Extended Formulations, Lagrangian Relaxation, \&
 Column Generation: tackling large scale applications

François Vanderbeck

University of Bordeaux

INRIA Bordeaux-Sud-Ouest

part 1: Defining Extended Formulations

Outline

(1) Extented Formulations

- Formulation
- Extended Formulation
- Reformulation
- Decomposition \& Reformulation
(2) Examples
- Steiner Tree Problem
- Traveling Salesman Problem
- Capacitated Network Design
(3) How to build them
- Variable Splitting
- DP based reformulation
- LP separation
- Union of Polyhedra
- Reduced coefficient \& basis

4) Interests of Reformulations

Outline

(1) Extented Formulations

- Formulation
- Extended Formulation
- Reformulation
- Decomposition \& Reformulation
(2) Examples
- Steiner Tree Problem
- Traveling Salesman Problem
- Capacitated Network Design
B. How to build them
- Variable Splitting
- DP based reformulation
- LP separation
- Union of Polyhedra
- Reduced coefficient \& basis

Interests of Reformulations

Outline

(1) Extented Formulations

- Formulation
- Extended Formulation
- Reformulation
- Decomposition \& Reformulation
(2) Examples
- Steiner Tree Problem
- Traveling Salesman Problem
- Capacitated Network Design
(3) How to build them
- Variable Splitting
- DP based reformulation
- LP separation
- Union of Polyhedra
- Reduced coefficient \& basis

Interests of Reformulations

Formulation

Combinatorial Optimization Problem

$$
(C O) \equiv \min \{c(s): s \in \mathbf{S}\}
$$

where \mathbf{S} is the "discrete" set of feasible solutions.

Formulation

Combinatorial Optimization Problem

$$
(C O) \equiv \min \{c(s): s \in \mathbf{S}\}
$$

where \mathbf{S} is the "discrete" set of feasible solutions.

Formulation

A polyhedron $\mathrm{P}=\left\{x \in \mathbb{R}^{n}: A x \geq a\right\}$ is a formulation for (CO) iff $\min \{c(s): s \in \mathbf{S}\} \equiv \min \left\{c x: x \in \mathbf{P}_{\mathrm{I}}=\mathbf{P} \cap \mathbb{N}^{\mathbf{n}}\right\}$.

MIP - formulation \& Generic Solver

Integer Program

(IP) $\min \{c x: x \in X\}$
where $X=P \cap \mathbb{Z}^{n}$ with $P=\left\{x \in \mathbb{R}_{+}^{n}: A x \geq a\right\}$.

MIP - formulation \& Generic Solver

Integer Program

(IP) $\min \{c x: x \in X\}$
where $X=P \cap \mathbb{Z}^{n}$ with $P=\left\{x \in \mathbb{R}_{+}^{n}: A x \geq a\right\}$.

Mixed Integer Program

$$
\begin{gathered}
(M I P) \\
\text { where } X=P \cap\left(\mathbb{Z}^{n} \times \mathbb{R}^{p}\right) \text { with } P=\left\{(x, y) \in \mathbb{R}_{+}^{n} \times \mathbb{R}_{+}^{p}: G x+H y \geq b\right\} .
\end{gathered}
$$

MIP - formulation \& Generic Solver

Integer Program

(IP) $\min \{c x: x \in X\}$
where $X=P \cap \mathbb{Z}^{n}$ with $P=\left\{x \in \mathbb{R}_{+}^{n}: A x \geq a\right\}$.

MIP - formulation \& Generic Solver

Integer Program

(IP) $\min \{c x: x \in X\}$
where $X=P \cap \mathbb{Z}^{n}$ with $P=\left\{x \in \mathbb{R}_{+}^{n}: A x \geq a\right\}$.

- MIP solvers are efficient but "fail" beyond a certain size.
- They barely exploit "problem structure".
- The "quality" of the formulation is key for the solver.

Alternative formulations

A formulation is typically not unique

P and P^{\prime} can be alternative formulations for (CO) if $(C O) \equiv \min \left\{c x: x \in P \cap \mathbb{N}^{n}\right\} \equiv \min \left\{c^{\prime} x^{\prime}: x^{\prime} \in P^{\prime} \cap \mathbb{N}^{n^{\prime}}\right\}$

warning: can expressed in different variable-spaces.

Quality of Formulations

Stronger formulation (in the same space)

Formulation $P^{\prime} \subseteq \mathbb{R}^{n}$ is a stronger than $P \subseteq \mathbb{R}^{n}$ if $P^{\prime} \subset P$. Then, $\min \left\{c x^{\prime}: x^{\prime} \in P^{\prime}\right\} \geq \min \{c x: x \in P\}$

Dual Bound quality + considerations of Size + Symmetry issues

Ideal Formulation

The Convex hull of an IP set, P_{I}

$\operatorname{conv}\left(P_{I}\right)$ is the smallest closed convex set containing P_{I}.

$\operatorname{conv}\left(\boldsymbol{P}_{I}\right)$ is an ideal polyhedron / formulation
If P_{I} is defined by rational data, $\operatorname{conv}\left(P_{I}\right)$ is a polyhedron.

Outline

(1) Extented Formulations

- Formulation
- Extended Formulation
- Reformulation
- Decomposition \& Reformulation
(2) Examples
- Steiner Tree Problem
- Traveling Salesman Problem
- Capacitated Network DesignHow to build them
- Variable Splitting
- DP based reformulation
- LP separation
- Union of Polyhedra
- Reduced coefficient \& basisInterests of Reformulations

Extended Formulation

Given an initial compact formulation:

Extended Formulation

Extended Formulation

François Vanderbeck

Extended Formulation

The Projection

of $Q=\left\{(x, w) \in \mathbb{R}^{n+e}: G x+H w \geq d\right\}$ on the x-space is: $\operatorname{proj}_{x}(Q):=\left\{x \in \mathbb{R}^{n}: \exists w \in \mathbb{R}^{e}\right.$ such that $\left.(x, w) \in Q\right\}$.

