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Abstract

In the unreliable multi-sourcing Newsvendor problem the decision maker wants to meet
an uncertain demand for a single product by ordering from heterogeneous unreliable sup-
pliers. Each supplier is characterized by a cost and a random yield factor. Because of the
uncertainty in the demand and the yield factors, the profit is itself uncertain. The problem
is to select how much to order from each supplier, so as to maximize the expected profit,
possibly under some additional constraints such as a target service level or a limiting budget
on the procurement cost. We consider a version of this problem in which the probability
distributions of the demand and the yield factors are imperfectly known and described by
their means and covariance matrix only. We formulate the problem as a maximin expected
profit model, where the objective function is the worst-case expected profit over the set of
probability distributions having the given mean and covariance. The optimal orders are so-
lutions of a tractable conic quadratic programming approach. Via the optimality conditions,
we give managerial insight concerning the relative importance of supplier purchase cost and
reliability. The model is extended in order to include constraints on the service level and the
procurement budget.

1 Introduction

1.1 Overview

The multi-sourcing Newsvendor problem with heterogeneous uncertain suppliers is an extension
of the classical Newsboy in which the buyer can split his order among several suppliers. The
suppliers are uncertain and may deliver quantities that do not match the orders. Moreover the
supply cost varies from one supplier to another. In the present study we perform a quantitative
analysis for the maximization of the Newsboy expected profit, when the knowledge on the uncer-
tain parameters is limited to the first and second moments of their distribution. The solution we
propose maximizes the expected profit under the worst distribution in the class of distributions
having the given first and second moments.

The main issue in the above problem is one of mitigating the impact of uncertainty by
proper diversification among several suppliers. Its formulation involves the expectation of the
positive and negative parts of the shortfall, which is the actual demand minus the actual total
delivery. Even when the probability distribution functions of the uncertain parameters—demand
and reliabilities of the suppliers—are known, the computation of these expectations is difficult
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and does not lead to closed form formulas. The maximization of the expected profit is thus a
challenging problem. Quite a few papers in the literature deal with it, but, to our knowledge,
no general quantitative treatment has been proposed so far, especially under some additional
realistic requirements such as probabilistic bounds on the service level or on the procurement
budget, or under the assumption of partial information on the probability distributions. In the
class of problems under consideration, the profit function can be reformulated as the sum of
a linear function of the uncertain parameters (demand and supplier reliabilities) and a term
involving the shortfall, that is the positive part of the difference between the demand D and the
total supply S. In the simplest version, namely the traditional Newsboy problem, the demand
alone is uncertain and the distribution of the difference between demand and supply is inferred
from the distribution of the demand. Simple analysis shows then that the optimal order, which
is the same as the effective supply, can be obtained by matching the inverse distribution of the
demand and a threshold percentile called critical ratio. In the version with uncertain suppliers
the distribution of the difference D − S is a linear combination of several uncertain factors,
the demand and the supplier yields. Except for special distributions, such as the normal, the
distribution function ofD−S cannot be given in closed form and the computation of the expected
shortfall must be performed through complex numerical integration. The maximization of the
expected profit is thus challenging and no general solution is proposed.

[Scarf (1958)] proposed an alternative approach to the simplest Newsvendor problem in the
context of inventory theory. Assuming that the information on the demand is limited to the
knowledge of the mean and the variance, but that the distribution function of the demand itself
is unknown, he considered the alternative problem of maximizing the expected profit against the
worst demand distribution among all distributions having the given mean and variance. Doing
so, he could exhibit a closed form expression for the solution. In view of more recent contributions
in robust optimization, Scarf’s maximin solution can be said to be distributionally robust with
respect to the class of distributions having the assigned mean and variance. The argument
can be summarized as follows. The profit function of the Newsvendor can reformulated as the
sum of linear function of the demand D and the order q minus a constant times the shortage
max{D−q, 0}. Scarf found an upper bound for the expected shortfall E[max{D−q, 0}] in terms
of the mean and the variance. He showed that this bound is attained by a two-point distribution
belonging to the class under consideration. A simple presentation of Scarf’s ideas appeared years
later, together with some extensions, in [Gallego and Moon (1993)].

The extension of Scarf’s result to multiple uncertain suppliers is not immediate. In that
configuration the supply is not anymore the deterministic total order

∑
qi, but a scalar equal

to linear combination of the uncertain yields. The mean and variance of D − S, where S is the
effective (random) supply, can still be computed (for given orders qi) and Scarf’s bound on the
expected shortfall is valid. Because the mean and variance of a linear combination of random
variables is easily computed from the means and covariance of the uncertain factor, the bound is
a simple function of the first and second moments. Moreover, the bound is tight for a two-point
distribution of the linear combination. It is not obvious that this distribution can be generated
by appropriate distributions on the demand and the reliabilities, but a recent theoretical contri-
bution, [Popescu (2007)], provide a positive answer. This result makes it possible to extend the
distributionally robust approach of Scarf to our problem of interest. It follows that the original
maximization problem can be replaced by the maximization of a lower bound of the expected
profit. The solution is distributionally robust because the bound is attained by a permissible
distribution. The optimization problem turns out to be a simple conic quadratic problem. This is
the main contribution of our paper. As shown in [Chen et al. (2011)], the same approach can be
applied to the computation of the conditional value at risk (CVaR), which is defined as the mean
of the tail distribution exceeding VaR, which in turn is the percentile value of the distribution.
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By the same token as for the expected profit, one can provide a tight bound for the CVaR in
terms of the mean and covariance of the random factors. When applied to the quantity D − S,
which is used to characterize the service quality, the CVaR value gives the expected service. In
the present paper we show how this property can be used to handle constraints on the service
level or on the procurement budget.

To conclude this overview, let us summarize the main merits of a distributionally robust
approach to the Newsvendor with multiple unreliable suppliers. Firstly, it enables the formula-
tion of the optimization problem as a conic quadratic problem which is easily solvable by widely
available tools. the analytic formulation of the objective makes it possible to perform sensitivity
analysis at the optimum. In our experiments we use [cvx (2012)] in the matlab environment.
Secondly, it makes it possible to handle probabilistic constraints of particular interest for the
problem. Lastly, but not the least, it deals with the very realistic feature of most practical prob-
lems in this area, the one of an incomplete knowledge on the probability distribution functions
of the demand and the supplier yields.

