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Extented Formulations

Formulation

Combinatorial Optimization Problem

(CO)≡min{c(s) : s ∈ S}
where S is the “discrete” set of feasible solutions.

Formulation

A polyhedron P= {x ∈ Rn : Ax≥ a} is a formulation for (CO) iff
min{c(s) : s ∈ S} ≡ min{cx : x ∈ PI = P∩Nn}.
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Extented Formulations

MIP - formulation & Generic Solver

Integer Program

(IP) min{cx : x ∈ X}
where X = P∩Zn with P= {x ∈ Rn

+ : Ax≥ a}.
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MIP solvers are efficient but “fail” beyond a certain size.
They barely exploit “problem structure”.
The “quality” of the formulation is key for the solver.
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Extented Formulations

Alternative formulations

A formulation is typically not unique

P and P′ can be alternative formulations for (CO) if
(CO) ≡ min{cx : x ∈ P∩Nn} ≡ min{c′x′ : x′ ∈ P′ ∩Nn′}
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warning: can expressed in different variable-spaces.
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Extented Formulations

Quality of Formulations

Stronger formulation (in the same space)

Formulation P′ ⊆ Rn is a stronger than P ⊆ Rn if P′ ⊂ P. Then,
min{cx′ : x′ ∈ P′} ≥min{cx : x ∈ P}
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Dual Bound quality + considerations of Size + Symmetry issues
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Extented Formulations

Ideal Formulation

The Convex hull of an IP set, PI

conv(PI) is the smallest closed convex set containing PI .
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conv(PI) is an ideal polyhedron / formulation

If PI is defined by rational data, conv(PI) is a polyhedron.
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Extented Formulations

Extended Formulation

Given an initial compact formulation:
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Extented Formulations

Extended Formulation
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Extented Formulations

Extended Formulation
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Extented Formulations

Extended Formulation
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Extented Formulations

Projection

The Projection

of Q= {(x, w) ∈ Rn+e : Gx+Hw≥ d} on the x-space is:
projx(Q) := {x ∈ Rn : ∃ w ∈ Re such that (x, w) ∈ Q}.
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Extented Formulations

Projection

The Projection

of Q= {(x, w) ∈ Rn+e : Gx+Hw≥ d} on the x-space is:
projx(Q) := {x ∈ Rn : ∃ w ∈ Re such that (x, w) ∈ Q}.

Farka’s Lemma

Given x̃,
{w ∈ Rn

+ : Hw≥ (d−G x̃ )} 6= ;
if and only if

∀v ∈ Rm
+ : vH ≤ 0, v(d−G x̃ ) ≤ 0.

Hence, a polyhedral description of the
projection in the x-space is:

projx(Q) = {x ∈ Rn : vj(d−Gx) ≤ 0 j ∈ J}

{vj}j∈J , exteme rays. of {v ∈ Rm
+ : vH ≤ 0}.
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Extented Formulations

Extended Formulations

An extended formulation for an IP set PI ⊆ Nn

is a polyhedron Q= {(x, w) ∈ Rn+e : Gx+Hw≥ d} such that
PI = projx(Q)∩Nn.
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Extented Formulations

Tight Extended Formulations

A tight extended formulation for an IP set PI ⊆ Nn

is a polyhedron Q= {(x, w) ∈ Rn+e : Gx+Hw≥ d} such that
conv(PI) = projx(Q).
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Extented Formulations

Compact Extended Formulations

A formulation (resp. extended f.) is “Compact”

if the length of the description of P (resp. Q) is polynomial in the input
length of the description of CO.
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Compactness of an Ideal Formulation

An ideal formulation cannot be compact unless CO is in P .

François Vanderbeck Extended Formulations, Lagrangian Relaxation, Column Gener. 18 / 72



Extented Formulations

Compact Extended Formulations

A formulation (resp. extended f.) is “Compact”

if the length of the description of P (resp. Q) is polynomial in the input
length of the description of CO.

w

1 2 3 4

1

2

3

5

(5)

(4)

x1

1

2

3

5

x2

Compactness of an Ideal Formulation

An ideal formulation cannot be compact unless CO is in P .

