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Partitions

A partition P = {P1, . . . , Pk} of E satisfies

I ∅ 6= Pi ⊆ E for all i,

I Pi ∩ Pj = ∅ for all i 6= j, and

I ∪ni=1Pi = E

for some k ∈ {1, . . . , |E|} (P is a k-way partition)

Given a part cost function f : 2E 7→ R, the cost of a partition P is

f(P) =

|P|∑
i=1

f(Pi)

Optimum Partition Problems:
• given E and f
• find a partition P with minimum cost f(P)

(subject to possible restrictions on the number k = |P| of parts)
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Applications

Set Partitioning

I not all subsets are feasible
⇒ let f(S) = +∞ whenever S is not feasible

I many applications, e.g., airline crew scheduling, vehicle
routing, etc.

Facility Location/Allocation

I E is a set of clients to be served

I f(S) is the minimum cost to serve subset S
(choosing a best location for serving S)

Clustering

I E is a set of items to be classified

I f(S) is the (negative of) the value of cluster S, reflecting
◦ the similarities within S, and
◦ the dissimilarities with N \ S
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Applications (2)

Multi-layer VLSI Circuit Design (Netlist Partitioning)

I E is a set of modules to be located on a k-layer chip
⇒ find a k-way partition of E

I f(S) is the cost of splitting netlist S

In most applications, there are additional constraints:

I on the parts Pi
◦ e.g., VLSI: each part must fit on one layer

I other “complicating” constraints
◦ e.g., Set Partitioning: aircraft types, home bases

Most of these problems are NP-hard

I many are hard to approximate

I just finding feasible solutions can be NP-hard

Yet, some important and useful special cases can be solved
efficiently when the cost function f is submodular
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Examples with Submodular Part Costs

Some important and useful special cases can be solved efficiently
when the cost function f is submodular:

Clustering
The negative of total (pairwise) similarity

f(S) = −
∑
j,k∈S

s(j, k)

is submodular when s ≥ 0 (Why?)

VLSI Circuit Design
Given hypergraph (E,H) with edge weights wh (h ∈ H), the
hypergraph cut function

f(S) =
∑
{wh : h ∩ S 6= ∅ and h \ S 6= ∅}

is submodular when w ≥ 0 (Why?)
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Optimum Unconstrained Partitions

The Dilworth truncation fD of a set function f : 2E 7→ RN is the
set function fD : 2E 7→ RN defined by

fD(A) =

{
minP∈Π(A) f(P) if A 6= ∅
0 if A = ∅

where Π(A) is the set of all partitions of set A

Set partitioning formulation: w.l.o.g., assume A = E

Let xS =

{
1 if S ∈ P;

0 otherwise

fD(E) = min
∑

S⊆E:S 6=∅ f(S)xS

s.t.
∑

S⊆E:j∈S xS = 1 ∀j ∈ E
x ≥ 0

x integer
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LPs and Dilworth Truncation

LP relaxation:

(P ) min
∑

S⊆E:S 6=∅ f(S)xS

s.t.
∑

S⊆E:j∈S xS = 1 ∀j ∈ E
x ≥ 0

Its dual:

(D) max
∑
j∈E

yj

s.t. y(S) ≤ f(S) ∀S ⊆ E, S 6= ∅

This dual is almost linear optimization on a submodular
polyhedron (solvable by the Greedy Algorithm seen yesterday)
• except that here we may have f(∅) < 0
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What if f(∅) ≥ 0?

If f is submodular and f(∅) ≥ 0 then: A ∩B = ∅ implies

f(A ∪B) ≤ f(A) + f(B)

that is, f is subadditive

If f is subadditive, then fD = f
• except perhaps that fD(∅) = 0

and we are done.