1.2 Literature Review

The practical importance of unreliable suppliers in production and inventory systems is attested
by an abundant literature. A survey of publications prior to 1995 on the problem of inven-
tory systems with single supplier having random yields can be found in [Yano and Lee (1995)].
The quantitative analyses of the problem turn out to be much more involved than with classi-
cal Newsvendor problem. Under general assumptions, no closed form expression can be given
to the solution (see for example [Bollapragada and Morton (1999)]). However, several papers
have developed numerical solution methods for such problems, often under specific assump-
tions, and have shown potential benefits of dual, or multiple sourcing in the presence of supply
uncertainty. [Rekik et al. (2007)] provide a comprehensive study of the problem with a single
unreliable supplier. They develop a methodology to compute the optimal order policy and the
optimal expected cost and apply it for two distributions of the yield: uniform and Gaussian.
[Agrawal and Nahmias (1997)] gave optimality conditions for the order sizes in the form of sets
of nonlinear equations considered under the assumption of Gaussian distribution of the yields.
[Anupindi and Akella (1993)] analyze the single-period dual sourcing setting under a Bernoulli
probability model: either the whole order quantity is available (the yield is 1) or nothing is
delivered (the yield is zero). Optimality conditions for the allocation among the pair of suppliers
are derived. The results are extended to the multi-periodic case. [Burke et al. (2009)], up-
dated by [van Delft and Vial (2013)], consider a class of single product sourcing problems with
a uniform demand and multiple uncertain suppliers. Assuming that the supplier reliabilities are
independent of the demand, they can approximate the expected profit by a quadratic function.
They derive a closed form expression for the orders that maximize the approximation of the
expected profit. [Chopra et al. (2007)] consider a dual sourcing model with an expensive, but
perfectly reliable supplier and a cheap, but unreliable supplier who is subject to both recurrent
and disruption uncertainties. In this setting, the reliable supplier is used as a recourse in case
of significant disruption occurrences. They show that using the cheaper supplier is optimal in
case of recurrent supply uncertainty, while it is more efficient to compensate against major dis-
ruptions through recourse to the reliable supplier. [Dada et al. (2007)] proposed an enumerative
algorithm solving successive sets of nonlinear equations based on the specific demand and relia-
bility distributions. Furthermore, these authors showed that the cost and the reliability impact
the optimal ordering quantities in different manners: costs can be viewed as order qualifiers,
while reliabilities can be interpreted as order winners. Suppliers with excessive costs are poten-
tially be left without any order, no matter the reliability level. On the contrary, suppliers with
low costs will have some order to deliver, but the size of the order depends on their reliability.
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[Federgruen and Yang (2008)] analyze a multi-sourcing model with unreliable suppliers and a
service level constraint. The objective is to minimize total procurement costs, including fixed
and variable costs, under the constraint that the uncertain demand is met with a given probabil-
ity. The optimal orders are computed via new approximations for the shortfall probability. The
same authors, in [Federgruen and Yang (2009)], extend the results of their previous paper under
the assumption that randomness is Gaussian. They are able to characterize the impact of risk
magnitude on the ordering policy. [Gurnani et al. (2013)] exhibit a case with a deterministic
demand and two suppliers who differ in their costs and reliabilities. For this particular case,
they show that single sourcing is optimal, selecting either from the more reliable and more costly
supplier or the more risky but cheaper supplier, depending on the cost and reliability param-
eters. Furthermore, the authors showed, through experimental investigation, that contrary to
the theoretical results, the decision-makers favor diversification when facing unreliable supply.
[Wang et al. (2010)] explore a dual sourcing model in which the suppliers can exert effort to im-
prove reliability. The authors characterize the optimal procurement quantities and improvement
efforts and give managerial insights.

1.3 Organization of the paper

In Section 2 we present the base model for the multisourcing with unreliable suppliers and give a
maximin formulation for the maximization of the expected profit. We develop the lower bound
for the expected profit and give the distribution under which it is tight. We conclude formulate
the distributionally robust equivalent of the maximin optimization problem as a conic quadratic
problem. We conclude this section by managerial insights derived through sensitivity analysis
at the optimum solution. In Section 3 we introduce probabilistic constraints on the service
level and/or the budget allocated for the procurement cost. We substitute to such intractable a
constraint, the tractable approximation based on the conditional value at risk (CVaR) concept.
We apply to this new constraint the tools developed in Section 2 to provide a tight bound.
We formulate a distributionally robust version of the problem with a constraint. We conclude
the section with a scheme to enforce a solution (possibly sub-optimal) for the original chance-
constraint formulation. In Section 4 we report results on various parameter configurations of
the model. We separately study the cases of a deterministic demand and an uncertain one. In
each of the two cases, we analyze the impact of a service level constraint. We also show the
impact of a budget constraint in the case with a deterministic demand. To illustrate the fact
that a two-point distribution of the shortfall can be generated by a permissible distribution of
the yields, we perform a simulation and display the empirical distributions for each yield. Finally
we illustrate the negative impact of a positive correlation and in contrast, the positive impact of
a negative correlation. Section 5 gives a conclusion with suggestions for further research.

2 The multisourcing problem with unreliable suppliers

2.1 The model and the maximin formulation

We consider the single period variant of the Newsboy problem with multiple suppliers. The
newsboy aims at serving an uncertain demand D for a single product by placing orders to n
uncertain suppliers. The components of the profit function are the revenue, the purchase cost,
the shortage cost and the salvage value of leftover units. We use the following notation for the
cost and revenue parameters: p the unit selling price, ci the unit purchase cost from supplier i,
u the unit shortage cost (of unmet demand) and s the unit salvage value (of unsold items).

The uncertain parameters are the demand D ∈ R and the suppliers reliability vector R =
(Ri)i=1,...,n ∈ Rn. If an order qi is placed to supplier i, the actual delivery will be qiri,
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where ri is the realized value of uncertain reliability Ri. Following [Burke et al. (2009)] or
[Federgruen and Yang (2008)] we assume that the purchase cost applies to the deliveries and not
to the orders.

