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Seriation

The Seriation Problem.

� Pairwise similarity information Aij on n variables.

� Suppose the data has a serial structure, i.e. there is an order π such that

Aπ(i)π(j) decreases with |i− j| (R-matrix)

Recover π?
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Seriation

The Continuous Ones Problem.

� We’re given a rectangular binary {0, 1} matrix.

� Can we reorder its columns so that the ones in each row are contiguous (C1P)?

Input matrix Ordered C1P matrix CTC (overlap)

Lemma [Kendall, 1969]

Seriation and C1P. Suppose there exists a permutation such that C is C1P, then
CΠ is C1P if and only if ΠTCTCΠ is an R-matrix.
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Shotgun Gene Sequencing

C1P has direct applications in shotgun gene sequencing.

� Genomes are cloned multiple times and randomly cut into shorter reads
(∼ 400bp), which are fully sequenced.

� Reorder the reads to recover the genome.

(from Wikipedia. . . )
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Gene Sequencing costs
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Outline

� Introduction

� Seriation and 2-SUM

� Ranking from pairwise comparisons

� Numerical experiments
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A Spectral Solution

Spectral Seriation. Define the Laplacian of A as LA = diag(A1)−A, the
Fiedler vector of A is written

f = argmin
1Tx=0,
‖x‖2=1

xTLAx.

and is the second smallest eigenvector of the Laplacian.

The Fiedler vector reorders a R-matrix in the noiseless case.

Theorem [Atkins, Boman, Hendrickson, et al., 1998]

Spectral seriation. Suppose A ∈ Sn is a pre-R matrix, with a simple Fiedler value
whose Fiedler vector f has no repeated values. Suppose that Π ∈ P is such that
the permuted Fielder vector Πv is monotonic, then ΠAΠT is an R-matrix.
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Spectral Solution

A solution in search of a problem. . .

� What if the data is noisy and outside the perturbation regime? The spectral
solution is only stable when the noise ‖∆L‖2 ≤ (λ2 − λ3)/2.

� What if we have additional structural information?

Write seriation as an optimization problem?
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Seriation and 2-SUM

Combinatorial Solution. Solving 2-SUM

min
π∈P

n∑
i,j=1

Aij(πi − πj)2 = πTLAπ (1)

and A is a conic combination of CUT (one flat block) matrices.

Laplacian operator is linear, yπ monotonic optimal for all CUT components.

Proposition [Fogel et al., 2013]

Seriation and 2-SUM. Suppose C ∈ Sn is a {0, 1} pre-R matrix and yi = i for
i = 1, . . . , n. If Π is such that ΠCΠT is an R-matrix, then the permutation π
solves the 2-SUM combinatorial minimization problem (1) for A = C2.
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Convex Relaxation

What’s the point?

� Write seriation as an optimization problem.

� Also gives a spectral (hence polynomial) solution for 2-SUM on some
R-matrices ([Atkins et al., 1998] mention both problems, but don’t show the
connection).

� Write a convex relaxation for 2-SUM and seriation.

◦ Spectral solution scales very well (cf. Pagerank, spectral clustering, etc.)

◦ Not very robust. . .

◦ Not flexible. . . Hard to include additional structural constraints.

Alex d’Aspremont Séminaire POC, December 2014. 10/35



Convex Relaxation

� Let Dn the set of doubly stochastic matrices, where

Dn = {X ∈ Rn×n : X > 0, X1 = 1, XT1 = 1}

is the convex hull of the set of permutation matrices.

� Notice that P = D ∩O, i.e. Π permutation matrix if and only Π is both
doubly stochastic and orthogonal.
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Convex Relaxation

We solve
minimize Tr(Y TΠTLAΠY )− µ‖PΠ‖2F
subject to eT1 Πg + 1 ≤ eTnΠg,

Π1 = 1, ΠT1 = 1,
Π ≥ 0,

(2)

in the variable Π ∈ Rn×n, where P = I− 1
n11

T and Y ∈ Rn×p is a matrix whose
columns are small perturbations of g = (1, . . . , n)T .
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Semi-Supervised Seriation

Convex Relaxation.

� Semi-Supervised Seriation. We can add structural constraints to the
relaxation, where

a ≤ π(i)− π(j) ≤ b is written a ≤ eTi Πg − eTj Πg ≤ b.

which are linear constraints in Π.

� Sampling permutations. We can generate permutations from a doubly
stochastic matrix D

◦ Sample monotonic random vectors u.

◦ Recover a permutation by reordering Du.