Hence we now consider the general case where we make no sign
restriction on f(∅)
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A General Greedy Principle

(Edmonds, 1970; Frank & Tardos, 1988)

Given polyhedron P ⊆ RE and w ∈ RE , assume w.l.o.g. that
E = {e1, . . . , en} with we1 ≥ we2 ≥ · · · ≥ wen ≥ 0
• i.e., E is totally ordered by ≺ as: e1 ≺ e2 ≺ · · · ≺ en

Recursively define yG ∈ RE as follows

I for j = 1, . . . , n let
yGej = max{yej : ∃y ∈ P ∀i < j yei = yGei}

This ensures that the resulting greedy solution yG ∈ P
• at the expense of solving n optimization problems

If P = P̃ (f) = {y ∈ RE : y(S) ≤ f(S) ∀S ⊆ E, S 6= ∅} for some
set function f , then the Greedy Principle simplifies to:

I let yG(e1) = f({e1}) and for j = 2, . . . , n let

yGej = min
{
f(A+ ej)− yG(A) : A ⊆ e≺j

}
(1)

where e≺j = {g ∈ A : g ≺ ej} = {e1, . . . , ej−1} for all j = 1, . . . , n
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Questions about the General Greedy Principle

Optimality Questions:

I is yG an optimum solution to max{wy : y ∈ P}?
I is the corresponding primal solution xG integer?

Algorithmic Questions:

I can the optimization subroblem (1) be solved efficiently (i.e.,
in polynomial time)?

I if xG is integer, can the corresponding optimal partition be
recovered efficiently?

We have seen that when f is submodular and normalized (as in
f(∅) = 0), the answer to all 4 questions is YES!
• in particular, subproblem (1) is solved as

yGej = min
{
f(A+ ej)− yG(A) : A ⊆ e≺j

}
= e≺j+1 − e

≺
j

(i.e., optimum subset A = e≺j )
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Uncrossing Lemma

Consider the “general submodular case”, where f is submodular
and f(∅) is arbitrary

Let Aj be an optimum subset in subproblem (1) and Bj = Aj + ej
• so yG(Bj) = f(Bj)

Uncrossing Lemma: If Bi ∩Bj 6= ∅ for i < j then
yG(Bi ∪Bj) = f(Bi ∪Bj)

Proof.
Since yG ∈ P we have:

f(Bj ∪Bi) ≤ f(Bj) + f(Bi)− f(Bi ∩Bj)
≤ yG(Bj) + yG(Bi)− yG(Bi ∩Bj)
= yG(Bj ∪Bi)
≤ f(Bj ∪Bi)

hence all these inequalities must hold as equalities
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General Submodular Case: Optimality

By the Uncrossing Lemma, at each step of the Greedy Algorithm,
we may replace the current set Bj with its union with all earlier
sets that it intersects, and delete all these earlier intersected sets

At the end, the surviving sets, say, P1, . . . , Pk form a partition
of E and yG(E) =

∑
i f(Pi)

This implies that the primal solution xG defined by

xG(S) =

{
1 if S = Pi for some i;

0 otherwise

is feasible for (P ) and the primal and dual objective values∑
S

f(S)xGS =
n∑
j=1

yGj

Hence both yG and xG are optimal, answering both Optimality
Questions, and giving an efficient construction of an optimum
partition P = (P1, . . . , Pk)
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Algorithmic Questions; Submodularity of Dilworth
Truncation

The optimization subproblem (1) is SFMin

Therefore, for any subset S ⊆ E, the value fD(S) of the Dilworth
truncation can be obtained in polynomial time, by solving |S| − 1
submodular minimization problems

Submodularity of the Dilworth Truncation

Proposition (Lovász 1983) The Dilworth truncation of a
submodular function is submodular
Proof: Let f be submodular. Recall that fD(∅) = 0
It suffices to prove: for all S ⊂ E, u, v ∈ E \ S

fD(S + u+ v)− fD(S + u) ≤ fD(S + v)− fD(S) ?