The profit associated with the realization (d, r1, . . . , rn) of the uncertain parameters is

π(q; d, r) = pmin{d,
n∑
i=1

qiri} −
n∑
i=1

ciqiri + s(

n∑
i=1

qiri − d)+ − u(d−
n∑
i=1

qiri)+

= (p− s)d−
n∑
i=1

(ci − s)qiri − (p+ u− s)(d−
n∑
i=1

qiri)+. (1)

The profit is a function is separately concave in q and in the uncertain parameters and is of
course itself uncertain. The classical objective is to maximize its expected value (see for example
[Burke et al. (2009)] or [Federgruen and Yang (2008)]) through the classical stochastic optimiza-
tion problem

max
q
{ED,R[π(q;D,R)]}. (2)

Since the expectation preserves concavity, the objective in concave in q. However, the objective
is not well defined if we assume, as it is done in this paper, that the probability distributions of
the uncertain parameters are unknown, but the means µD and µR ∈ Rn, the variance σ2

D and the
covariance are given Cov(R) = ΓR ∈ Rn×n. We assume that the reliabilities can be correlated,
but the demand is uncorrelated to the reliabilities. The last assumption is not necessary; we
make it for the sake of more transparent notation only. The partial information on the uncertain
parameters is not sufficient to compute the expectation (2). However, one can define a class of
distributions for D and R that we denote D ∼ (µD, σ

2
D) and R ∼ (µR,ΓR). The corresponding

distributionally robust formulation is

max
q

min
D∼(µD,σ

2
D)

R∼(µR,ΓR)

{ED,R[π(q;D,R)]}, (3)

which can be rewritten as

max
q

(p− s)µD −
n∑
i=1

(ci − s)qiµRi − (p+ u− s) max
D∼(µD,σ

2
D)

R∼(µR,ΓR)

{ED,R[(D − qᵀR)+]

 . (4)

Note that the inner optimization problem (over the set of distributions) is the maximization of
a convex function. It is potentially intractable, but the tight bound we shall develop for it is
simple enough.

2.2 Equivalence with a unidimensional maximin

In order to solve (4) for fixed q efficiently, we need a closed form expression for the inner maxi-
mization problem in the multivariate distributions D ∼ (µD, σ

2
D), R ∼ (µR,ΓR)

max
D∼(µD,σ

2
D)

R∼(µR,ΓR)

{ED,R[(D − qᵀR)+]}. (5)

We exploit here results from [Chen et al. (2011)] and [Popescu (2007)] concerning the expecta-
tion of the positive part of a linear combination of random variables. The key point consists of
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a general projection property for multivariate distributions with given means and covariances,
which reduces an optimization problem under multivariate distribution to optimizing a univari-
ate stochastic program, allowing the use of known univariate results. Combining Theorem 1 and
Proposition 1 of [Popescu (2007)] we state the following key proposition.

Theorem 1 Define X = aᵀZ, with a and Z in Rm, and Z is a random variable with mean
µ ∈ Rm and covariance Γ ∈ Rm×m. Denote µx = E(X) = aᵀµ and σ2

x = V ar(X) = aᵀΓa.
Suppose Γ � 0. For any a in Rm, one has

sup
Z∼(µ,Γ)

E((aᵀZ)+) = sup
X∼(aᵀµ,aᵀΓa)

E(X+).

Furthermore every distribution X ∼ (aᵀµ, aᵀΓa) can be obtained by X = aᵀZ from some distri-
butions Z ∼ (µ,Γ) whose explicit form is

Z =
C

1
2β√
aᵀΓa

+
(X − aᵀµ)Γa

aᵀΓa
+ µ, (6)

with C = (aᵀΓa)Γ − ΓaaᵀΓ and β ∼ (0, Im), i.e. , a m-dimensional random variable with
E[βi] = 0, E[β2

i ] = 1 and Cov[βi, βj ] = 0 if i 6= j .

The central idea behind this proposition is that for any nonzero vector a, the optimization over
random vectors X = aᵀZ, with E[Z] = µ ∈ Rm and covariance of Z given by Γ ∈ Rm×m, is
equivalent to solving the corresponding projected problem over the class of univariate distribu-
tions with mean aᵀµ and variance aᵀΓa. Furthermore, for any univariate distribution with mean
aᵀµ and variance aᵀΓa it is possible to find the corresponding multivariate distribution in the
original setting. A possible choice for the distribution of the βi is the two-point distribution on
{−1, 1} with equal probability on the two points.

2.3 Unidimensional maximin tight bound

The consequence of Theorem 1 is that the worst case value of the expected shortage term for
multivariate distributions (5) reduces to an optimization problem over the class of univariate
distributions Xq with given mean µD − qᵀµR and variance σ2

D + qᵀΓq, namely

max
Xq∼(µD−qᵀµR,σ2

D+qᵀΓq)
{E[Xq]+}. (7)

The following proposition, proved in [Chen et al. (2011), Popescu (2007)], shows that problem
(7) has a simple answer.

Proposition 1 Let X be a random variable in R, with mean µ1 = E(X) and second moment
µ2 = E(X2) < +∞. The following inequality holds

E(X+) ≤
µ1 +

√
µ2

2

and is tight for the two point distribution

X =


−√µ2, with probability −µ1+

√
µ2

2
√
µ2

,

√
µ2, with probability 1− −µ1+

√
µ2

2
√
µ2

.
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Applying Proposition 1 to X = D−qᵀR, we have E(D−qᵀR) = µD−qᵀµR and E((D−qᵀR)2) =
σ2
D + qᵀΓq + (µD − qᵀµR)2, yielding the bound

E[(D − qᵀR)+] ≤ 1

2

(
µD − qᵀµR +

√
σ2
D + qᵀΓq + (µD − qᵀµR)2

)
which is tight for the two-point (worst case) distribution

D − qᵀR =



−
√
σ2
D + qᵀΓq + (µD − qᵀµR)2, with probability

−µD−qᵀµR+
√
σ2
D+qᵀΓq+(µD−qᵀµR)2

2
√
σ2
D+qᵀΓq+(µD−qᵀµR)2

,

√
σ2
D + qᵀΓq + (µD − qᵀµR)2, with probability

1− −µD−q
ᵀµR+

√
σ2
D+qᵀΓq+(µD−qᵀµR)2

2
√
σ2
D+qᵀΓq+(µD−qᵀµR)2

.