� Algorithms. Large QP, projecting on doubly stochastic matrices can be done
very efficiently, using block coordinate descent on the dual. We use accelerated
first-order methods.
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Ranking & pairwise comparisons

Given n items, and pairwise comparisons

itemi � itemj, for (i, j) ∈ S,

find a global ranking π(i) of these items

itemπ(1) � itemπ(2) � . . . � itemπ(n)
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Ranking & pairwise comparisons

Pairwise comparisons?

� Some data sets naturally produce pairwise comparisons, e.g. tournaments,
ecommerce transactions, etc.

� Comparing items is often more intuitive than ranking them directly.

Hot or Not? Rank images by ”hotness”. . .
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Ranking & pairwise comparisons

Classical problem, many algorithms (roughly sorted by increasing complexity)

� Scores. Borda, Elo rating system (chess), TrueSkill [Herbrich et al., 2006], etc.

� Spectral methods. [Saaty, 1977, Dwork et al., 2001, Negahban et al., 2012]

� MLE based algorithms. [Bradley and Terry, 1952, Luce, 1959, Herbrich
et al., 2006]

� Learning to rank. Learn scoring functions.

See forthcoming book by Milan Vojnovic on the subject. . .
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From Ranking to Seriation

Similarity matrices from pairwise comparisons.

� Given pairwise comparisons C ∈ {−1, 0, 1}n×n with

Ci,j =

 1 if i is ranked higher than j
0 if i and j are not compared or in a draw
−1 if j is ranked higher than i

� Define the pairwise similarity matrix Smatch as

Smatch
i,j =

n∑
k=1

(
1 + Ci,kCj,k

2

)
.

� Smatch
i,j counts the number of matching comparisons between i and j with

other reference items k.

In a tournament setting: players that beat the same players and are beaten by the
same players should have a similar ranking. . .
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From Ranking to Seriation

[Fogel et al., 2014]

Similarity from preferences. Given all comparisons Ci,j ∈ {−1, 0, 1} between
items ranked linearly, the similarity matrix Smatch is a strict R-matrix and

Smatch
ij = n− |i− j|

for all i, j = 1, . . . , n.

This means that, given all pairwise pairwise comparions, spectral clustering on
Smatch will recover the true ranking.
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Robustness

[Fogel et al., 2014]

Robustness to corrupted entries.

� Given all comparisons Cs,t ∈ {−1, 1} between items ordered 1, . . . , n.

� Suppose the sign of one comparison Ci,j is switched, with i < j.

If j − i > 2 then Smatch remains a strict-R matrix.

In this case, the score vector w has ties between items i and i+ 1 and items j
and j − 1.
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Robustness

A graphical argument. . .

Shift by +1 

Shift by -1 

i i+1 jj-1

i

i+1

j
j-1

Strict R-constraints 

The matrix of pairwise comparisons C (far left).

The corresponding similarity matrix Smatch is a strict R-matrix (center left).

The same Smatch similarity matrix with comparison (3,8) corrupted (center right).
With one corrupted comparison, Smatch keeps enough strict R-constraints to
recover the right permutation. (far right).
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Robustness

Generalizes to several errors. . .

[Fogel et al., 2014]

Robustness to corrupted entries. Given a comparison matrix for a set of n items
with m corrupted comparisons selected uniformly at random from the set of all
possible item pairs. The probability of recovery p(n,m) using seriation on Smatch

satisfies p(n,m) ≥ 1− δ, provided that m = O(
√
δn).

� One corrupted comparison is enough to create ambiguity in scoring arguments.

� Need Ω(n2) comparisons for exact recovery [Jamieson and Nowak, 2011].

� No exact recovery results for Markov Chain type spectral methods.
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Robustness

We can go bit further. . . .

C Smatch

� Form Smatch from consistent, ordered comparisons.

� Much simpler to analyze than MC methods: using results from [Von Luxburg
et al., 2008], we can compute its Fiedler vector asymptotically.

� The Fiedler vector of the nonsymmetric normalized Laplacian is also given
by xi = c i, i = 1, . . . , n where c > 0, for finite n.

� The spectral gap between the first three eigenvalues can be controlled.
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Robustness

Asymptotically: Smatch/n→ k(x, y) = 1− |x− y| for x, y ∈ [0, 1].

� The degree function is then d(x) =
∫ 1

0
k(x, y)dy = −x2 + x+ 1/2. The range

of d(x) is [0.5, 0.75] and the bulk of the spectrum is contained in this interval.

� We can also show that the second smallest eigenvalues of the unnormalized
Laplacian satisfies λ2 < 2/5, which is outside of this range.

� The Fiedler vector f with eigenvalue λ satisfies

f ′′(x)(1/2− λ+ x− x2) + 2f ′(x)(1− 2x) = 0.

