacritic.com

Young female reviewers love this movie, average rating: 9.3

Reviewers from New York love this movie, average rating: 8.7

Young male student reviewers hate this movie, average rating: 6.1

Theorem 2. The decision version of the problem of meaningful difference mining (DIM) is NP-Complete even for boolean databases.

NP-Completeness: reduction of the Exact 3-Set Cover problem (EC3).

#### DIM Algorithms

- Exact Algorithm (E-DIM)
- Randomized Hill Exploration Algorithm (RHE-DIM)
  - Unlike DEM "error", DIM "balance" computation is expensive
    - Quadratic computation scanning all possible positive and negative ratings for each set of cuboids
  - Introduce the concept of fundamental regions to aid faster balance computation
    - Each rating tuple is a k-bit vector where a bit is 1 if the tuple is covered by a group
    - A fundamental region is the set of rating tuples that share the same signature
    - Partition space of all ratings and aggregate rating tuples in each region

#### DIM Algorithms: Fundamental Region



| F              | C <sub>1</sub> C <sub>2</sub> | Count<br>F(R <sup>+</sup> <sub>i</sub> ),F(R <sup>-</sup> <sub>i</sub> ) |
|----------------|-------------------------------|--------------------------------------------------------------------------|
| F <sub>1</sub> | 10                            | 40, 29                                                                   |
| F <sub>2</sub> | 11                            | 4, 2                                                                     |
| F <sub>3</sub> | 01                            | 2, 2                                                                     |

 $C_2 = \{California, Student\}$ 

set of k=2 cuboids having 75 ratings (46+, 33-)

$$\begin{aligned} \mathtt{balance}(C, R_I^+, R_I^-) &= m \times (\sum\nolimits_i \mathtt{balance}(C, R_{I\ i}^+, R_{I\ i}^-) + \\ &\sum\nolimits_{ij} \mathtt{balance}(C, R_{I\ ij}^+, R_{I\ ij}^-)) \end{aligned} \tag{1}$$

balance = 
$$\frac{1}{46 \times 33} \times (40 \times 29 + 4 \times 2 + 2 \times 2 + (40 \times 2 + 4 \times 29) + (4 \times 2 + 2 \times 2))$$

### Summary of Rating Exploration

- DEM and DIM are hard problems
  - Leverage the lattice structure to improve coverage
  - Exploit properties of rating function for faster error computation
- Explore other rating aggregation functions
- Explore other constraints: e.g., group size
- Explore other optimization dimensions: group diversity

# Social Data Exploration

- Rating exploration
  - MRI: Meaningful Interpretations of Collaborative Ratings
- Tag exploration
  - Who Tags What? An Analysis Framework
- Perspectives

### Collaborative Tagging Site (Amazon)





| by <u>Nikon</u> ★★★☆☆ ▼ (450 customer reviews)   Like (94)   |                                                                                                   |                               |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------|--|--|--|--|--|--|--|--|--|
| Price: <b>\$79.99</b>                                        |                                                                                                   |                               |  |  |  |  |  |  |  |  |  |
| Tags Customers Associa<br>Click on a tag to find related ito | ate with This Product (whatems, discussions, and people.                                          | at's this?)                   |  |  |  |  |  |  |  |  |  |
| Check the boxes next to the                                  | Check the boxes next to the tags you consider relevant or enter your own tags in the field below. |                               |  |  |  |  |  |  |  |  |  |
| 🔲 <u>nikon coolpix l22</u> (64)                              | ■ gift (3)                                                                                        | □ <u>lcd</u> (1)              |  |  |  |  |  |  |  |  |  |
| 🔲 <u>nikon coolpix</u> (47)                                  | lightweight (2)                                                                                   | many photo settings (1)       |  |  |  |  |  |  |  |  |  |
| 🔲 <u>digital camera</u> (33)                                 | 12mp (1)                                                                                          | poor customer service (1)     |  |  |  |  |  |  |  |  |  |
| <u>nikon (</u> 32)                                           | average (1)                                                                                       | camcorder (1)                 |  |  |  |  |  |  |  |  |  |
| point and shoot (23)                                         | avi video (1)                                                                                     | teen (1)                      |  |  |  |  |  |  |  |  |  |
| cheap (11)                                                   | bad nikon (1)                                                                                     | underwater digital camera (1) |  |  |  |  |  |  |  |  |  |
| five star (11)                                               | cool price for an excellent                                                                       | unreliable (1)                |  |  |  |  |  |  |  |  |  |
| aa batteries (10)                                            | product (1)                                                                                       | user-friendly (1)             |  |  |  |  |  |  |  |  |  |
| easy carry camera (4)                                        | crappy camera (1)                                                                                 | <u>zoom</u> (1)               |  |  |  |  |  |  |  |  |  |
| affordable (3)                                               | great value (1)                                                                                   |                               |  |  |  |  |  |  |  |  |  |