(8)

The equivalent of the distributionally robust problem (4) is thus

max
q

$(q) := (p− s)µD −
n∑
i=1

(ci − s)qiµRi

−(p+ u− s)
2

(
µD − qᵀµR +

√
σ2
D + qᵀΓq + (µD − qᵀµR)2

)
. (9)

2.4 Range, mean and coefficient of variation

We exhibit here a property of the model under examination. The ratio between the mean and the
standard deviation of the reliability (the so-called coefficient of variation) is the key parameter
for the reliabilities. Suppose the mean and standard deviation of the reliability of supplier i is
multiplied by some arbitrary constant θ > 0, letting the coefficient of variation unchanged. If
q∗ solves the original problem, it is easy to see that the order q̃j = q∗j for j 6= i and q̃i = q∗i /θ
solves the problem with the new mean and standard deviation. Hence, the critical parameter is
the coefficient of variation of R and not its mean and standard deviation.

2.5 Managerial insights via sensitivity analysis

In view of the analytic representation of the equivalent distributionally robust expected profit,
one can perform sensitivity analysis at the optimal solution. Following the discussion in the
preceding subsection, we assume, without loss of generality, µRi = 1 for all i. For the ease of
notation, but again without loss of generality, we take u = 0 = s. We also rank the suppliers by
increasing procurement cost: c1 ≤ c2 ≤ · · · ≤ cn. Finally we assume that the covariance matrix
Γ is diagonal: all covariances are zero. We denote q∗ the optimal solution.

The sensitivity analysis is based on the derivative with respect to qi of the expected profit
for the worst case distribution

d

dqi
$(q) = −ci −

σ2
i qi
K

+ L, (10)

where K = 2
p

√
σ2
D +

∑
j qjσ

2
j + (µD −

∑
j qj)

2 and L = p
2 +

µD−
∑
j qj

K . We shall use this expres-
sion to compare the situation of two suppliers. We classify suppliers into two categories according
to their participation to the total order size at the optimum. We say that supplier i belongs to
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the bundle of active suppliers if q∗i > 0; then d
dqi
$(q∗) = 0. A supplier j with q∗j = 0 is said to

be inactive; then d
dqj
$(q∗) ≤ 0.

We consider first the case of two active suppliers i and j. In view of (10) and d
dqi
$(q∗) =

0 = d
dqj
$(q∗), we have

σ2
j q
∗
j − σ2

i q
∗
i = −K(cj − ci). (11)

If the two suppliers have the same procurement cost, then σ2
j q
∗
j = σ2

i q
∗
i . The order to the

more risky supplier, say j (i.e., σj > σi), satisfy

q∗i =
σ2
j

σ2
i

q∗j > q∗j =
σ2
i

σ2
j

q∗i > 0.

The more risky supplier strictly contributes to the total supply, but for a fraction of the less risky
supplier. By splitting the orders between the two (and allocating less to the more risky supplier),
the optimal solution decreases the global variability of the total supply. If i is more expensive
(cj < ci), then the right-hand side in (11) is positive and the order to the more expensive supplier
cannot be too large: q∗i < (σ2

j /σ
2
i )q
∗
j . The ratio between the standard deviations may smaller

or greater than one. In the latter case, where the more expensive supplier is less risky, it is
conceivable that q∗j < q∗i .

We consider now the situation where some suppliers are inactive at the optimal solution.
Suppose q∗i = 0 and q∗j > 0 at the optimum. Then d

dqi
$(q∗) ≤ 0 and d

dqj
$(q∗) = 0. Putting the

inequalities together, we get

cj − ci +
σ2
j q
∗
j

K
≤ 0. (12)

The above inequality implies cj < ci. The suppliers who are part of the active bundle have
procurement costs that are strictly less than those of the inactive suppliers. We thus proved the
following theorem:

Theorem 2 The optimal distributionally robust solution has the property that a supplier with a
higher procurement cost cannot enter the solution unless all suppliers with lesser costs are part
of the solution.

Note that the exclusion condition depends on the procurement cost alone, and not on the re-
liability of the excluded supplier. The property holds for all inactive suppliers, including the
fully reliable one. The striking result is that the exclusion of a supplier from the set of active
suppliers depends on his procurement cost alone, and not on his reliability. The above property
of distributionally robust solutions was proved for other distributions by [Dada et al. (2007)].

Using (13) and the above theorem, we can elaborate on the barrier to entry for a supplier.
We already know that a new supplier will enter the bundle of active suppliers if his cost is strictly
less than the cost of one of the active suppliers. But, even if his cost is higher, he can still be part
of the group, provided his cost is not too large. The amount in excess of the costs of the active
suppliers can be computed. Let k be the index of the inactive supplier with least procurement
cost among all inactive suppliers. Because the derivatives with respect to the order are zero for
all suppliers in the set J of active suppliers we have

cj +
σ2
j q
∗
j

K
= L, for any ∈ J.

The condition for supplier k to join the bundle of active suppliers is to have a procurement cost

ck ≤ cj +
σ2
j q
∗
j

K
, for any j ∈ J. (13)
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Theorem 3 Let J is the set of indices of the active suppliers. The inactive supplier k cannot
become active unless

ck < L =
p

2
+
µD −

∑
j∈J q

∗
j

K
= cj +

σ2
j q
∗
j

K
, for any j ∈ J.

Again, the condition is independent of the reliability σk of the candidate supplier. We conclude
that a supplier with a procurement cost not too large can become active, even though his reli-
ability is poor. The procurement cost is the only criterion. Of course, the amount of the total
order that will be assigned to the entrant will be strongly affected by the reliability.

Finally, we derive a condition on the total order size from the status of supplier k. Because
k is not selected d

dqk
$(q∗) ≤ 0. From (10), −ck + L ≤ 0, i.e.,∑

i<k

q∗i ≥ µD + (
p

2
− ck)K.

If p ≥ 2ck, the total order is greater than the mean demand. Many papers focus on the case of
2 suppliers, an unreliable one and a reliable one. Assume c1 < c2, σ1 > 0 and σ2 = 0. Suppose
q∗2 > 0. From Theorem 2, q∗2 > 0 implies q∗1 > 0. Since q∗2 > 0, equation (10) hods and σ2 = 0
imply L = c2. We conclude

q∗1 + q∗2 = µD + (
p

2
− c2)K.

This property can be extended to more than two suppliers, provided all suppliers are active and
there exists a fully reliable supplier in the bundle.