François Vanderbeck Extended Formulations, Lagrangian Relaxation, Column Gener. 18 / 72



Extented Formulations

IP Extended Formulations

An extended IP-formulation for an IP set PI ⊆ Nn

is an IP-set QI = {(x, w) ∈ Rn ×Ne : Gx+Hw≥ b} s.t.
PI = projxQI.
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Extented Formulations

Reformulation

Change of variables: x=T w
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Extented Formulations

Reformulation: a special case of extended formulation

An extended formulation based on a change of variables: x= Tw.

Q= {(x, w) ∈ Rn+e : Tw = x

Ew ≥ e}.

Then,

projx(Q) = T(W) := {x= Tw ∈ Rn : Ew≥ e, w ∈ Re
︸ ︷︷ ︸

w∈W

}.

A reformulation for an IP-set PI ⊆ Nn

is a polyhedron W along a linear transformation, x= Tw, s.t.
PI =T(W)∩Nn

A IP-reformulation for an IP-set PI ⊆ Nn

is an IP-set WI =W ∩Ne along a linear transformation, x= Tw, s.t.,
PI = T(WI)
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Extented Formulations

Minkowski’s representation: a special case of reformulation

Polyhedron conv(PI) can be defined by its extreme points and rays:

Q= {(x,λ,µ) ∈ Rn×R|G|+ ×R
|R|
+ : x=
∑

g∈G

xgλg+
∑

r∈R

vrµr,
∑

g∈G

λg = 1}

change of variables: x= Xλ+Vµ.
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Extented Formulations

Extended formulation based on a subset of constraints

Original formulation

[F]≡min
¦

c x

A x ≥ a

B x ≥ b

x ∈ Nn
©

Subproblem

P≡
¦

B x ≥ b

x ∈ R+n
©

PI = P∩Nn

Decomposition + SP Reformulation
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c x
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B x ≥ b

x ∈ Nn
©

Subproblem

P≡
¦

B x ≥ b

x ∈ R+n
©

PI = P∩Nn

PI →
¦

x= Tw : Ew≥ e, w ∈ Ne
©

Extended reformulation

[R]≡min
¦

c T w

A T w ≥ a

E w ≥ e

w ∈ Np
©
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Extented Formulations

Extended formulation based on a subset of constraints

Original formulation

[F]≡min
¦

c x

A x ≥ a

B x ≥ b

x ∈ Nn
©

Subproblem

P≡
¦

B x ≥ b

x ∈ R+n
©

PI = P∩Nn

Special case: Dantzig-Wolfe Reformulation

[M]≡min
¦∑

g∈G

c xg λg

∑

g∈G

A xg λg ≥ a

∑

g∈G

λg = 1

λ ∈ {0, 1}|G|
©

Applying Minkowski
x=
∑

g∈G xg λg
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x3

x4
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Extented Formulations

Price Decomposition (Dantzig)

(IP) z =min{cx : Ax ≥ a, Bx ≥ b, x ∈ Zn
+}

where Ax ≥ a represent “complicating constraints” while the set Bx ≥ b
is “more tractable”

Relaxing Ax ≥ a while penalizing (pricing) their violation in the
objective→ Lagrangian relaxation

Reformulate the problem as selection of solutions to set Bx ≥ b
that satisfy Ax ≥ a→ Dantzig-Wolfe Reformulation – Column
Generation
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Extented Formulations

Dantzig-Wolfe Decomposition: The block diagonal case

min c1x1 + c2 x2 + . . . + cK xK

A1 x1 + A2 x2 + . . . + AK xK ≥ a
B1 x1 ≥ b1

B2 x2 ≥ b2

. . . ≥
...

BK xK ≥ bK

x1 ∈ Zn1
+ , x2 ∈ Zn2

+ , . . . xK ∈ ZnK
+ .

Relaxing the constraints Ax ≥ a decomposes the problem into K
smaller size optimization problems:

min{ckxk : Bk xk ≥ bK}
The “complicating” constraints only depend on the aggregate variables:

y =
∑K

k=1 xk Y = {y ∈ Zn
+ : Ay ≥ a}.
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Extented Formulations

Extended formulation based on a subset of variables

Original formulation

[F]≡min
¦

c x+ h y

Gx+Hy ≥ d

x ∈ Nn, y ∈ Np
©

Subproblem

P≡
¦

Hy ≥ d−Gx

y ∈ Nq
©

PI = P∩Nq

PI →
¦

y= Tw : Ew≥ e(x), w ∈ Re
©

Extended reformulation

[R]≡min
¦

cx+ h T w

G x+H T w ≥ d

E w ≥ e(x)

x ∈ Nn, w ∈ Re
©
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Extented Formulations

Resource Decomposition (Benders)

min cx+ hy
Gx+Hy≥ d

x ∈ Zn, y ∈ Rp
+

The integer variables x are seen as the “important” decisions:
ex. network design

Fix x and compute the associated optimal y (solve SP).