The Projection

of $Q=\left\{(x, w) \in \mathbb{R}^{n+e}: G x+H w \geq d\right\}$ on the x-space is: $\operatorname{proj}_{x}(Q):=\left\{x \in \mathbb{R}^{n}: \exists w \in \mathbb{R}^{e}\right.$ such that $\left.(x, w) \in Q\right\}$.

Farka's Lemma

Given \tilde{x},

$$
\begin{gathered}
\left\{w \in \mathbb{R}_{+}^{n}: H w \geq(d-G \tilde{x})\right\} \neq \emptyset \\
\quad \text { if and only if } \\
\forall v \in \mathbb{R}_{+}^{m}: v H \leq 0, \quad v(d-G \tilde{x}) \leq 0 .
\end{gathered}
$$

Hence, a polyhedral description of the projection in the x-space is:
$\operatorname{proj}_{x}(Q)=\left\{x \in \mathbb{R}^{n}: v^{j}(d-G x) \leq 0 \quad j \in J\right\}$
$\left\{v^{j}\right\}_{j \in J}$, exteme rays. of $\left\{v \in \mathbb{R}_{+}^{m}: v H \leq 0\right\}$.

Extended Formulations

An extended formulation for an IP set $\boldsymbol{P}_{I} \subseteq \mathbb{N}^{n}$

is a polyhedron $Q=\left\{(x, w) \in \mathbb{R}^{n+e}: G x+H w \geq d\right\}$ such that

$$
P_{I}=\operatorname{proj}_{x}(Q) \cap \mathbb{N}^{n} .
$$

Extended Formulations

An extended formulation for an IP set $\boldsymbol{P}_{I} \subseteq \mathbb{N}^{n}$

is a polyhedron $Q=\left\{(x, w) \in \mathbb{R}^{n+e}: G x+H w \geq d\right\}$ such that

$$
P_{I}=\operatorname{proj}_{x}(Q) \cap \mathbb{N}^{n} .
$$

Tight Extended Formulations

A tight extended formulation for an IP set $\boldsymbol{P}_{I} \subseteq \mathbb{N}^{n}$

is a polyhedron $Q=\left\{(x, w) \in \mathbb{R}^{n+e}: G x+H w \geq d\right\}$ such that $\boldsymbol{\operatorname { c o n v }}\left(\boldsymbol{P}_{I}\right)=\operatorname{proj}_{x}(Q)$.

Compact Extended Formulations

A formulation (resp. extended f.) is "Compact"

if the length of the description of $P($ resp. $Q)$ is polynomial in the input length of the description of $C O$.

Compact Extended Formulations

A formulation (resp. extended f.) is "Compact"

if the length of the description of $P($ resp. $Q)$ is polynomial in the input length of the description of $C O$.

Compactness of an Ideal Formulation

An ideal formulation cannot be compact unless $C O$ is in \mathscr{P}.

IP Extended Formulations

An extended IP-formulation for an IP set $\boldsymbol{P}_{I} \subseteq \mathbb{N}^{n}$ is an IP-set $Q_{I}=\left\{(x, w) \in \mathbb{R}^{n} \times \mathbb{N}^{e}: G x+H w \geq b\right\}$ s.t.

$$
\boldsymbol{P}_{I}=\operatorname{proj}_{x} \boldsymbol{Q}_{I} .
$$

Outline

(1) Extented Formulations

- Formulation
- Extended Formulation
- Reformulation
- Decomposition \& Reformulation
(2) Examples
- Steiner Tree Problem
- Traveling Salesman Problem
- Capacitated Network DesignHow to build them
- Variable Splitting
- DP based reformulation
- LP separation
- Union of Polyhedra
- Reduced coefficient \& basis

Interests of Reformulations

Change of variables: $x=T w$

Reformulation: a special case of extended formulation

An extended formulation based on a change of variables: $\mathbf{x}=$ Tw.

$$
\begin{aligned}
Q=\left\{(x, w) \in \mathbb{R}^{n+e}: T w\right. & =x \\
E w & \geq e\} .
\end{aligned}
$$

Then,

$$
\operatorname{proj}_{x}(Q)=T(W):=\{x=T w \in \mathbb{R}^{n}: \underbrace{E w \geq e, w \in \mathbb{R}^{e}}_{w \in W}\} .
$$

A reformulation for an IP-set $\boldsymbol{P}_{I} \subseteq \mathbb{N}^{n}$
is a polyhedron W along a linear transformation, $\mathbf{x}=\mathbf{T w}$, s.t.

$$
P_{I}=T(W) \cap \mathbb{N}^{n}
$$

A IP-reformulation for an IP-set $\boldsymbol{P}_{I} \subseteq \mathbb{N}^{n}$
is an IP-set $W_{I}=W \cap \mathbb{N}^{e}$ along a linear transformation, $\mathbf{x}=\mathbf{T w}$, s.t.,

$$
P_{I}=T\left(W_{I}\right)
$$

Minkowski's representation: a special case of reformulation

Polyhedron conv $\left(P_{I}\right)$ can be defined by its extreme points and rays:

$$
Q=\left\{(x, \lambda, \mu) \in \mathbb{R}^{n} \times \mathbb{R}_{+}^{|G|} \times \mathbb{R}_{+}^{|R|}: x=\sum_{g \in G} x^{g} \lambda_{g}+\sum_{r \in R} v^{r} \mu_{r}, \sum_{g \in G} \lambda_{g}=1\right\}
$$

change of variables: $\mathbf{x}=\mathbf{X} \lambda+\mathbf{V} \mu$.