3 Distributionally robust formulation for probabilistic constraints

3.1 Constraints on the service level and the procurement budget

The model for the Newsvendor problem of the previous section is adequate for a risk-neutral
decision-maker. It may be desirable to incorporate to the base formulation managerial concerns
for some critical criteria. For instance, a manager may want to restrict shortfalls so as to ensure
a satisfactory service level. The total procurement cost may be another concern if a budget
limit exists. Because the two quantities, shortfall and procurement cost, are essentially random,
constraints on them must be formulated in probabilistic terms. The problem is then a chance-
constraint programming. The two quantities of interest in the present analysis are the end
inventory function I(q;D,R) = D − qᵀR and the budget function B(q;D,R) = b− qᵀR, where
b is the target budget. The corresponding probabilistic constraints are thus

Prob(I(q;D,R) ≥ 0) = Prob(D − qᵀR ≥ 0) ≤ β, (14)

and
Prob(B(q;D,R) ≥ 0) = Prob(b−

∑
i

ciqiRi ≥ 0) ≤ β. (15)

In these formulations β is a probabilistic threshold assigned by the manager. The two constraints
are very similar. We shall discuss the first one only.

An alternative interpretation of the chance-constraint (14) is the constraint on the Value at
Risk (VaR) on the end inventory for the percentile 1− β

VaRβ(I(q;D,R)) ≤ 0. (16)

It is well-known that a chance constraint (14) or (15) is non-convex and in general numerically
intractable. However the conditional value at risk (CVaR) is also known to be the best convex
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upper approximation of VaR, (see [Ben-Tal et al. (2009)]). In view of this, the chance-constraint,
or constraint on VaRβ(I(q;D,R)), is often replaced by the constraint on the conditional value
at risk CVaRβ(I(q;D,R)) ≤ 0.

3.2 Distributionally robust formulation of CVaR constraints

Let f(x, ξ) be the loss function associated with a decision problem in the variable x ∈ Rm and
the random variable Ξ ∈ Rp. Let π(.) be the cumulative distribution function of Ξ. We assume
EΞ(|f(x, ξ)|) <∞ for all x. For a given confidence level β and a fixed x, the value at risk is

VaRβ(x) := min{α ∈ R |
∫
f(x,ξ)≤α

dπ(ξ) ≥ β}. (17)

The corresponding conditional value at risk is the expected value of loss exceeding VaRβ(x) and
is given by

CVaRβ(x) :=
1

1− β

∫
f(x,ξ)≥VaRβ(x)

f(x, ξ)dπ(ξ). (18)

By [Rockafellar and Uryasev (2000)], it also satisfies the following equality

CVaRβ(x) = min
α
Fβ(x, α) (19)

where
Fβ(x, α) := α+

1

1− β

∫
[f(x, ξ)− α]+dπ(ξ) (20)

and VaRβ(x) satisfies
VaRβ(x) = arg min

α
Fβ(x, α). (21)

Equations (20) and (21) imply that VaRβ(x) ≤ CVaRβ(x). Therefore, the constraint CVaRβ(x) ≤
0 is a surrogate for the constraint on VaRβ(x) ≤ 0.

We are interested in a distributionally robust version of the CVaR constraint. Consider the
family of random variables Ξ ∼ (µ,Γ), with Γ � 0. The robust CVaR with respect to this class
of distributions is

RCVaRβ(x) := sup
Ξ∼(µ,Γ)

CVaRβ(x) = sup
Ξ∼(µ,Γ)

min
α
Fβ(x, α). (22)

The following proposition, borrowed from [Chen et al. (2011)] (Theorem 2.9), establishes that
interchange of the sup and min operator is allowed.

Proposition 2 When the loss function f(x, ξ) is linear in ξ, one has

RCVaRβ(x) = sup
Ξ∼(µ,Γ)

min
α
Fβ(x, α) = min

α
sup

Ξ∼(µ,Γ)
Fβ(x, α). (23)

It is thus possible, when the loss function f is linear in ξ, to explicit the term supΞ∼(µ,Γ) Fβ(x, α)
using the bound exhibited in Proposition 1.

In general VaRβ(x) < CVaRβ(x), with equality holding but on exceptional degenerate cases.
The constraint CVaRβ(x) ≤ 0 is too restrictive in general. A common practice is to relax it to
CVaRβ(x) ≤ c, with c > 0 and adjust c by some numerical scheme to achieve VaRβ(x) = 0.
It is important to note that solving an optimization with the constraint CVaRβ(x) ≤ 0 and
a c ensuring VaRβ(x) = 0 is not the same as solving the problem with the VaR constraint
VaRβ(x) ≤ 0. The latter constraint is less restrictive.
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3.3 The distributionnally robust equivalent optimization problem

For known probability distributions for (D,R) and for a given c > 0, the stochastic optimization
problem with a service level constraint is

max
α,q≥0

ED,R[π(q;D,R)] (24a)

CVaRβ(q) = min
α

{
α+

1

(1− β)
E[(D − qᵀR− α)+]

}
≤ c, (24b)

The corresponding distributionally robust equivalent is

max
q

min
D∼(µD,σ

2
D)

R∼(µR,ΓR)

ED,R[π(q;D,R)] (25)

s.t min
α

α+ min
D∼(µD,σ

2
D)

R∼(µR,ΓR)

1

1− β
E[(D − qᵀR− α)+]

 ≤ c. (26)

Note that the worst case distributions for (25) and (26) need not be the same. A stronger, but
intractable formulation of the distributionally robust equivalent would impose that the worst
case distributions be the same in the objective and the constraint. We shall see later a case
where the stronger property holds.

Proposition 3 The distributionnally robust formulation of the maximization of the expected
profit under a CVaR constraint on the shortfall given by the following conic quadratic program-
ming problem

max
α,t,q≥0

(p− s)µD −
n∑
i=1

(ci − s)qiµR,i −
(p+ u− s)

2
(µD − qᵀµR + t1) (27a)

α+
1

2(1− β)
(µD − qᵀµR − α+ t2) ≤ c, (27b)√

σ2
D + qᵀΓq + (µD − qᵀµR)2 ≤ t1, (27c)√
σ2
D + qᵀΓq + (µD − qᵀµR − α)2 ≤ t2. (27d)

Proof: According to Theorem 1 and Proposition 1, the objective (25) and the constraint (26)
can be replaced by their conic quadratic bound. The minimization in α need not be made explicit
because the constraint is embedded into an optimization problem.