A feedback loop allowing one to adjust the x solution after
obtaining the associated y: Bender’s cuts.
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Extented Formulations

Benders Decomposition

min{cx+ hy : Gx+Hy≥ d, x ∈ Zn, y ∈ Rp
+}

min{cx+φ(x) : x ∈ projx(Q)∩Z
n} → a MIP

where
Q= {(x, y) ∈ Rn ×Rp

+ : Gx+Hy≥ d}

φ(x) = min{hy : Hy≥ d−Gx, y ∈ Rp
+}

= max{u(d−Gx) : uH ≤ h, u ∈ Rm
+}

= max
t=1,...,T

{ut(d−Gx)} for x ∈ projx(Q)

ut are extreme points of U = {u ∈ Rm
+ : uH ≤ h}, vr are extreme rays;

Bender’s Master ≡ min cx+σ
σ ≥ ut(d−Gx) t = 1, · · · , T

vr(d−Gx) ≤ 0 r = 1, · · · , R

x ∈ Zn
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Extented Formulations

Benders Decomposition: The block diagonal case

min cx + h1y1 + h2y2 + · · · + hKyK

G1x + H1y1 ≥ d1

G2x + H2y2 ≥ d2

...
. . . ≥

...
GKx + HKyK ≥ dK

x ∈ Nn, yk ∈ Rq k = 1, . . . , K

Fixing x leads to a decomposition per block in yk variables

If moreover, blocks are identical, i.e. (Hk, hk) = (H, h)∀k,
Benders cut generators obtained for one SP are valid forall k
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Extented Formulations

Resource Splitting (Dantzig)

min cx +h1y1 +h2y2 +h3y3

x −x1 −x2 −x3 = 0
G1x1 +H1y1 ≥ d1

G2x2 +H2y2 ≥ d2

G3x3 +H3y3 ≥ d3

x ∈ Nn, (xk, yk) ∈ Rn+q k = 1, . . . , 3

split x using x=
∑

k xk (or x= xk∀k)

Lagrangian dualization of constraints x=
∑

k xk (or x= xk∀k)
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Examples

Example: Steiner Tree
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Examples

Example: Steiner Tree
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Special cases (that are “easy”):
T = {i} : shortest path from r to i
T = V \ {r} : minimum cost spanning tree
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Examples

Steiner Tree: Arc flow formulation

Variables

xij ∈ {0, 1}— arc (i, j) is used or not

yij ∈ N— number of connections going through (i, j)

min
∑

(i,j)∈A

cijxij

∑

j∈V+(r)

yrj = |T|

∑

j∈V−(i)

yji −
∑

j∈V+(i)

yij = 1 i ∈ T

∑

j∈V−(i)

yji −
∑

j∈V+(i)

yij = 0 i ∈ V \ (T ∪ {r})

yij ≤ |T| xij (i, j) ∈ A

y ∈ R|A|+ ,

x ∈ {0, 1}|A|
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Examples

Steiner Tree: Multi commodity flow formulation

Variable splitting

wt
ij ∈ {0, 1}— arc (i, j) is used to connect terminal t

yij =
∑

k wt
ij — defines a linear transformation

min
∑

(i,j)∈A

cijxij

∑

j∈V+(r)

wt
rj = 1 t ∈ T

∑

j∈V−(i)

wt
ji −
∑

j∈V+(i)

wt
ij = 1 i= t ∈ T

∑

j∈V−(i)

wt
ji −
∑

j∈V+(i)

wt
ij = 0 i ∈ V \ {r, k}, t ∈ T

wt
ij ≤ xij (i, j) ∈ A, t ∈ T

w ∈ R|K|×|A|+ ,

x ∈ {0, 1}|A|
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Examples

Steiner Tree: Path flow formulation

Decomposition

λt
p ∈ {0, 1}— path p is used to connect terminal t

min
∑

(i,j)∈A

cijxij

∑

p∈P(k)