• If S = ∅ then fD(u+ v) ≤ fD(u) + fD(v) (Why?)
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Submodularity of the Dilworth Truncation (continued)

Else, i.e., S 6= ∅, number the elements in E so S = e≺i+1, ei+1 = u
and ei+2 = v

and apply the Greedy Algorithm: we have

yG(T ) = fD(T ) for T = S, S + u, and S + u+ v

The Greedy Algorithm applied to S + v just after S produces ỹG

satisfying ỹGj = yGj for all j ∈ S and for some A ⊆ S

fD(S + v)− fD(S) = ỹGv = f(A+ v)− ỹG(A)

Then:
fD(S + u+ v)− fD(S + u)

= yGv

= min{f(B + v)− yG(B) : B ⊆ S + u}
≤ f(A+ v)− yG(A)

= fD(S + v)− fD(S)

QED
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An Application in Statistical Mechanics

Asymptotics of Potts Partition Functions
(Anglès d’Auriac & al., 2002)

Statistical Mechanics Graph Theory

Lattice (V,E) Graph G = (V,E)
Site i ∈ V Node

Bond ij ∈ E Edge
Coupling Kij Edge weight

Given are: the lattice, the couplings K ≥ 0, and integer q ≥ 2
(number of spin values)

A variable σi ∈ {0, 1, . . . , q − 1}, called a spin, is associated with
each site i ∈ V
Energy of configuration σ = (σ1, . . . , σn): E(σ) =

∑
ij∈EKijδσiσj

where the Kronecker symbol δab =

{
1 if a = b

0 otherwise
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Potts Partition Function

Z(K) =
∑
σ

exp(E(σ))

Letting νij = exp(Kij)− 1 ≥ 0, we have

exp(E(σ)) =
∏
ij∈E

exp(Kijδσiσj )

=
∏
ij∈E

(
1 + (exp(Kij)− 1) δσiσj

)
=

∑
F∈2E

∏
ij∈F

νij δσiσj
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Asymptotics of Potts Partition Function

When q goes to infinity, Z(K)→ Nqh
∗

where N is the number of
optimum sets F and
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F∈2E
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F∈2E

nc(F ) +
∑
ij∈F

αij


Since h is supermodular, finding the asymptotic exponent h∗ is
SFMin (where the ground set is the edge set E)

• Can we do better than general SFMin?
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Two Simple Observations

1. All ij ∈ E with αij < 0 may be eliminated
(they cannot belong to any optimum subset)

⇒ assume α ≥ 0

2. Let F ∗ be an optimum subset and P1, . . . , Pk the connected
components of G∗ = (V, F ∗),
then we may add to F ∗ all edges in E within each Pi

Therefore h(F ∗) = α(E)−
∑k

i=1 f(Pi)

where f : 2V 7→ R, defined by f(S) = 1
2

(∑
j∈S,k 6∈S αjk

)
− 1,

is the cut function of the graph G = (V,E) with edge “capacities”
α ≥ 0, minus the constant 1
• so, f(∅) = −1 < 0
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A Faster Algorithm

Thus, finding h∗ is equivalent to finding the value fD(V ) of the
Dilworth truncation of f
• Note: the ground set is now V , the node set

The minimizations at each step of the Greedy Algorithm can be
performed efficiently by network flow techniques (minimum
s, t-cuts in an associated network)

The running time is O(|V |2 |E|)
• much faster than general SFMin on the old ground set |E|
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Optimum Bipartition

Find a bipartition P = {P1, P2} of E with least total cost f(P)?

Equivalently, find a proper subset S (i.e., ∅ 6= S ⊂ E) which
minimizes f(S) + f(E \ S).

A set function g : 2E 7→ R is symmetric iff

g(S) = g(E \ S) for all S ⊆ E

The function gf defined by gf (S) = f(S) + f(E \ S) is:
• symmetric; and
• submodular if f is submodular
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Sym-SFMin

If g is symmetric and submodular then, for all S ⊆ E

g(S) = 1/2 (g(S) + g(E \ S))

≥ 1/2 (g(E) + g(∅))
= g(∅) = g(E)

hence ∅, and also E, minimize g.