Outline

(1) Extented Formulations

- Formulation
- Extended Formulation
- Reformulation
- Decomposition \& Reformulation
(2) Examples
- Steiner Tree Problem
- Traveling Salesman Problem
- Capacitated Network DesignHow to build them
- Variable Splitting
- DP based reformulation
- LP separation
- Union of Polyhedra
- Reduced coefficient \& basis

Interests of Reformulations

Extended formulation based on a subset of constraints

Original formulation

$$
\begin{aligned}
{[\mathrm{F}] \equiv \min \{c x} & \\
A x & \geq a \\
B x & \geq b \\
x & \left.\in \mathbb{N}^{n}\right\}
\end{aligned}
$$

Subproblem

$$
\begin{gathered}
\mathrm{P} \equiv\{B x \geq b \\
\left.x \in \mathbb{R}_{+}^{n}\right\} \\
P_{I}=\mathrm{P} \cap \mathbb{N}^{n}
\end{gathered}
$$

Decomposition + SP Reformulation

Extended formulation based on a subset of constraints

Original formulation

$$
\begin{aligned}
{[\mathrm{F}] \equiv \min \{c x} & \\
A x & \geq a \\
B x & \geq b \\
x & \left.\in \mathbb{N}^{n}\right\}
\end{aligned}
$$

Subproblem

$$
\begin{gathered}
\mathrm{P} \equiv\{B x \geq b \\
\left.x \quad \mathbb{R}_{+}^{n}\right\} \\
P_{I}=\mathrm{P} \cap \mathbb{N}^{n}
\end{gathered}
$$

$$
P_{I} \rightarrow\left\{x=T w: E w \geq e, w \in \mathbb{N}^{e}\right\}
$$

Extended reformulation

$$
\begin{aligned}
{[\mathrm{R}] \equiv \min \{c T w} & \\
A T w & \geq a \\
E w & \geq e \\
w & \left.\in \mathbb{N}^{p}\right\}
\end{aligned}
$$

Extended formulation based on a subset of constraints

Original formulation

$$
\begin{aligned}
{[\mathrm{F}] \equiv \min \{c x} & \\
A x & \geq a \\
B x & \geq b \\
x & \left.\in \mathbb{N}^{n}\right\}
\end{aligned}
$$

Subproblem

$$
\begin{gathered}
\mathrm{P} \equiv\{B x \geq b \\
\left.x \in \mathbb{R}_{+}^{n}\right\} \\
P_{I}=\mathrm{P} \cap \mathbb{N}^{n}
\end{gathered}
$$

Special case: Dantzig-Wolfe Reformulation

$$
\begin{aligned}
{[\mathrm{M}] \equiv \min \left\{\sum_{g \in G} c x^{g} \lambda_{g}\right.} & \\
\sum_{g \in G} A x^{g} \lambda_{g} & \geq a \\
\sum_{g \in G} \lambda_{g} & =1 \\
\lambda & \left.\in\{0,1\}^{|G|}\right\}
\end{aligned}
$$

Applying Minkowski
$x=\sum_{g \in G} x^{g} \lambda_{g}$

(IP)

$$
z=\min \left\{c x: A x \geq a, B x \geq b, x \in \mathbb{Z}_{+}^{n}\right\}
$$

where $A x \geq a$ represent "complicating constraints" while the set $B x \geq b$ is "more tractable"

- Relaxing $A x \geq a$ while penalizing (pricing) their violation in the objective \rightarrow Lagrangian relaxation
- Reformulate the problem as selection of solutions to set $B x \geq b$ that satisfy $A x \geq a \rightarrow$ Dantzig-Wolfe Reformulation - Column Generation

Relaxing the constraints $\boldsymbol{A x} \geq \boldsymbol{a}$ decomposes the problem into K smaller size optimization problems:

$$
\min \left\{c^{k} x^{k}: B^{k} x^{k} \geq b^{K}\right\}
$$

The "complicating" constraints only depend on the aggregate variables:

$$
y=\sum_{k=1}^{K} x^{k} \quad Y=\left\{y \in \mathbb{Z}_{+}^{n}: A y \geq a\right\} .
$$

Extended formulation based on a subset of variables

Original formulation

$$
\begin{aligned}
{[\mathrm{F}] \equiv \min \{c x+h y} & \\
G x+H y & \geq d \\
x \in \mathbb{N}^{n}, \quad y & \left.\in \mathbb{N}^{p}\right\}
\end{aligned}
$$

$$
P_{I} \rightarrow\left\{y=T w: E w \geq e(x), w \in \mathbb{R}^{e}\right\}
$$

Extended reformulation

$$
\begin{aligned}
{[\mathrm{R}] \equiv \min \{c x+h T w} & \\
G x+H T w & \geq d \\
E w & \geq e(x) \\
x \in \mathbb{N}^{n}, \quad w & \left.\in \mathbb{R}^{e}\right\}
\end{aligned}
$$

$$
\begin{gathered}
\min c x+h y \\
G x+H y \geq d \\
\mathbf{x} \in \mathbb{Z}^{\mathbf{n}}, \mathbf{y} \in \mathbb{R}_{+}^{\mathbf{p}}
\end{gathered}
$$

- The integer variables \mathbf{x} are seen as the "important" decisions: ex. network design
- Fix \mathbf{x} and compute the associated optimal y (solve SP).
- A feedback loop allowing one to adjust the \mathbf{x} solution after obtaining the associated \mathbf{y} : Bender's cuts.

$$
\begin{gathered}
\min \left\{c x+h y: G x+H y \geq d, x \in Z^{n}, y \in R_{+}^{p}\right\} \\
\min \left\{c x+\phi(x): x \in \operatorname{proj}_{x}(Q) \cap \mathbb{Z}^{n}\right\} \rightarrow \text { а MIP }
\end{gathered}
$$

where

$$
Q=\left\{(x, y) \in R^{n} \times R_{+}^{p}: G x+H y \geq d\right\}
$$

$$
\begin{aligned}
\phi(\mathbf{x}) & =\min \left\{h y: H y \geq d-G \mathbf{x}, y \in R_{+}^{p}\right\} \\
& =\max \left\{u(d-G \mathbf{x}): u H \leq h, u \in R_{+}^{m}\right\} \\
& =\max _{t=1, \ldots, T}\left\{u^{t}(d-G \mathbf{x})\right\} \quad \text { for } x \in \operatorname{proj}_{x}(Q)
\end{aligned}
$$

u^{t} are extreme points of $U=\left\{u \in \mathbb{R}_{+}^{m}: u H \leq h\right\}, v^{r}$ are extreme rays;
Bender's Master $\equiv \min c \mathbf{x}+\sigma$

$$
\begin{aligned}
\sigma & \geq u^{t}(d-G \mathbf{x}) t=1, \cdots, T \\
v^{r}(d-G \mathbf{x}) & \leq 0 r=1, \cdots, R \\
\mathbf{x} & \in \mathbb{Z}^{n}
\end{aligned}
$$