### Collaborative Tagging Site (LastFM)



### Exploring Collaborative Tagging in MovieLens



Tag Signature for all Users





Tag Signature for all CA Users

### **Exploring Collaborative Tagging**

- Exploration considers three dimensions
  - □ User, Item, Tag
- and two alternative measures
  - Similarity, Diversity

#### Data Model

□ Tagging action tuple: <user attributes, item attributes, tags>

| ID | Title               | Genre | Director            | Name | Gender | Location | Tags              |
|----|---------------------|-------|---------------------|------|--------|----------|-------------------|
| 1  | Titanic             | Drama | James<br>Cameron    | Amy  | Female | New York | love,<br>Oscar    |
| 2  | Schindler's<br>List | Drama | Steven<br>Speilberg | John | Male   | New York | history,<br>Oscar |

#### Tagging Behavior Dual Mining Problem (TagDM)

DEFINITION 4. Tagging Behavior Dual Mining (TagDM) Problem. Given a triple  $\langle G, C, O \rangle$  in the TagDM framework where G is the input set of tagging actions and C, O are the sets of constraints and optimization criteria respectively, the Tagging Behavior Dual Mining problem is to identify a set of tagging action groups,  $G^{opt} = \{g_1, g_2, \ldots\}$  for  $b \in \{\text{users}, \text{items}, \text{tags}\}$  and  $m \in \{\text{similarity}, \text{diversity}\}$ , such that:

- $\forall g_x \in G^{opt}$ ,  $g_x$  is user- and/or item-describable;
- $k_{lo} \leq |G^{opt}| \leq k_{hi}$ ;
- $Support_G^{G^{opt}} \ge p$ ;
- $\forall c_i \in C, c_i.F(G^{opt}, b, m) \geq threshold;$
- $\Sigma_{o_j \in O}, o_j.F(G^{opt}, b, m)$  is maximized.

#### Tagging Behavior Dual mining Problem Instance

PROBLEM 1. Identify a set of tagging action groups,  $G^{opt} = \{g_1, g_2, \ldots\}$ , such that:

- $\forall g_x \in G^{opt}$ ,  $g_x$  is user- and/or item-describable;
- $1 \leq |G^{opt}| \leq k$ ;
- $Support_G^{G^{opt}} \ge p$ ;
- $F_1(G^{opt}, \text{users}, \text{similarity}) \geq q;$
- $F_2(G^{opt}, \text{items}, \text{diversity}) \geq r$ ;
- $F_3(G^{opt}, tags, similarity)$  is maximized.

#### Problem: Tagging Behavior Dual Mining (TagDM)

 Identify similar groups of reviewers who share similar tagging behavior for diverse set of items



### Tagging Behavior Dual Mining Instance

PROBLEM 4. Identify a set of tagging action groups,  $G^{opt} = \{g_1, g_2, \ldots\}$ , such that:

- $\forall g_x \in G^{opt}$ ,  $g_x$  is user- and/or item-describable;
- $1 \leq |G^{opt}| \leq k$ ;
- $Support_G^{G^{opt}} \ge p;$
- $F_1(G^{opt}, \mathtt{users}, \mathtt{diversity}) \geq q;$
- $F_2(G^{opt}, \text{items}, \text{similarity}) \geq r$ ;
- $F_3(G^{opt}, tags, diversity)$  is maximized.

### Tagging Behavior Dual Mining Instance

 Identify diverse groups of reviewers who share diverse tagging behavior for similar items



# TagDM is NP-Hard (proof details in [2])

Theorem 1. The decision version of the TagDM problem is NP-Complete.

PROOF. The membership of decision version of TagDM problem in NP is obvious. To verify NP-Completeness, we reduce Complete Bipartite Subgraph problem (CBS) to our problem and argue that a solution to CBS exists, if and only if, a solution our instance of TagDM exists. First, we show that the problem CBS is NP-Complete.

Lemma 1. Complete bipartite subgraph problem (CBS) is NP-Complete.

[2] Mahashweta Das, Saravanan Thirumuruganathan, Sihem AmerYahia, Gautam Das, Cong Yu: Who Tags What? An Analysis Framework, In PVLDB 2012.

### Two algorithms

- LSH (Locality Sensitive Hashing) based algorithm to handle TagDM problem instances optimizing similarity
- FDP (Facility Dispersion Problem) based algorithm handles TagDM problem instances optimizing diversity

- Both rely on computing tag signatures for groups
  - Latent Dirichlet Allocation to aggregate tags
  - Comparison between signatures based on cosine

### Algorithm: LSH Based

- LSH (Locality Sensitive Hashing) based algorithm handles TagDM problem instances optimizing similarity
- LSH is popular to solve nearest neighbor search problems in high dimensions
- LSH hashes similar input items into same bucket with high probability
  - We hash group tag signature vectors into buckets, and then rank the buckets based on the strength of their (tag) similarity

