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MovieLens instances 

 

 
 

 

ID Title Genre Director Name Gender Location Rating 

1 Titanic Drama James 
Cameron 

Amy Female New York 8.5 

2 Schindler’
s List 

Drama Steven 
Speilberg 

John Male New York 7.0 

ID Title Genre Director Name Gender Location Tags 

1 Titanic Drama James 
Cameron 

Amy Female New York love, 
Oscar 

2 Schindler’s 
List 

Drama Steven 
Speilberg 

John Male New York history, 
Oscar 



4 

More on MovieLens datasets 
http://grouplens.org/datasets/movielens/ 
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n  Rating exploration 
q  Meaningful Interpretations of Collaborative Ratings 

n  Tag exploration 
q  Who Tags What? An Analysis Framework  

n  Perspectives 

Social Data Exploration 
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Meaningful Interpretations of Collaborative Ratings 
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Data Model 

n  Collaborative rating site: Set of Items, Set of Users, Ratings 
q  Rating tuple:               <item attributes, user attributes, rating> 

 
 

n  Group: Set of ratings describable by a set of attribute values 

n  Notion of group based on data cube  
q  OLAP literature for mining multidimensional data 

ID Title Genre Director Name Gender Location Rating 

1 Titanic Drama James 
Cameron 

Amy Female New York 8.5 

2 Schindler’s 
List 

Drama Steven 
Speilberg 

John Male New York 7.0 
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Exploration Space 

Partial Rating Lattice for a Movie 

(M:Male, Y:Young, CA:California, S:Student) 

Each node/cuboid  
in lattice is a group 

A = Gender: Male 
B =  Age: Young 
C = Location: CA 
D = Occupation: Student 

Task 
Quickly identify 

“good” groups in the  
lattice that help analysts 

understand ratings  
effectively 
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DEM: Meaningful Description Mining 

n  For an input item covering RI ratings, return set C of groups, such that: 
description error                          is minimized, subject to: 

n  |C| ≤ k; 
n  coverage                                ≥ α	



  
     Description Error 

 Measures how well a group average rating approximates each 
individual rating belonging to it 

 
 
      
   Coverage: measures percentage of ratings covered by returned groups 
  
n   DEM is NP-Hard: proof details in [1] 
[1] MRI: Meaningful Interpretations of Collaborative Ratings, S. Amer-Yahia, Mahashweta Das, 
Gautam Das and Cong Yu. In the Proceedings of the International Conference on Very Large 
Databases (PVLDB), 2011. 
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DEM: Meaningful Description Mining  

q  Identify groups of reviewers who consistently share similar 
ratings on items 
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DEM: Meaningful Description Mining 

To verify NP-completeness, we reduce the Exact 3-Set Cover  
problem (EC3) to the decision version of our problem. EC3  
is the problem of finding an exact cover for a finite set U,  
where each of the subsets available for use contain exactly  
3 elements. The EC3 problem is proved to be NP-Complete  
by a reduction from the Three Dimensional Matching problem  
in computational complexity theory 
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DEM Algorithms 

n  Exact Algorithm (E-DEM) 
q  Brute-force enumerating all possible combinations of cuboids in 

lattice to return the exact (i.e., optimal) set as rating descriptions 

n  Random Restart Hill Climbing Algorithm 
q  Often fails to satisfy Coverage constraint; Large number of 

restarts required 
q  Need an algorithm that optimizes both Coverage and Description 

Error constraints simultaneously 
 
 

n  Randomized Hill Exploration Algorithm (RHE-DEM) 
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RHE-DEM Algorithm 

 
C= {Male, Student} 
     {California, Student} 
 

Satisfy Coverage 

Minimize Error 
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RHE-DEM Algorithm 

 
 

Say, C does not satisfy  
Coverage Constraint 

 
 

 
C= {Male, Student} 
     {California, Student} 
 

Satisfy Coverage 

Minimize Error 
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RHE-DEM Algorithm 

 
C= {Male, Student} 
     {California, Student} 
 

Satisfy Coverage 

Minimize Error 

 
C= {Male} 
     {California,Student} 
 

 
C= {Student} 
     {California,Student} 
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RHE-DEM Algorithm 

 
C= {Male} 
     {California, Student} 
  

Say, C satisfies 
Coverage Constraint 

 

Satisfy Coverage 

Minimize Error 
√ 



17 

RHE-DEM Algorithm 

 
C= {Male} 
     {California, Student} 
 

Satisfy Coverage 

Minimize Error 
√ 
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RHE-DEM Algorithm 