λt
p = 1 t ∈ T

∑

p∈P(k)

δ
p
ijλ

t
p ≤ xij (i, j) ∈ A, t ∈ T

λt
p ∈ {0, 1}|P(k)| t ∈ T

xij ∈ {0, 1}
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Examples

Example: Steiner Tree

S

2 3

4 5

9 10 11 12 13

6

8

7

1

A

B

C

D
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Examples

Steiner Tree: Network design formulation

projection in the x-space

min
∑

(i,j)∈A

cijxij

∑

(i,j)∈δ+(S)

xij ≥ 1 S 3 r, T \ S 6= ;

x ∈ {0, 1}|A|,

S

2 3

4 5

9 10 11 12 13

6

8

7

1

A

B

C

D

Note: This projection onto the x space

has the same LP value than the multi-commodity flow formulation

is better than the initial compact aggregate flow formulation.
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Examples

Multi-commodity flow: Three-Index Flow for the ATSP

min
∑

cijxij
∑

j

xij =
∑

j

xij = 1 ∀ i ∈ V

∑

i∈S

∑

j∈V\S

xij ≥ 1 ∀ S with φ ⊂ S ⊂ V

x ∈ {0, 1}|A|

min
∑

cijxij

∑

j

wt
ij −
∑

j

wt
ji =







1 i= r
−1 t = i

0 otherwise
t ∈ V \ {r}

wt
ij ≤ xij ∀ (i, j) ∈ A, t ∈ V \ {r}

x ∈ {0, 1}|A|, w ∈ [0, 1] ∀(i, j) ∈ A, t ∈ V \ {r}
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Examples

Multi-Commodity Capacitated Network Design

[F] ≡min{
∑

ijk

ck
ij xk

ij +
∑

ij

fij yij

∑

j

xk
ji −
∑

j

xk
ij = dk

i ∀i, k

∑

k

xk
ij ≤ uij yij ∀i, j

xk
ij ≥ 0 ∀i, j, k

yij ∈ N ∀i, j}

[SPij] ≡min{
∑

k

ck xk + f y :

∑

k

xk ≤ u y

xk ≤ min{dk, u y}∀k}
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Examples

Network Design: Extended form. for the SPs

Let ys
ij = 1 and xks

ij = xk
ij if yij = s.

[SPij] ≡min{
∑

ks

ck
ij xks

ij +
∑

s
fij s ys

ij :

∑

s
ys

ij ≤ 1

(s− 1) uij ys
ij ≤
∑

k

xks
ij ≤ s uij ys

ij ∀s

xks
ij ≤ min{dk, s uij} ys

ij ∀k, s}

Extended formulation for the arc design subproblem (Union of Polyhedra) [Croxton,

Gendron and Magnanti OR07]
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Examples

Network Design: extended formulation

[R] ≡min{
∑

ijks

ck
ij xks

ij +
∑

ijs

fij s ys
ij

∑

js

xks
ji −
∑

js

xks
ij = dk

i ∀i, k

(s− 1) uij ys
ij ≤
∑

k

xks
ij ≤ s uij ys

ij ∀i, j, s

0 ≤ xks
ij ≤ dkys

ij ∀i, j, k, s
∑

s
ys

ij = 1 ∀i, j

ys
ij ∈ {0, 1} ∀i, j, s}

[Frangioni & Gendron, DAM09]
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Examples

Network Design: Union of Polyhedra
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Examples

Network Design: column genenration formulation

[M] ≡min{
∑

i,j,s,g∈Gij

(ck
ij xg

ks + fij s yg
s )λ

ij
g

∑

js

∑

g∈Gij

xg
ks λ

ij
g −
∑

js

∑

g∈Gij

xg
ks λ

ij
g = dk

i ∀i, k

∑

g∈Gij

λ
ij
g ≤ 1 ∀i, j

λ
ij
g ∈ {0, 1} ∀i, j, g ∈ Gij}

[Frangioni & Gendron WP10]
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How to build them

Ways to obtain extended formulations

Variable Splitting
Multi-Commodity Flow: xij =

∑

k xk
ij

Unary expansion: x=
∑u

q=0 q wq,
∑u

q=0 wq = 1, w ∈ {0, 1}u+1

Binary expansion: x=
∑logbuc

p=0 wp, , w ∈ {0, 1}log u

Dynamic Programming Solver→ Network Flow LP [Martin et al]