#### SM-LSH

- Returns a set of groups, ≤ k having maximum similarity in tagging behavior, measured by comparing distances between group tag signature vectors
- **SM-LSH-Fi:** Handles hard constraints by Filtering result of SM-LSH
- **SM-LSH-Fo:** Handles hard constraints by Folding them to SM-LSH

### Algorithm: LSH Based

- Hashing function for SM-LSH
  - We use LSH scheme in [3] that employs a family of hashing functions based on cosine similarity

$$cos(\theta(T_{rep}(g_x), T_{rep}(g_y))) = \frac{|T_{rep}(g_x).T_{rep}(g_y)|}{\sqrt{|T_{rep}(g_x)|.|T_{rep}(g_x)|}}$$

where Trep(g) is the tag signature vector for group g

□ Probability of finding the optimal result set by SM-LSH is bounded by: (proof details in paper)

$$P(G^{opt}) \ge 1 - \sum_{x,y \in [1,k]} \left[1 - \left(\frac{\theta(T_{rep}(g_x), T_{rep}(g_y))}{\pi}\right)^{d'}\right]$$

where d' is the dimensionality of hash signatures (buckets)

■ We employ iterative relaxation to tune d' in each iteration (Monte Carlo randomized algorithm) so that post-processing of hash tables yields non-null result set

[3]: M. Charikar. Similarity estimation techniques from rounding algorithms. In STOC, 2002

### Algorithm: LSH Based

- **SM-LSH-Fi**: Dealing with constraints by Filtering
  - □ For each hash table, check for satisfiability of hard constraints in each bucket, and then rank filtered buckets on tagging similarity
    - Often yields null results
- SM-LSH-Fo: Dealing with constraints by Folding
  - Fold hard constraints maximizing similarity as soft constraints into SM-LSH
  - Hash similar input tagging action groups (similar with respect to group tag signature vector and user and/or item attributes) into the same bucket with high probability

However, it is non-obvious how LSH hash functions may be inversed to account for dissimilarity while preserving LSH properties

### Algorithm: FDP Based

- FDP (Facility Dispersion Problem) based algorithm handles TagDM problem instances optimizing diversity
- FDP problem locates facilities on a network in order to maximize distance between facilities
  - We find tagging groups maximizing diversity (distance) betweeen tag signature vectors
- We intialize a pair of facilities with maximum weight, and then add nodes with maximum distance to those selected, in each subsequent iteration [4]

[4]: S. S. Ravi, D. J. Rosenkrantz, and G. K. Tayi. Facility dispersion problems: Heuristics and special cases. In WADS, 2002

### Algorithm: FDP Based

#### DV-FDP

- Returns a set of groups, ≤ k having maximum diversity in tagging behavior, measured by maximizing average pairwise distance between group tag signature vectors
- If  $G^{opt}$  and  $G^{app}$  represent the set of k (  $k \ge 2$ ) tagging action groups returned by optimal and our approximate DV-FDP algorithm, and tag signature vectors satisfy triangular inequality: (Proof details in paper)

$$G^{opt}/G^{app} \le 4$$

#### DV-FDP-Fi

Handles hard constraints by Filtering result of DV-FDP

#### DV-FDP-Fo

Handles hard constraints by Folding them to DV-FDP

### Some anecdotal evidence on analysts' prefs



Users prefer TagDM Problems 2 (find similar user sub-populations who agree most on their tagging behavior for a **diverse** set of items), 3 (find **diverse** user sub-populations who agree most on their tagging behavior for a similar set of items) and 6 (find similar user sub-populations who **disagree** most on their tagging behavior for a similar set of items), having diversity as the measure for exactly one of the tagging component: item, user and tag respectively.

### Summary and Perspectives

- The notion of group is central to social data exploration
  - Because it is meaningful to analysts: groups are describable
  - Because group relationships can be explored for efficient space exploration

## Perspective 1

#### Rating exploration

- A single dimension was optimized at a time (error or balance)
- We could formulate a problem that seeks k most uniform (minimize error) and most diverse groups (least overlapping)

### Perspective 2

■ There is a total of 112 concrete problem instances that our TagDM framework captures!

| ID | User       | Item       | Tag        | C                 | 0            |
|----|------------|------------|------------|-------------------|--------------|
| 1  | similarity | similarity | similarity | U,I               | T            |
| 2  | similarity | diversity  | similarity | $_{\mathrm{U,I}}$ | $\mathbf{T}$ |
| 3  | diversity  | similarity | similarity | $_{\mathrm{U,I}}$ | $\mathbf{T}$ |
| 4  | diversity  | similarity | diversity  | $_{\mathrm{U,I}}$ | $\mathbf{T}$ |
| 5  | similarity | diversity  | diversity  | $_{\mathrm{U,I}}$ | $\mathbf{T}$ |
| 6  | similarity | similarity | diversity  | $_{\mathrm{U,I}}$ | $\mathbf{T}$ |

Concrete Problem Instantiations. Column C lists the constraint dimensions Column O lists the optimization dimensions.

And those optimize the tagging dimensions only

# Perspective 3

Social data exploration over time