Von Luxburg et al. [2008] then show that the unnormalized Laplacian converges
and that its second eigenvalue is simple. Idem for the normalized Laplacian.

This spectral gap means we can use perturbation analysis to study recovery.
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Robustness

� Perturbation analysis shows that

‖f − f̂‖2 ≤
√

2
‖L− L̂‖2

min{λ2 − λ1, λ3 − λ2}

where L, f are the true Laplacian (resp. Fiedler vector) and L̂, f̂ the perturbed
ones.

� In fact, we have

f̂ = f −R2Ef + o(‖E‖2), with E = (L− L̂)

where R2 is the resolvent

R2 =
∑
j 6=2

1

λj − λ2
uju

T
j ,

� If ‖f − f̂‖∞ is smaller than the gap between coefficients in the leading
eigenvector, ranking recovery remains exact.
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Robustness

With missing observations, C is subsampled, which means that the error E can
be controlled as in Achlioptas and McSherry [2007].

� Take a symmetric matrix M ∈ Sn whose entries M are independently sampled
as

Sij =

{
Mij/p with probability p

0 otherwise,

where p ∈ [0, 1].

� Theorem 1.4 in Achlioptas and McSherry [2007] shows that when n is large
enough

‖M − S‖2 ≤ 4‖M‖∞
√
n/p,

holds with high probability.
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Robustness
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Numerical results
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Uniform noise/corruption. Kendall τ (higher is better) for SerialRank (SR, full
red line), row-sum (PS, [Wauthier et al., 2013] dashed blue line), rank
centrality (RC [Negahban et al., 2012] dashed green line), and maximum
likelihood (BTL [Bradley and Terry, 1952], dashed magenta line).

Alex d’Aspremont Séminaire POC, December 2014. 29/35



Numerical results
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Percentage of upsets (i.e. disagreeing comparisons, lower is better), for various
values of k and ranking methods, on TopCoder (left) and football data (right).
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Numerical results
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Percentage of upsets (i.e. disagreeing comparisons, lower is better), for various
values of k and ranking methods, on England Premier League 2011-2012 season
(left) and 2012-2013 season (right).
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Football teams

Official Row-sum RC BTL SerialRank Semi-Supervised

Man City (86) Man City Liverpool Man City Man City Man City
Liverpool (84) Liverpool Arsenal Liverpool Chelsea Chelsea
Chelsea (82) Chelsea Man City Chelsea Liverpool Liverpool
Arsenal (79) Arsenal Chelsea Arsenal Arsenal Everton
Everton (72) Everton Everton Everton Everton Arsenal
Tottenham (69) Tottenham Tottenham Tottenham Tottenham Tottenham
Man United (64) Man United Man United Man United Southampton Man United
Southampton (56) Southampton Southampton Southampton Man United Southampton
Stoke (50) Stoke Stoke Stoke Stoke Newcastle
Newcastle (49) Newcastle Newcastle Newcastle Swansea Stoke
Crystal Palace (45) Crystal Palace Swansea Crystal Palace Newcastle West Brom
Swansea (42) Swansea Crystal Palace Swansea West Brom Swansea
West Ham (40) West Brom West Ham West Brom Hull Crystal Palace
Aston Villa (38) West Ham Hull West Ham West Ham Hull
Sunderland (38) Aston Villa Aston Villa Aston Villa Cardiff West Ham
Hull (37) Sunderland West Brom Sunderland Crystal Palace Fulham
West Brom (36) Hull Sunderland Hull Fulham Norwich
Norwich (33) Norwich Fulham Norwich Norwich Sunderland
Fulham (32) Fulham Norwich Fulham Sunderland Aston Villa
Cardiff (30) Cardiff Cardiff Cardiff Aston Villa Cardiff

Ranking of teams in the England premier league season 2013-2014.
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Numerical results

DNA. Reorder the read similarity matrix to solve C1P on 250 000 reads from
human chromosome 22.

# reads×# reads matrix measuring the number of common k-mers between
read pairs, reordered according to the spectral ordering.

The matrix is 250 000 × 250 000, we zoom in on two regions.
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Numerical results

DNA. 250 000 reads from human chromosome 22.
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Recovered read position versus true read position for the spectral solution and
the spectral solution followed by semi-supervised seriation.

We see that the number of misplaced reads significantly decreases in the
semi-supervised seriation solution.
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Conclusion

Very diverse set of algorithmic solutions. . .

� Here: new class of spectral methods based on seriation results.

� Exact recovery results are easy to derive.

� Almost completely explicit perturbation analysis.

� More robust in certain settings.

Coming soon. . .

� Kendall τ type bounds on approximate recovery.

� Better characterize errors with close to O(n log n) observations.

NIPS 2014, ArXiv. . .
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