- Fixing \mathbf{x} leads to a decomposition per block in $\mathbf{y}^{\mathbf{k}}$ variables
- If moreover, blocks are identical, i.e. $\left(\mathbf{H}^{\mathbf{k}}, \mathbf{h}^{\mathbf{k}}\right)=(H, h) \forall k$, Benders cut generators obtained for one SP are valid forall k

$\min c \mathbf{x}$	$+h^{1} y^{1}$	$+h^{2} y^{2}$	$+h^{3} y^{3}$		
\mathbf{x}	$-\mathbf{x}^{1}$	$-\mathbf{x}^{2}$	$-\mathbf{x}^{\mathbf{3}}$		
	$G^{1} \mathbf{x}^{1}+H^{1} y^{1}$			\geq	0
		$G^{2} \mathbf{x}^{2}+H^{2} y^{2}$		d^{1}	
			$G^{3} \mathbf{x}^{\mathbf{3}}+H^{3} y^{3}$	\geq	d^{2}
\mathbf{x}	$\in \mathbb{N}^{n}$,	$\left(x^{k}, y^{k}\right)$	$\in \mathbb{R}^{n+q}$	$k=1, \ldots, 3$	d^{3}

- split x using $\mathbf{x}=\sum_{\mathbf{k}} \mathbf{x}^{\mathbf{k}}$ (or $\left.x=x^{k} \forall k\right)$
- Lagrangian dualization of constraints $x=\sum_{k} x^{k}$ (or $\left.x=x^{k} \forall k\right)$

Outline

(1) Extented Formulations

- Formulation
- Extended Formulation
- Reformulation
- Decomposition \& Reformulation

(2) Examples

- Steiner Tree Problem
- Traveling Salesman Problem
- Capacitated Network Design
(3) How to build them
- Variable Splitting
- DP based reformulation
- LP separation
- Union of Polyhedra
- Reduced coefficient \& basis
(4) Interests of Reformulations

Outline

(1) Extented Formulations

- Formulation
- Extended Formulation
- Reformulation
- Decomposition \& Reformulation
(2) Examples
- Steiner Tree Problem
- Traveling Salesman Problem
- Capacitated Network DesignHow to build them
- Variable Splitting
- DP based reformulation
- LP separation
- Union of Polyhedra
- Reduced coefficient \& basis

Interests of Reformulations

Example: Steiner Tree

Example: Steiner Tree

Special cases (that are "easy"):

- $T=\{i\}$: shortest path from r to i
- $T=V \backslash\{r\}$: minimum cost spanning tree

Steiner Tree: Arc flow formulation

Variables

- $x_{i j} \in\{0,1\}-\operatorname{arc}(i, j)$ is used or not
- $y_{i j} \in \mathbb{N}$ - number of connections going through (i, j)

$$
\begin{aligned}
& \min \sum_{(i, j) \in A} c_{i j} x_{i j} \\
& \sum_{j \in V^{+}(r)} y_{r j}=|T| \\
& \sum_{j \in V^{-}(i)} y_{j i}-\sum_{j \in V^{+}(i)} y_{i j}=1 i \in T \\
& \sum_{j \in V^{-}(i)} y_{j i}-\sum_{j \in V^{+}(i)} y_{i j}=0 i \in V \backslash(T \cup\{r\}) \\
& y_{i j} \leq|T| x_{i j}(i, j) \in A \\
& y \in \mathbb{R}_{+}^{|A|} \text {, } \\
& x \in\{0,1\}^{|A|}
\end{aligned}
$$

Example: Steiner Tree

Steiner Tree: Multi commodity flow formulation

Variable splitting

- $w_{i j}^{t} \in\{0,1\}-\operatorname{arc}(i, j)$ is used to connect terminal t
- $y_{i j}=\sum_{k} w_{i j}^{t}$ - defines a linear transformation

$$
\begin{aligned}
\min & \sum_{(i, j) \in A} c_{i j} x_{i j} \\
& \sum_{j \in V^{+}(r)} w_{r j}^{t}=1 t \in T
\end{aligned}
$$

$$
\sum_{j \in V^{-}(i)} w_{j i}^{t}-\sum_{j \in V^{+}(i)} w_{i j}^{t}=1 \quad i=t \in T
$$

$$
\begin{aligned}
\sum_{j \in V^{-}(i)} w_{j i}^{t}-\sum_{j \in V^{+}(i)} w_{i j}^{t} & =0 i \in V \backslash\{r, k\}, t \in T \\
w_{i j}^{t} & \leq x_{i j}(i, j) \in A, t \in T \\
w & \in \mathbb{R}_{+}^{|K| \times|A|}, \\
x & \in\{0,1\}^{|A|}
\end{aligned}
$$

Decomposition

- $\lambda_{p}^{t} \in\{0,1\}$ - path p is used to connect terminal t

$$
\begin{aligned}
\min \sum_{(i, j) \in A} c_{i j} x_{i j} & \\
\sum_{p \in P(k)} \lambda_{p}^{t} & =1 t \in T \\
\sum_{p \in P(k)} \delta_{i j}^{p} \lambda_{p}^{t} & \leq x_{i j}(i, j) \in A, t \in T \\
\lambda_{p}^{t} & \in\{0,1\}^{|P(k)|} t \in T \\
x_{i j} & \in\{0,1\}
\end{aligned}
$$

Steiner Tree: Network design formulation

projection in the x-space

$$
\begin{aligned}
\min \sum_{(i, j) \in A} c_{i j} x_{i j} & \\
\sum_{(i, j) \in \delta^{+}(S)} x_{i j} & \geq 1 S \ni r, T \backslash S \neq \emptyset \\
x & \in\{0,1\}^{|A|},
\end{aligned}
$$

projection in the x-space

$$
\begin{aligned}
\min \sum_{(i, j) \in A} c_{i j} x_{i j} & \\
\sum_{(i, j) \in \delta^{+}(S)} x_{i j} & \geq 1 S \ni r, T \backslash S \neq \emptyset \\
x & \in\{0,1\}^{|A|},
\end{aligned}
$$

Note: This projection onto the x space

- has the same LP value than the multi-commodity flow formulation
- is better than the initial compact aggregate flow formulation.