 
C= {Male} 
     {California, Student} 
 

Satisfy Coverage 

Minimize Error 
√ 
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RHE-DEM Algorithm 

 
C= {Male} 
     {Student} 
 

Satisfy Coverage 

Minimize Error 
√ 
√ 
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DIM: Meaningful Difference Mining 

n  For an input item covering RI
+ RI

- ratings, return set C of cuboids, such that: 

q  difference balance                                       is minimized, subject to: 
n  |C| ≤ k; 
n                                ≥ α ∩                                 ≥ α   
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DIM: Meaningful Difference Mining 

      
    Difference Balance 

 Measures whether the positive and negative ratings are “mingled 
together" (high balance) or “separated apart" (low balance) 

 
 
      
 
 
     Coverage 

 Measures the percentage of +/- ratings covered by returned groups 
 
 
n  DIM is NP-Hard: proof details in [1] 
[1] S. Amer-Yahia, Mahashweta Das, Gautam Das, Cong Yu: MRI: Meaningful Interpretations of 
Collaborative Ratings,. In PVLDB 2011. 
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DIM: Meaningful Difference Mining 

q  Identify groups of reviewers who consistently disagree on item 
ratings 
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DIM: Meaningful Difference Mining 

NP-Completeness: reduction of the Exact 3-Set Cover problem (EC3). 
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DIM Algorithms 

n  Exact Algorithm (E-DIM) 
 
n  Randomized Hill Exploration Algorithm (RHE-DIM) 

q  Unlike DEM “error”, DIM “balance” computation is expensive  
n  Quadratic computation scanning all possible positive and negative ratings for 

each set of cuboids 

q  Introduce the concept of fundamental regions to aid faster 
balance computation 
n  Each rating tuple is a k-bit vector where a bit is 1 if the tuple is covered by a 

group 
n  A fundamental region is the set of rating tuples that share the same signature 
n  Partition space of all ratings and aggregate rating tuples in each region 
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DIM Algorithms: Fundamental Region 

set of k=2 cuboids having 75 ratings (46+, 33-)  

balance = 

C1 = {Male, Student} 

C2 = {California, Student} 
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Summary of Rating Exploration 

n  DEM and DIM are hard problems 
q  Leverage the lattice structure to improve coverage 
q  Exploit properties of rating function for faster error computation 

n  Explore other rating aggregation functions 
n  Explore other constraints: e.g., group size 
n  Explore other optimization dimensions: group diversity 
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n  Rating exploration 
q  MRI: Meaningful Interpretations of Collaborative Ratings 

n  Tag exploration 
q  Who Tags What? An Analysis Framework 

n  Perspectives 

Social Data Exploration 
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Collaborative Tagging Site (Amazon) 
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Collaborative Tagging Site (LastFM) 
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Exploring Collaborative Tagging in MovieLens  

 

 
  

Tag Signature for all Users
  

Tag Signature for all CA Users 



32 

Exploring Collaborative Tagging 

 
n  Exploration considers three dimensions 

q  User, Item, Tag 
n  and two alternative measures 

q  Similarity, Diversity 
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q  Tagging action tuple:   <user attributes, item attributes, tags> 

 
 

 

ID Title Genre Director Name Gender Location Tags 

1 Titanic Drama James 
Cameron 

Amy Female New York love, 
Oscar 

2 Schindler’s 
List 

Drama Steven 
Speilberg 

John Male New York history, 
Oscar 

Data Model 
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Tagging Behavior Dual Mining Problem (TagDM) 
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Tagging Behavior Dual mining Problem Instance 



Problem: Tagging Behavior Dual Mining (TagDM) 

n  Identify similar groups of reviewers who share similar tagging 
behavior for diverse set of items 

36 

Male Young 

comedy, 
drama, 
friendship 
 

drama, 
friendship 
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Tagging Behavior Dual Mining Instance 



Tagging Behavior Dual Mining Instance 

n  Identify diverse groups of reviewers who share diverse tagging 
behavior for similar items 

38 

Male Teen Female Teen 

gun, special effects violence, gory 



TagDM is NP-Hard 
(proof details in [2]) 
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[2] Mahashweta Das, Saravanan Thirumuruganathan, Sihem AmerYahia, Gautam Das, 
Cong Yu:  Who Tags What? An Analysis Framework, In PVLDB 2012. 



n  LSH (Locality Sensitive Hashing) based algorithm to 
handle TagDM problem instances optimizing similarity 

n  FDP (Facility Dispersion Problem) based algorithm 
handles TagDM problem instances optimizing diversity 

n  Both rely on computing tag signatures for groups 
q  Latent Dirichlet Allocation to aggregate tags 
q  Comparison between signatures based on cosine 