Separation is easy→ Separation LP [Martin et al]

Reduced coefficent / basis reformulations [Aardal et al]

Union of Polyhedra [Balas]

. . .
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How to build them

Unary expansion: Time-Indexed Formulation

Single machine scheduling problem (with integer data):

t

0 1 2 3 4 5 6

S3

3

S2

2

S1

1

Sj ≥ Si + pi or Si ≥ Sj + pj ∀ i, j

requires big M formulation: Sj ≥ Si + pi −M(1− xij).

Change of variables: Sj =
∑

t
t wjt

with wjt = 1 iff job j starts at the beginning of [t, t+ 1].
∑

j∈J

wj0 = 1

∑

j∈J

wjt −
∑

j∈J

wj,t−pj
= 0 ∀t ≥ 1
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How to build them

DP based reformulation: the knapsack example

max{
∑

i

pixi :
∑

i

aixi ≤ b, xi ∈ N}

DP Recursion: V(c) =maxi=1,...,n:c≥ai
{V(c− ai) + pi}

in LP form:

min V(b)

V(c)−V(c− ai) ≥ pi i= 1, . . . , n, c= ai, · · · , b

V(0) = 0

its Dual: “longest path problem”

0 1 2 3 4 5 6 7
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max{
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i

pixi :
∑

i

aixi ≤ b, xi ∈ N}

DP Recursion: V(c) =maxi=1,...,n:c≥ai
{V(c− ai) + pi}

in LP form:

min V(b)

V(c)−V(c− ai) ≥ pi i= 1, . . . , n, c= ai, · · · , b

V(0) = 0

its Dual: “longest path problem”

max
∑n

j=1

∑b−ai
r=0 ciwic
∑

i wic = 1 c= 0
∑

i wic −
∑

i wi,c−ai
= 0 c= 1, · · · , b− 1

∑

i wi,c−ai
= 1 c= b

wic ≥ 0 i= 1, · · · , n; c= 0, · · · , b− ai
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How to build them

DP based reformulation: Multi-Echelon Lot-Sizing

Variables

xe,t — production of intermediate product of echelon e in period t

se,t — stock of echelon e product at the end of period t

xe,t + se,t−1 = xe+1,t + se,t for e= 1, . . . , E− 1

xe,t + se,t−1 = dt + se,t for e= E

t

e= 1

e= 2

e= 3
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How to build them

DP based reformulation: Multi-Echelon Lot-Sizing

Dominance property

∃ opt solution where xe,t · se,t−1 = 0 ∀e, t,⇒ production plan is a tree:

t

e= 1

e= 2

e= 3

Dynamic programming

State (e, t, a, b) corresponds to accumulating at echelon e in period t a
production covering exactly the demand of periods a, . . . , b.

V(e, t, a, b) = min{V(e, t+ 1, a, b),

min
l=a,...,b

{V(e+ 1, t, a, l) + ck
et Dk

al + f k
et +V(e, t+ 1, l+ 1, b)}}
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How to build them

DP based reformulation: Multi-Echelon Lot-Sizing

DP Recursion:

V(e, t, a, b) = min{V(e, t+ 1, a, b),

min
l=a,...,b

{V(e+ 1, t, a, l) + ck
et Dk

al + f k
et +V(e, t+ 1, l+ 1, b)}}

in LP form:

max V(1, 1, 1, T)

V(e, t, a, b) ≤ V(e, t+ 1, a, b) ∀e, t, a, b

V(e, t, a, b) ≤ V(e+ 1, t, a, l) + ck
et Dk

al + f k
et +V(e, t+ 1, l+ 1, b) ∀e, t, a, b, l

V(E+ 1, t, a, b) = 0 ∀t, a, b

its Dual: flow on hyper-arcs
we,t,a,l,b = 1 if at echelon e in period t production covers demands
from period a to period l, while the rest of demand up to b, shall be
covered in the future.
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How to build them