Outline

(1) Extented Formulations

- Formulation
- Extended Formulation
- Reformulation
- Decomposition \& Reformulation
(2) Examples
- Steiner Tree Problem
- Traveling Salesman Problem
- Capacitated Network Design
(3) How to build them
- Variable Splitting
- DP based reformulation
- LP separation
- Union of Polyhedra
- Reduced coefficient \& basis

Interests of Reformulations

$$
\begin{aligned}
& \min \sum c_{i j} x_{i j} \\
& \sum_{j} x_{i j}=\sum_{j} x_{i j}=\forall \quad \forall i \in V \\
& \sum_{i \notin S} \sum_{j \in V \backslash S} x_{i j} \geq \quad \forall S \text { with } \phi \in S \subset V \\
& x \in\{0,1\}^{|A|}
\end{aligned}
$$

$$
\begin{aligned}
& \min ^{\sum} c_{i j} x_{i j}
\end{aligned}
$$

$$
\begin{aligned}
& x \in\{0,1\}^{|A|}, w \quad \in \quad[0,1] \forall(i, j) \in A, t \in V \backslash\{r\}
\end{aligned}
$$

Outline

(1) Extented Formulations

- Formulation
- Extended Formulation
- Reformulation
- Decomposition \& Reformulation
(2) Examples
- Steiner Tree Problem
- Traveling Salesman Problem
- Capacitated Network DesignHow to build them
- Variable Splitting
- DP based reformulation
- LP separation
- Union of Polyhedra
- Reduced coefficient \& basis

Interests of Reformulations

Multi-Commodity Capacitated Network Design

$$
\left.\begin{array}{rl}
{[\mathrm{F}] \equiv \min \left\{\sum_{i j k} c_{i j}^{k} x_{i j}^{k}+\sum_{i j} f_{i j} y_{i j}\right.} & \\
\sum_{j} x_{j i}^{k}-\sum_{j} x_{i j}^{k} & =d_{i}^{k} \forall i, k \\
\sum_{k} x_{i j}^{k} & \leq u_{i j} y_{i j} \forall i, j \\
x_{i j}^{k} & \geq 0 \quad \forall i, j, k \\
y_{i j} & \in \mathbb{N} \forall i, j\}
\end{array}\right\} \begin{aligned}
{\left[S P^{i j}\right] \equiv \min \left\{\sum_{k} c^{k} x^{k}+f y:\right.} \\
\sum_{k} x^{k} \leq u y \\
\left.x^{k} \leq \min \left\{d^{k}, u y\right\} \forall k\right\}
\end{aligned}
$$

Network Design: Extended form. for the SPs

$$
\begin{aligned}
& \text { Let } y_{i j}^{s}=1 \text { and } x_{i j}^{k s}=x_{i j}^{k} \text { if } y_{i j}=s . \\
& {\left[S P^{i j}\right] \equiv \min \left\{\sum_{k s} c_{i j}^{k} x_{i j}^{k s}+\sum_{s} f_{i j} s y_{i j}^{s}:\right.} \\
& \sum_{s} y_{i j}^{s} \leq 1 \\
&(s-1) u_{i j} y_{i j}^{s} \leq \sum_{k} x_{i j}^{k s} \leq s u_{i j} y_{i j}^{s} \forall s \\
& x_{i j}^{k s}\left.\leq \min \left\{d^{k}, s u_{i j}\right\} y_{i j}^{s} \quad \forall k, s\right\}
\end{aligned}
$$

Extended formulation for the arc design subproblem (Union of Polyhedra) [Croxton, Gendron and Magnanti OR07]

$$
\begin{aligned}
{[\mathrm{R}] \equiv \min \left\{\sum_{i j k s} c_{i j}^{k} x_{i j}^{k s}+\sum_{i j s} f_{i j} s y_{i j}^{s}\right.} & \\
\sum_{j s} x_{j i}^{k s}-\sum_{j s} x_{i j}^{k s} & =d_{i}^{k} \forall i, k \\
(s-1) u_{i j} y_{i j}^{s} \leq \sum_{k} x_{i j}^{k s} & \leq s u_{i j} y_{i j}^{s} \forall i, j, s \\
0 \leq x_{i j}^{k s} & \leq d^{k} y_{i j}^{s} \forall i, j, k, s \\
\sum_{s} y_{i j}^{s} & =1 \forall i, j \\
y_{i j}^{s} & \in\{\mathbf{0 , 1 \}} \forall i, j, s\}
\end{aligned}
$$

[Frangioni \& Gendron, DAM09]

Network Design: Union of Polyhedra

Network Design: column genenration formulation

$$
\begin{aligned}
& {[\mathrm{M}] \equiv \min \left\{\sum_{i, j, s \in G^{i}}\left(c_{i j}^{k} x_{k s}^{g}+f_{i j} s y_{s}^{g}\right) \lambda_{s}^{i j}\right.} \\
& \sum_{j s} \sum_{g \in G G^{j}} x_{k s}^{g} \lambda_{g}^{i j}-\sum_{j s} \sum_{g \in G^{j}} x_{k s}^{g} \lambda_{g}^{i j}=d_{i}^{k} \forall i, k \\
& \sum_{g \in G^{i j}} \lambda_{g}^{i j} \leq 1 \forall i, j \\
& \left.\lambda_{g}^{i j} \in\{0,1\} \forall i, j, g \in G^{i j}\right\}
\end{aligned}
$$