We now discuss a scheme to achieve α = 0 at the optimum of (27). This will ensure that the
value at risk constraint (14) holds at the optimum. Let us sketch here the algorithmic procedure
to enforce VaRβ(q) = 0. Recall first that if (27b) is tight, the minimum in α is achieved in (26)
for the worst-case distribution. Consequently, α = VaRβ(q). The basic step of the procedure
is as follows. Let 0 < c1 < c2 and let (α∗i , q

∗
i ), i = 1, 2, be the corresponding optimal solutions

associated with ci in (27). Assume (27b) is tight in both cases and that α∗1 = VaRβ(q∗1) < 0 and
α∗2 = VaRβ(q∗2) > 0. Let c′ = (c1 + c2)/2 and solve (27) for this new right-hand side in (27b)
with c = c′. Let (α∗, q∗) be the optimal solution. If α∗ = VaRβ(q∗) < 0 repeat the procedure
with c′ and c2. Otherwise, repeat the procedure with c1 and c′.

As a final remark, let us examine the two expectations in problem (24), one in the objective
and one in the constraint, that are replaced by upper bounds. We know that each upper bound
is tight for a certain worst case distribution. If the two worst case distributions are not the same,
the solution of the problem might be conservative. We give here a sufficient condition to ensure
that the worst case distributions are the same.
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Proposition 4 Assume that at the optimal solution of problem (27) the service level constraint
(27b) with right-hand side c is tight and α = 0 at this solution. Then the bound

E[(D − qᵀR)+] ≤ (1− β)c

is tight for the same distribution as the one which makes the CVaR constraint tight.

Proof: If the constraint (27b) is active at the optimum, the variable α minimizes the left-hand
side of the constraint. If α = 0 at the optimum, the constraints (27c) and (27d) are identical,
and the same two-point distribution makes the bound on the profit and the bound on the CVaR
simultaneously tight.

4 Numerical experiments

The numerical data are similar as those in [Burke et al. (2009)]. We use the same selling price,
salvage value and shortage cost. In the present paper, the number of suppliers is larger and the
costs are different. The suppliers are characterized by their cost and their reliability. The latter
is measured by the mean and the coefficient of variation (standard deviation over the mean).
The reliabilities are between zero and one, though it can be argued that larger values than one

supplier 1 2 3 4 5 6

cost 621 624.5 628 631.5 635 638.5
mean 0.75 0.8 0.8 0.85 0.9 0.9
standard deviation 0.0825 0.072 0.056 0.0425 0.027 0.009
coefficient of variation 0.11 0.09 0.07 0.05 0.03 0.01

deterministic uncertain

mean demand 7500 7500
coefficient of variation 0 0.04
standard deviation 0 300

Table 1: Demand, supplier costs and supplier reliabilities

are meaningful (see for instance [Chopra et al. (2007)]). Note that the purchasing price does not
vary much with the supplier (less than 0.5% between two neighboring suppliers and less than 3%
between suppliers 1 and 6). For the demand, we consider two cases, a deterministic demand and
an uncertain one. The deterministic demand case can be viewed as the one faced by a producer
who needs a supply of exactly 7500 units to meet his commitments. The uncertain demand case
will be referred to as the one of a reseller. To solve problem (27) we use the tool cvx for convex
optimization in Matlab [cvx (2012)].

As discussed in section 2.4 the solution is insensitive to a joint change of standard deviation
and mean, provided their ratio, the coefficient of variation, remains unchanged. In other words,
for a different pair of mean and standard deviation, but constant coefficient of variation, the
order may change but not the expected delivery. To simplify the presentation of the numerical
results we shall omit the order and only report the expected (or mean) deliveries.

4.1 Producer with a deterministic target production plan

We study the case of a single producer who must release the deterministic quantity D. We study
first the case with no constraint on the service level. Table 2 shows that the producer decreases
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the uncertainty of the total supply by mixing low cost suppliers with important uncertainty to
more certain suppliers with higher costs.

supplier 1 2 3 4 5 6 total

expected deliveries 1050 1226 1462 1759 1811 0 7309
deliveries in % 14% 17% 20% 24% 27% 0 100%

Expected profit

472,047

Prob(D − qᵀR ≥ VaR) 0.1 0.05 0.01

VaR value 925 1233 2435

Table 2: Distributionnaly robust solution for the unconstrained base case with a deterministic D = 7500.

The VaR value displays the amount that the shortage will not exceed with the probability
given above. The VaR and CVaR values are obtained by solving the auxiliary problem in α,
where q is the optimal solution displayed in the table.

min
α

{
α+

1

2(1− β)

(
µD − qᵀµR − α+

√
σ2
D + qᵀΓq + (µD − qᵀµR − α)2

)}
.

The same base case is treated now with a constraint on the service level. We recall that
we use the probability of shortage Prob(D − qᵀR ≥ 0) as a measure of the service level. Given
a target probability β we implement the binary search procedure described in Section 3.1 to
achieve VaRβ = 0. The results are given in Table 3. Producer is facing the deterministic target
production 7500 and in the 3 instances the constraint on the V aR at the given levels of quantile
(0.10, 0.05, 0.05) to be less than zero is enforced.

supplier 1 2 3 4 5 6 total

Shortage probability ≤ 0.10
Expected profit: 406,633 CVaR = 117.5

expected deliveries 104 139 203 345 812 5991 7594
Shortage probability ≤ 0.05

Expected profit: 376,911 CVaR = 161.6

expected deliveries 88 120 180 318 783 6156 7645
Shortage probability ≤ 0.01

Expected profit: 251,723 CVaR = 361.9

expected deliveries 69 99 155 290 762 6480 7855

Table 3: Distributionnaly robust solution with the service level constraint.