DP based reformulations

[Martin et al OR90] When a problem can be solved by dynamic programming,

V(l) = min
(J,l)∈A

{
∑

j∈J

V(j) + c(J, l)},

an extended formulation consist in modeling a decision tree in an hyper-graph

21

7

1

2

3

4

5

6

8

9

10

11

12

13

14

15

16

17

18

19

20
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How to build them

Ways to obtain extended formulations

Variable Splitting
Multi-Commodity Flow: xij =

∑

k xk
ij

Unary expansion: x=
∑u

q=0 q wq,
∑u

q=0 wq = 1, w ∈ {0, 1}u+1

Binary expansion: x=
∑logbuc

p=0 wp, , w ∈ {0, 1}log u

Dynamic Programming Solver→ Network Flow LP [Martin et al]

Separation is easy→ Separation LP [Martin et al]

Reduced coefficent / basis reformulations [Aardal et al]

Union of Polyhedra [Balas]

. . .
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How to build them

Reformulation of the Uncapacitated Lot-Sizing: LP sep. &
reform.

min
∑n

t=1 ptxt +
∑n

t=1 htst +
∑n

t=1 qtyt

st−1 + xt = dt + st ∀ t

xt ≤Myt ∀ t

s, x ∈ Rn
+, y ∈ {0, 1}n

1 2 3 4 5 6

Facet-defining inequalities: L= {1, . . . , l}, S ⊆ L
∑

j∈S

xj +
∑

j∈L\S

djlyj ≥ d1l

Let µjl =min{xj, djlyj} for 1≤ j≤ l≤ n⇒ a tight and compact
extended formulation is obtained from the OF by adding:

∑l
j=1µjl ≥ d1l 1≤ l≤ n

µjl ≤ xj 1≤ j≤ l≤ n

µjl ≤ djlyj 1≤ j≤ l≤ n.
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How to build them

LP separation & reformulation: example 2

Robust Optimization:

min{ c x
Aξ x ≥ a ∀ξ ∈ Ξ

x ∈ Nn},

with Aξ = A+
∑

k Akξk

and Ξ= {ξ ∈ RK : Bξ≥ b}.
The separation problem:
∑

j

aijx+min{
∑

k

∑

j

ak
ijξkxj : Bξ≥ b,ξ ∈ RK} ≥ ai0? ∀i

∑

j

aijx+max{u b : u B≤
∑

j

ak
ijxj ∀k, u ∈ Rm} ≥ ai0? ∀i

The extended formulation:

min{ c x
∑

j

aijx+ u b ≥ ai0 ∀i

u B ≤
∑

j

ak
ijxj ∀k

u ∈ Rm x ∈ Nn}.
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How to build them

The 1− k Configuration example

Y = {(x0, x) ∈ {0, 1}n+1 : kx0 +
n
∑

j=1

xj ≤ n}.

Y0 = {x0 = 0,
n
∑

j=1

xj ≤ n} ∪ Y1 = {x0 = 1,
n
∑

j=1

xj ≤ n− k}

Tight extended formulation:

xj = x0
j + x1

j j= 1, . . . , n

x0
j ≤ 1− x0 j= 1, . . . , n

x1
j ≤ x0 j= 1, . . . , n

n
∑

j=1

x1
j ≤ (n− k)x0

x ∈ [0, 1]3n−2
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How to build them

The knapsack problem example

X = P1 ∩Zn = P2 ∩Zn

where

P1 = {x ∈ [0, 1]5 : 97x1 + 65x2 + 47x3 + 46x4 + 25x5 ≤ 136}

P2 = {x ∈ [0, 1]5 : 5x1 + 3x2 + 3x3 + 2x4 + 1x5 ≤ 6}

P2 ⊂ P1
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Interests of Reformulations

Extended formulation: Interests

1 Improved formulation (better LP bound & rounding heuristic)

extra variables
↓

tighter relations,
linearisation

w

1 2 3 4

1

2

3

5

(5)

(4)

x1

1

2

3

5

x2

2 Simpler formulation (captures the combinatorial structure)
3 Direct use of a MIP-Solver (solved by standard tools)
4 Rich variable space (to express cuts or branching)

Vehicle routing: xa =
∑

l=0,...,C wa
l

wa
q = 1 if vehicle on arc a with load l,

∑

l

∑

a∈δ−(i)

lwa
l −
∑

l

∑

a∈δ+(i)

lwa
l = di

→ knapsack cover cuts.

i

l w_l

l w_l

d_i

[Uchoa]

5 Reformulation can help to eliminate Symmetries
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