[Frangioni \& Gendron WP10]

Outline

(1) Extented Formulations

- Formulation
- Extended Formulation
- Reformulation
- Decomposition \& Reformulation
(2) Examples
- Steiner Tree Problem
- Traveling Salesman Problem
- Capacitated Network Design
(3) How to build them
- Variable Splitting
- DP based reformulation
- LP separation
- Union of Polyhedra
- Reduced coefficient \& basis
(4)

Interests of Reformulations

Outline

(1) Extented Formulations

- Formulation
- Extended Formulation
- Reformulation
- Decomposition \& Reformulation
(2) Examples
- Steiner Tree Problem
- Traveling Salesman Problem
- Capacitated Network Design
(3) How to build them
- Variable Splitting
- DP based reformulation
- LP separation
- Union of Polyhedra
- Reduced coefficient \& basis

Interests of Reformulations

- Variable Splitting
- Multi-Commodity Flow: $x_{i j}=\sum_{k} x_{i j}^{k}$
- Unary expansion: $x=\sum_{q=0}^{u} q w_{q}, \sum_{q=0}^{u} w_{q}=1, w \in\{0,1\}^{u+1}$
- Binary expansion: $x=\sum_{p=0}^{\log [u]} w_{p},, w \in\{0,1\}^{\log u}$
- Dynamic Programming Solver \rightarrow Network Flow LP [Martin et al]
- Separation is easy \rightarrow Separation LP [Martin et al]
- Reduced coefficent / basis reformulations [Aardal et al]
- Union of Polyhedra [Balas]
- ...

Unary expansion: Time-Indexed Formulation

Single machine scheduling problem (with integer data):

$$
S_{j} \geq S_{i}+p_{i} \text { or } S_{i} \geq S_{j}+p_{j} \forall i, j
$$

requires big M formulation: $S_{j} \geq S_{i}+p_{i}-M\left(1-x_{i j}\right)$.

Unary expansion: Time-Indexed Formulation

Single machine scheduling problem (with integer data):

Change of variables: $\quad S_{j}=\sum_{t} t w_{j t}$
with $w_{j t}=1$ iff job j starts at the beginning of $[t, t+1]$.

$$
\begin{aligned}
\sum_{j \in J} w_{j 0} & =1 \\
\sum_{j \in J} w_{j t}-\sum_{j \in J} w_{j, t-p_{j}} & =0 \quad \forall t \geq 1
\end{aligned}
$$

- Variable Splitting
- Multi-Commodity Flow: $x_{i j}=\sum_{k} x_{i j}^{k}$
- Unary expansion: $x=\sum_{q=0}^{u} q w_{q}, \sum_{q=0}^{u} w_{q}=1, w \in\{0,1\}^{u+1}$
- Binary expansion: $x=\sum_{p=0}^{\log [u]} w_{p},, w \in\{0,1\}^{\log u}$
- Dynamic Programming Solver \rightarrow Network Flow LP [Martin et al]
- Separation is easy \rightarrow Separation LP [Martin et al]
- Reduced coefficent / basis reformulations [Aardal et al]
- Union of Polyhedra [Balas]
- ...

Outline

(1) Extented Formulations

- Formulation
- Extended Formulation
- Reformulation
- Decomposition \& Reformulation
(2) Examples
- Steiner Tree Problem
- Traveling Salesman Problem
- Capacitated Network Design
(3) How to build them
- Variable Splitting
- DP based reformulation
- LP separation
- Union of Polyhedra
- Reduced coefficient \& basis

Interests of Reformulations

DP based reformulation: the knapsack example

$$
\max \left\{\sum_{i} p_{i} x_{i}: \sum_{i} a_{i} x_{i} \leq b, x_{i} \in \mathbb{N}\right\}
$$

- DP Recursion: $V(c)=\max _{i=1, \ldots, n: c \geq a_{i}}\left\{V\left(c-a_{i}\right)+p_{i}\right\}$
- in LP form:

$$
\begin{aligned}
\min V(b) & \\
V(c)-V\left(c-a_{i}\right) & \geq p_{i} \quad i=1, \ldots, n, c=a_{i}, \cdots, b \\
V(0) & =0
\end{aligned}
$$

- its Dual: "longest path problem"

$$
\max \left\{\sum_{i} p_{i} x_{i}: \sum_{i} a_{i} x_{i} \leq b, x_{i} \in \mathbb{N}\right\}
$$

- DP Recursion: $V(c)=\max _{i=1, \ldots, n: c \geq a_{i}}\left\{V\left(c-a_{i}\right)+p_{i}\right\}$
- in LP form:

$$
\begin{aligned}
\min V(b) & \\
V(c)-V\left(c-a_{i}\right) & \geq \\
V(0) & =0
\end{aligned} \quad i=1, \ldots, n, c=a_{i}, \cdots, b
$$

- its Dual: "longest path problem"

$$
\begin{array}{rlrl}
\max \sum_{j=1}^{n} \sum_{r=0}^{b-a_{i}} c_{i} w_{i c} & & \\
\sum_{i} w_{i c} & =1 & & c=0 \\
\sum_{i} w_{i c}-\sum_{i} w_{i, c-a_{i}} & =0 & c=1, \cdots, b-1 \\
\sum_{i} w_{i, c-a_{i}} & =1 & c=b \\
w_{i c} & \geq 0 & & i=1, \cdots, n ; c=0, \cdots, b-a_{i}
\end{array}
$$

DP based reformulation: Multi-Echelon Lot-Sizing

Variables

- $x_{e, t}$ - production of intermediate product of echelon e in period t
- $s_{e, t}$ - stock of echelon e product at the end of period t

$$
\begin{array}{ll}
x_{e, t}+s_{e, t-1} & =x_{e+1, t}+s_{e, t} \\
x_{e, t}+s_{e, t-1} & \text { for } e=1, \ldots, E-1 \\
\text { for } e=E
\end{array}
$$