Table 4 shows the impact of a budget constraint. The producer has a deterministic target
production 7500 and the allocated budget is the same as the mean cost of supply in the un-
constrained case b = 877, 026. In the first instance, the budget constraint is just inactive. The
probability of not meeting the budget is then 0.5. (i.e., VaR0.5 = 0). In the next 3 instances the
constraint on meeting the budget at the given levels of quantile (0.10, 0.05, 0.05) to be less than
zero is enforced.
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The optimal solution when the budget is reduced favors diversification towards the more
reliable, but more expensive, suppliers in a manner that resembles to the impact of a more
restrictive service level as displayed in Table 3. However, in the case of the service level the total
expected deliveries increases in order to reduce the expected shortfall, whereas in the case of the
budget constraint the total expected deliveries decreases so as to meet more severe restriction
on the budget constraint.

supplier 1 2 3 4 5 6 total

Probability of not meeting the budget ≤ 0.5
Expected profit: 472047 CVaR on budget = 30,000

expected deliveries 1 050 1226 1462 1759 1811 0 7309
Probability of not meeting the budget ≤ 0.1

Expected profit: 445,882 CVaR on budget = 19,226

expected deliveries 363 443 568 792 1306 3709 7180
Probability of not meeting the budget ≤ 0.05

Expected profit: 435,517 CVaR on budget = 21,546

expected deliveries 241 300 395 577 1056 4579 7147
Probability of not meeting the budget ≤ 0.01

Expected profit: 409,196 CVaR on budget = 40,030

expected deliveries 128 166 233 374 813 5268 6982

Table 4: Distributionnaly robust solution with a probabilistic budget constraint.

4.2 Reseller facing an uncertain demand

When the demand is uncertain, the shortage inherits a larger variability (its variance is larger).
The impact of diversification among suppliers is relatively weaker. As a result the robust solution
puts more emphasis on the cost and less on the variability. This can be seen on Table 5 in the
absence of a constraint on the service level and on Table 6.

supplier 1 2 3 4 5 6 total

expected deliveries 1671 1837 1947 1681 0 0 7135
deliveries in % 23% 26% 28% 24% 0 0 100%

Expected profit

434,076

Prob(D − qᵀR ≥ VaR) 0.1 0.05 0.01

VaR value 925 1233 2435

Table 5: Distributionnaly robust solution for the unconstrained base case with uncertain demand (mean
7500, coefficient of variation 0.04 and standard deviation 300).

In the following case, reseller faces uncertain demand (mean 7500, coefficient of variation
0.04 and standard deviation 300). In the 3 instances the V aR at the given level of quantile is
enforced to be 0.
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supplier 1 2 3 4 5 6 total

Shortage probability ≤ 0.10
Expected profit: 193,080 CVaR = 538.4

expected deliveries 287 356 466 675 1211 4923 7917
Shortage probability ≤ 0.05

Expected profit: 63,284 CVaR = 713.9

expected deliveries 215 271 365 552 1081 5658 8142
Shortage probability ≤ 0.01

Expected profit: -470,106 CVaR = 1565.7

expected deliveries 131 174 252 424 981 7072 9034

Table 6: Distributionnaly robust solution with the service level constraint.

4.3 Complementary analyses on the producer case

For the sake of shortness, we perform a few complementary analyses on the producer case only,
but similar observations can be made on the reseller case.

4.3.1 Worst case distributions of the demand and the reliabilities

Let q∗ be the optimal solution of problem (27), without the CVar constraints (27c) and (27d).
We know that the objective is attained for a 2-point distribution of the scalar random variable
X(q) = D − qᵀR. We raise the issue of finding a distribution for D and R with the appropriate
properties (mean and variance, and hopefully range) yielding the two point distribution for X
at q∗. Using (6) we can produce the appropriate multidimensional random variable (D,R) with
the appropriate mean and variance. The only check to be performed is to see whether the range
of components is admissible. We shall do it under the assumption that the variable β used in
the construction has the smallest possible range. This is the case if each βi takes values −1 and
1 with equal probabilities.

The worst case distribution corresponding to the orders solution is the two-point distribution
given by Proposition 1. Formula (6) in Theorem 1 provides an easy way to construct a set of
supplier distributions that generates the two-point distribution of qᵀR and have the appropriate
means and standard deviation. The distribution is not unique because the only requirement
on the auxiliary random variable β is to be centered with the covariance matrix equal to the
identity. For the display of Figure 1 we chose the βi to be independent binary variables with
equal probabilities on −1 and 1. This ensures the least possible range. This last feature also
ensures, via formula (6), the least possible range for the reliability distributions. Those ranges
are displayed in Table 7. They are all between 0 and 1. To obtain this result we chose lower
reliability means for suppliers 1–5. Higher means would not have changed the solution as far
as profit and expected deliveries are concerned, but they imply that some range upper bounds
larger than 1. In [Chopra et al. (2007)] the authors argue that in the pharmaceutical industry
(vaccines) or in the semiconductor industry the deliveries may exceed the orders. Therefore
values of R greater than 1 may be acceptable.

To construct an empirical distribution of the reliabilities, we construct a sample of size
N = 10, 000 of the binary variables β and ξ. In view of (6), we construct the sample of reliabilities.
The empirical distributions are represented on Figure 1.

From simulation of the worst case distribution, we derive a sample of the profit function. The
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Case 1 Case 2

supplier mean range mean range

1 0.75 [0.6155 0.9626] 0.9 [0.7426 1.1512]
2 0.8 [0.6781 0.9871] 0.9 [0.7635 1.1098]
3 0.8 [[0.6985 0.9486] 0.9 [0.7864 1.0665]
4 0.85 [0.7686 0.9621] 0.9 [0.8127 1.0198]
5 0.9 [0.8910 0.9090] 0.9 [0.8464 0.9656]
6 0.9 no order 0.9 no order

Table 7: Ranges of variation for the reliabilities when the mean reliabilities change. Base case
of the producer (deterministic production plan). No constraint on the service level

profit distribution turns out to be also a 2-point one. The mean profit is 472,720, quite close to
the theoretical one 472,047. The lowest profit value is at 361,000; the highest at 492,400.

4.3.2 Correlated suppliers

The impact of negatively correlated suppliers is positive: putting more emphasis on a pair
of suppliers who are negatively correlated decreases the variability. The opposite holds if the
suppliers are positively correlated. The results are reported in Table 8.

supplier 1 2 3 4 5 6 total

Uncorrelated suppliers

expected deliveries 1050 1226 1462 1759 1811 0 7309
Expected profit: 472,047

Suppliers 1 and 2 are correlated with coefficient = −0.8

expected deliveries 1729 2049 1369 1464 680 0 7290
Expected profit: 482,227

Suppliers 3 and 4 are correlated with coefficient = 0.8

expected deliveries 1126 1326 1232 1298 2317 0 7300
Expected profit: 468,522

Table 8: Producer with a deterministic plan of 7500 units facing uncertain and correlated sup-
pliers.