40 

Two algorithms 



n  LSH (Locality Sensitive Hashing) based algorithm handles TagDM 
problem instances optimizing similarity 

n  LSH is popular to solve nearest neighbor search problems in high 
dimensions 

n  LSH hashes similar input items into same bucket with high probability 
q  We hash group tag signature vectors into buckets, and then rank the 

buckets based on the strength of their (tag) similarity  
n  SM-LSH 

q  Returns a set of groups, ≤ k having maximum similarity in tagging 
behavior, measured by comparing distances between group tag 
signature vectors 

n  SM-LSH-Fi:  Handles hard constraints by Filtering result of SM-LSH 
n  SM-LSH-Fo: Handles hard constraints by Folding them to SM-LSH 

41 

Algorithm: LSH Based 



n  Hashing function for SM-LSH 
q  We use LSH scheme in [3] that employs a family of hashing functions 

based on cosine similarity 

      where Trep(g) is the tag signature vector for group g 

q  Probability of finding the optimal result set by SM-LSH is bounded by:  
(proof details in paper) 

 
 where d’ is the dimensionality of hash signatures (buckets) 

q  We employ iterative relaxation to tune d’ in each iteration (Monte Carlo 
randomized algorithm) so that post-processing of hash tables yields non-
null result set 
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[3]: M. Charikar. Similarity estimation techniques from rounding algorithms. In STOC, 2002 

Algorithm: LSH Based 



n  SM-LSH-Fi: Dealing with constraints by Filtering 
q  For each hash table, check for satisfiability of hard constraints in 

each bucket, and then rank filtered buckets on tagging similarity 
n  Often yields null results  

n  SM-LSH-Fo: Dealing with constraints by Folding 
q  Fold  hard constraints maximizing similarity as soft constraints into 

SM-LSH 
q  Hash similar input tagging action groups (similar with respect to 

group tag signature vector and user and/or item attributes) into the 
same bucket with high probability 
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However, it is non-obvious how LSH hash functions may be inversed to account 
for dissimilarity while preserving LSH properties 

Algorithm: LSH Based 



n  FDP (Facility Dispersion Problem) based algorithm handles TagDM 
problem instances optimizing diversity 

n  FDP problem locates facilities on a network in order to maximize 
distance between facilities 
q  We find tagging groups maximizing diversity (distance) betweeen tag 

signature vectors 

n  We intialize a pair of facilities with maximum weight, and then add 
nodes with maximum distance to those selected, in each subsequent 
iteration [4]  
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Algorithm: FDP Based 

[4]: S. S. Ravi, D. J. Rosenkrantz, and G. K. Tayi. Facility dispersion problems: Heuristics and special 
cases. In WADS, 2002 



n  DV-FDP 
q  Returns a set of groups, ≤ k having maximum diversity in tagging 

behavior, measured by maximizing average pairwise distance  between 
group tag signature vectors 

 
q  If Gopt and Gapp represent the set of k ( k ≥ 2) tagging action groups 

returned by optimal and our approximate DV-FDP algorithm, and tag 
signature vectors satisfy triangular inequality: (Proof details in paper) 

n  DV-FDP-Fi 
q  Handles hard constraints by Filtering result of DV-FDP 

n  DV-FDP-Fo 
q  Handles hard constraints by Folding them to DV-FDP 

45 

Algorithm: FDP Based 
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Some anecdotal evidence on analysts’ prefs 

Users prefer TagDM Problems 2 (find similar user sub-populations who agree most 
on their tagging behavior for a diverse set of items), 3 (find diverse user sub-
populations who agree most on their tagging behavior for a similar set of items) and 
6 (find similar user sub-populations who disagree most on their tagging behavior for 
a similar set of items), having diversity as the measure for exactly one of the tagging 
component: item, user and tag respectively. 
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n  The notion of group is central to social data exploration 
q  Because it is meaningful to analysts: groups are describable  
q  Because group relationships can be explored for efficient space 

exploration 
 

Summary and Perspectives 
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n  Rating exploration 
q  A single dimension was optimized at a time (error or balance) 
q  We could formulate a problem that seeks k most uniform 

(minimize error) and most diverse groups (least overlapping) 
 

Perspective 1 



Perspective 2 

n  There is a total of 112 concrete problem instances that our 
TagDM framework captures! 

n  And those optimize the tagging dimensions only 
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n  Social data exploration over time  
 

Perspective 3 