DP based reformulation: Multi-Echelon Lot-Sizing

Dominance property

\exists opt solution where $x_{e, t} \cdot s_{e, t-1}=0 \forall e, t, \Rightarrow$ production plan is a tree:

DP based reformulation: Multi-Echelon Lot-Sizing

Dominance property

\exists opt solution where $x_{e, t} \cdot s_{e, t-1}=0 \forall e, t, \Rightarrow$ production plan is a tree:

Dynamic programming

State (e, t, a, b) corresponds to accumulating at echelon e in period t a production covering exactly the demand of periods a, \ldots, b.

$$
\begin{aligned}
V(e, t, a, b)= & \min \{V(e, t+1, a, b), \\
& \left.\min _{l=a, \ldots, b}\left\{V(e+1, t, a, l)+c_{e t}^{k} D_{a l}^{k}+f_{e t}^{k}+V(e, t+1, l+1, b)\right\}\right\}
\end{aligned}
$$

- DP Recursion:

$$
\begin{aligned}
V(e, t, a, b)= & \min \{V(e, t+1, a, b), \\
& \left.\min _{l=a, \ldots, b}\left\{V(e+1, t, a, l)+c_{e t}^{k} D_{a l}^{k}+f_{e t}^{k}+V(e, t+1, l+1, b)\right\}\right\}
\end{aligned}
$$

- in LP form:
$\max V(1,1,1, T)$

$$
\begin{aligned}
V(e, t, a, b) & \leq V(e, t+1, a, b) \forall e, t, a, b \\
V(e, t, a, b) & \leq V(e+1, t, a, l)+c_{e t}^{k} D_{a l}^{k}+f_{e t}^{k}+V(e, t+1, l+1, b) \forall e, t, a, b, l \\
V(E+1, t, a, b) & =0 \forall t, a, b
\end{aligned}
$$

- its Dual: flow on hyper-arcs
$w_{e, t, a l, l, b}=1$ if at echelon e in period t production covers demands from period a to period l, while the rest of demand up to b, shall be covered in the future.

DP based reformulations

[Martin et al OR90] When a problem can be solved by dynamic programming,

$$
V(l)=\min _{(J, l) \in \mathscr{A}}\left\{\sum_{j \in J} V(j)+c(J, l)\right\},
$$

an extended formulation consist in modeling a decision tree in an hyper-graph

- Variable Splitting
- Multi-Commodity Flow: $x_{i j}=\sum_{k} x_{i j}^{k}$
- Unary expansion: $x=\sum_{q=0}^{u} q w_{q}, \sum_{q=0}^{u} w_{q}=1, w \in\{0,1\}^{u+1}$
- Binary expansion: $x=\sum_{p=0}^{\log [u]} w_{p},, w \in\{0,1\}^{\log u}$
- Dynamic Programming Solver \rightarrow Network Flow LP [Martin et al]
- Separation is easy \rightarrow Separation LP [Martin et al]
- Reduced coefficent / basis reformulations [Aardal et al]
- Union of Polyhedra [Balas]
- ...

Outline

(1) Extented Formulations

- Formulation
- Extended Formulation
- Reformulation
- Decomposition \& Reformulation
(2) Examples
- Steiner Tree Problem
- Traveling Salesman Problem
- Capacitated Network Design
(3) How to build them
- Variable Splitting
- DP based reformulation
- LP separation
- Union of Polyhedra
- Reduced coefficient \& basis

Interests of Reformulations

Reformulation of the Uncapacitated Lot-Sizing: LP sep. \& reform.

$$
\begin{gathered}
\min \sum_{t=1}^{n} p_{t} x_{t}+\sum_{t=1}^{n} h_{t} s_{t}+\sum_{t=1}^{n} q_{t} y_{t} \\
s_{t-1}+x_{t}=d_{t}+s_{t} \forall t \\
x_{t} \leq M y_{t} \forall t \\
s, x \in R_{+}^{n}, y \in\{0,1\}^{n}
\end{gathered}
$$

Reformulation of the Uncapacitated Lot-Sizing: LP sep. \& reform.

$$
\begin{gathered}
\min \sum_{t=1}^{n} p_{t} x_{t}+\sum_{t=1}^{n} h_{t} s_{t}+\sum_{t=1}^{n} q_{t} y_{t} \\
s_{t-1}+x_{t}=d_{t}+s_{t} \forall t \\
x_{t} \leq M y_{t} \forall t \\
s, x \in R_{+}^{n}, y \in\{0,1\}^{n}
\end{gathered}
$$

Facet-defining inequalities: $L=\{1, \ldots, l\}, S \subseteq L$

$$
\sum_{j \in S} x_{j}+\sum_{j \in L \backslash S} d_{j l} y_{j} \geq d_{1 l}
$$

Let $\mu_{j l}=\min \left\{x_{j}, d_{j l} y_{j}\right\}$ for $1 \leq j \leq l \leq n \Rightarrow$ a tight and compact extended formulation is obtained from the OF by adding:

$$
\begin{aligned}
\sum_{j=1}^{l} \mu_{j l} & \geq d_{1 l} \quad 1 \leq l \leq n \\
\mu_{j l} & \leq x_{j} 1 \leq j \leq l \leq n \\
\mu_{j l} & \leq d_{j l} y_{j} \quad 1 \leq j \leq l \leq n
\end{aligned}
$$

Robust Optimization:

$\min \{\quad c x$

$$
\begin{array}{rlr}
c \boldsymbol{x} & & \text { with } A^{\xi}=A+\sum_{k} A^{k} \xi_{k} \\
A^{\xi} \boldsymbol{x} & \geq \boldsymbol{a} \forall \xi \in \Xi & \\
\boldsymbol{x} & \left.\in \mathbb{N}^{n}\right\}, & \text { and } \Xi=\left\{\xi \in \mathbb{R}^{K}: B \xi \geq b\right\} .
\end{array}
$$