4.3.3 Influence of shortage cost and salvage value

The shortage cost is a reality, but it is very difficult to quantify it. Clearly higher shortage costs
should be an incentive for higher orders to achieve less shortage. In order to make comparison,
we increase the shortage cost with the goal of achieving the same probability of shortage. Table 9
reveals that one can achieve the desired service level by an appropriate choice of the shortage
cost. Surprisingly enough, the optimal orders are the exactly the same as the optimal ones for
problem (27). Consequently, the expected profit is smaller, because shortage is penalized by a
value that is much higher than the original value in the base case. The most striking observation
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Figure 1: Deterministic demand. Worst case distribution of reliabilities for suppliers (a), (b),
(c), (d), (e) and distribution of the demand minus the total supply (f).

Target shortage probability 0.1 0.05 0.01

Shortage cost 5,575 11,980 66,170
Expected delivery 7594 7645 7855
Expected profit 341,837 280,573 12,477

Table 9: Impact of the shortage cost for the producer case. The shortage cost is adjusted so
as to meet the same probability of shortage as in 3. It appears that the computed optimal
diversification among suppliers is the same as in Table Table reftab:varconst.

is the extremely high value of the shortage cost in order to achieve the required service level. The
smaller the shortage probability, the lesser is the conditional expected shortage and the higher
the required unit shortage cost. Note that the recommended shortage cost values are very high.
Indeed, the penalty on shortage necessary to achieve the desired level of service must be high.
On the other hand, the higher the service level, the lesser is the average shortage. Two factors
are combined to enforce an increase of the shortage cost: the necessity to increase the global
penalty of shortage and the need to compensate for a lesser number of shortage units.

The influence of the salvage value is displayed in Table 10.

4.4 Value of the information

Scarf addressed the issue of the value of information for the simple Newsboy model. What is
the maximum loss in profit incurred with the distributionally robust solution when the demand
distribution is known? The same question is relevant in the multi-sourcing problem. We shall
not answer it in full generality. Rather, we shall analyze the behavior of the robust solution
when the demand and the reliabilities follow normal laws with appropriate means and standard
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Salvage Suppliers Total supply Profit

1 2 3 4 5

0 1021 1197 1436 1749 1902 7304 470,618
100 1133 1312 1540 1788 1546 7318 475,638
200 1320 1505 1717 1851 938 7332 481,642
300 1647 1833 1993 1875 0 7348 489,514

Table 10: Impact of the salvage value in the case of a producer with determin-
istic plan of 7500 units.

deviations. The results are displayed on Tables 11 and 12.

supplier 1 2 3 4 5 6

DR expected deliveries 1050 1226 1462 1759 1811 0 7309

Distributionally robust profit 472,047
Mean profit on the event tree 491,389

SP expected deliveries 1709 1887 1954 1664 0 0 7213

Mean profit on the event tree 494,664

Table 11: The DR solution versus the SP solution. The case of the producer
with a deterministic plan of 7500 unis. The expected profit is calculated on the
event tree based on the normal distributions.

supplier 1 2 3 4 5 6

DR expected deliveries 1671 1837 1947 1681 0 0 7135

Distributionally robust profit 434,076
Mean profit on the event tree 471,461

SP expected deliveries 2314 2367 1994 390 0 0 7065

Mean profit on the event tree 474,004

Table 12: DR versus SP. The case of the reseller with a random demand. The
expected profit is calculated on the event tree based on the normal distributions.

We observe that using the DR solution instead of the optimal SP solution on the sample
from the normally distributed parameters induce a minimal loss of profit. In the two cases under
investigation the loss is less than 1%. One checks that the ratio between the worst case profit
and the optimal profit when the distribution is known to be a multi normal is at least 0.95 in
the producer case and 0.90 in the reseller case. We also observe that knowing the distribution
makes it possible to lower the total mean delivery and thus decrease the purchasing cost.

It is worth mentioning that the stochastic programming solution with the uniform distribution
(demand and reliabilities) is nearly the same as with the normal distribution.
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5 Conclusion

The DR solution to the Newsboy problem with multiple uncertain suppliers has many advantages.
It is shown to be the solution of a simple conic quadratic optimization problem (27), which
is efficiently solved by interior point methods [Grant and Boyd (2008)]. The solvers that are
included in the distribution of [cvx (2012)] can easily handle instances with many more suppliers
than in our numerical example. The main advantage of the DR approach is that no assumption
is made on the probability distributions except that the mean and covariance exist and their
value is known. The DR approach avoids numerical computation of expectations which may be
challenging with the multiple dimension of the uncertain parameters. Rather, it replaces these
expectations by lower bounds that are numerically tractable in the optimization problem.

The DR approach can equally handle a service level constraint, a feature which is particularly
relevant in a production framework. The ease of the numerical computation makes it possible
to trace the influence of the parameters. For example it appears that a producer (facing a
deterministic demand) can better take advantage of diversification among a panel of suppliers
with varied costs and standard deviation than a reseller (facing an uncertain demand) with the
same panel of suppliers. In the same logic, it appears that a service level constraint is much more
demanding for the reseller than the producer. The numerical experiments also show that recent
results on the value information for the simple Newsboy problem [Yue et al. (2006)] hold for the
multi-sourcing case: if the probability distribution is not the worst case one, the DR solution
still performs well in comparison with the optimal solution associated with this distribution.

In this paper we chose to illustrate the DR approach on a simple basic extension of the
classical Newsboy problem. In view of the simplicity of problem (27) additional constraints
on the orders can be incorporated. Convex constraint q ∈ Q, with Q convex, would not add
numerical difficulties. Fixed costs or thresholds on the orders would force to resort to nonlinear
integer programming, a more challenging area. However, for the relatively small number of
suppliers that is considered a branch and bound scheme would perform well. Another much
desirable extension would be the multi-period case. It has been shown [Ben-Tal et al. (2005)]
that robust optimization works pretty well on multi stage inventory problems. It would be
interesting to extend the DR approach to this situation.
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