The separation problem:

$$
\begin{aligned}
& \sum_{j} a_{i j} x+\min \left\{\sum_{k} \sum_{j} a_{i j}^{k} \xi_{k} x_{j}: B \xi \geq b, \xi \in \mathbb{R}^{K}\right\} \geq a_{i 0} ? \quad \forall i \\
& \sum_{j} a_{i j} x+\max \left\{u b: u B \leq \sum_{j} a_{i j}^{k} x_{j} \forall k, u \in \mathbb{R}^{m}\right\} \geq a_{i 0} ? \quad \forall i
\end{aligned}
$$

The extended formulation:

$$
\begin{aligned}
& \min \{\quad c x \\
& \sum_{j} a_{i j} x+u b \geq a_{i 0} \quad \forall i \\
& u B \leq \sum_{j} a_{i j}^{k} x_{j} \quad \forall k \\
& u \in \mathbb{R}^{m}\left.x \in \mathbb{N}^{n}\right\}
\end{aligned}
$$

Outline

(1) Extented Formulations

- Formulation
- Extended Formulation
- Reformulation
- Decomposition \& Reformulation
(2) Examples
- Steiner Tree Problem
- Traveling Salesman Problem
- Capacitated Network Design
(3) How to build them
- Variable Splitting
- DP based reformulation
- LP separation
- Union of Polyhedra
- Reduced coefficient \& basisInterests of Reformulations

The $1-k$ Configuration example

$$
\begin{gathered}
Y=\left\{\left(x_{0}, x\right) \in\{0,1\}^{n+1}: k x_{0}+\sum_{j=1}^{n} x_{j} \leq n\right\} \\
Y^{0}=\left\{x_{0}=0, \sum_{j=1}^{n} x_{j} \leq n\right\} \quad \cup \quad Y^{1}=\left\{x_{0}=1, \sum_{j=1}^{n} x_{j} \leq n-k\right\}
\end{gathered}
$$

Tight extended formulation:

$$
\begin{aligned}
x_{j} & =x_{j}^{0}+x_{j}^{1} j=1, \ldots, n \\
x_{j}^{0} & \leq 1-x_{0} j=1, \ldots, n \\
x_{j}^{1} & \leq x_{0} \quad j=1, \ldots, n \\
\sum_{j=1}^{n} x_{j}^{1} & \leq(n-k) x_{0} \\
x & \in[0,1]^{3 n-2}
\end{aligned}
$$

Outline

(1) Extented Formulations

- Formulation
- Extended Formulation
- Reformulation
- Decomposition \& Reformulation
(2) Examples
- Steiner Tree Problem
- Traveling Salesman Problem
- Capacitated Network Design
(3) How to build them
- Variable Splitting
- DP based reformulation
- LP separation
- Union of Polyhedra
- Reduced coefficient \& basisInterests of Reformulations

The knapsack problem example

$$
X=P^{1} \cap \mathbb{Z}^{n}=P^{2} \cap \mathbb{Z}^{n}
$$

where

$$
\begin{gathered}
P^{1}=\left\{x \in[0,1]^{5}: 97 x_{1}+65 x_{2}+47 x_{3}+46 x_{4}+25 x_{5} \leq 136\right\} \\
P^{2}=\left\{x \in[0,1]^{5}: 5 x_{1}+3 x_{2}+3 x_{3}+2 x_{4}+1 x_{5} \leq 6\right\} \\
P^{2} \subset P^{1}
\end{gathered}
$$

Outline

(1) Extented Formulations

- Formulation
- Extended Formulation
- Reformulation
- Decomposition \& Reformulation
(2) Examples
- Steiner Tree Problem
- Traveling Salesman Problem
- Capacitated Network Design
(3) How to build them
- Variable Splitting
- DP based reformulation
- LP separation
- Union of Polyhedra
- Reduced coefficient \& basis

4) Interests of Reformulations

Extended formulation: Interests

(1) Improved formulation (better LP bound \& rounding heuristic)
extra variables
\downarrow
tighter relations,
linearisation

Extended formulation: Interests

(1) Improved formulation (better LP bound \& rounding heuristic)
(2) Simpler formulation (captures the combinatorial structure)
extra variables
\downarrow
fewer constaints
structure built into var. definitions

(1) Improved formulation (better LP bound \& rounding heuristic)
(2) Simpler formulation (captures the combinatorial structure)
(3) Direct use of a MIP-Solver (solved by standard tools)
(1) Improved formulation (better LP bound \& rounding heuristic)
(2) Simpler formulation (captures the combinatorial structure)
(3) Direct use of a MIP-Solver (solved by standard tools)
(9) Rich variable space (to express cuts or branching)

Vehicle routing: $x_{a}=\sum_{l=0, \ldots, C} w_{l}^{a}$ $w_{q}^{a}=1$ if vehicle on $\operatorname{arc} a$ with load l,
$\sum_{l} \sum_{a \in \delta^{-}(i)} l w_{l}^{a}-\sum_{l} \sum_{a \in \delta^{+}(i)} l w_{l}^{a}=d_{i}$
\rightarrow knapsack cover cuts.

[Uchoa]
(1) Improved formulation (better LP bound \& rounding heuristic)
(2) Simpler formulation (captures the combinatorial structure)
(3) Direct use of a MIP-Solver (solved by standard tools)
(9) Rich variable space (to express cuts or branching)

Vehicle routing: $x_{a}=\sum_{l=0, \ldots, C} w_{l}^{a}$ $w_{q}^{a}=1$ if vehicle on $\operatorname{arc} a$ with load l,

$$
\sum_{l} \sum_{a \in \delta^{-}(i)} l w_{l}^{a}-\sum_{l} \sum_{a \in \delta^{+}(i)} l w_{l}^{a}=d_{i}
$$

\rightarrow knapsack cover cuts.

[Uchoa]
(6) Reformulation can help to eliminate Symmetries