The Optimum Bipartition problem with submodular part costs, is
equivalent to the Symmetric Submodular Minimization
problem (Sym-SFMin):

I given a symmetric submodular function g : 2E 7→ R
I find a proper subset S of E which minimizes g(S)
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Sym-SFMin and Decomposition

Proposition Assume that f is normalized and submodular, and
that there exists a proper subset A ⊂ E such that
f̆(A) = f(A) + f(Ā)− f(E) satisfies f̆(A) = 0 = f̆(∅) = f̆(E).
where Ā = E \A. Then f is decomposable as

f(B) = f(B ∩A) + f(B ∩ Ā) for all B ⊆ E

Proof: Since f is normalized and submodular

f(B) = f
(
(B ∩A) ∪ (B ∩ Ā)

)
≤ f(B ∩A) + f(B ∩ Ā)

and

f(B)− f(B ∩A)− f(B ∩ Ā) ≥ f(B ∪A)− f(A)− f(B ∩ Ā)

≥ f((B ∪A) ∪ Ā)− f(A)− f(Ā)

= f(E)− f(A)− f(Ā) = 0 QED
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)
≤ f(B ∩A) + f(B ∩ Ā)
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f(B)− f(B ∩A)− f(B ∩ Ā) ≥ f(B ∪A)− f(A)− f(B ∩ Ā)
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and

f(B)− f(B ∩A)− f(B ∩ Ā) ≥ f(B ∪A)− f(A)− f(B ∩ Ā)
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= f(E)− f(A)− f(Ā) = 0 QED
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Separators

A proper subset A of E such that

f(B) = f(B ∩A) + f(B ∩ Ā) for all B ⊆ E

is called a separator of f .

Example: Let X be a random vector indexed by E
and let XB denote the subvector indexed by any subset B ⊆ E
If XA and XĀ are independent, then

I for every B ⊆ A and C ⊆ Ā, XB and XC are independent

I Such a subset A is a separator of the entropy function for X

The set of all separators of f is closed under intersection, union,
and complementation

I Hence, the separators partition E
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is called a separator of f .

Example: Let X be a random vector indexed by E
and let XB denote the subvector indexed by any subset B ⊆ E
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Pendent Pairs

A pair (u, v) ∈ E × E (u 6= v) is a pendent pair for (symmetric)
set function g if

g({u}) = min {g(S) : ∀S ⊂ E with u ∈ S and v 6∈ S}

A set U ⊂ E separates u and v if

I u ∈ U and v 6∈ S, or

I u 6∈ U and v ∈ S
• equivalently, if |S ∩ {u, v}| = 1

If (u, v) is a pendent pair for symmetric function g
and S∗ is a proper subset minimizing g then:

I either S∗ separates u and v, and we may choose S∗ = {u}
I or else u and v are on the same side of S∗ and we may

contract u and v into a single element
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A Contraction Algorithm

(Q 1995, 1998; generalizing Nagamochi & Ibaraki, 1992)

Assume we can efficiently find a pendent pair for any symmetric
function in a class closed under contraction, then we can find a
proper subset S∗ minimizing g after finding and contracting n− 1
pendent pairs (u1, v1), (u2, v2), . . . , (un−1, vn−1):

Indeed, letting Ui be the original subset of E corresponding to ui
(for every iteration i = 1, . . . , n− 1), then
• choose S∗ as an Ui with least value g(Ui)

Contracting u and v amounts to replacing

I the ground set E with Eu,v = (E − u− v) + uv

I the function g with gu,v : 2Eu,v 7→ R defined by

gu,v(S) =

{
g((S − uv) + u+ v) if uv ∈ S
g(S) otherwise

• If g is symmetric submodular then it remains so after contraction
• . . . hence it remains to prove the existence of a pendent pair,

and to efficiently find one. . .
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Finding a Pendent Pair

E = (a1, a2, . . . , an) is in Maximum Adjacency (MA) order if, for
all i = 1, . . . , n− 1, ai+1 satisfies
f(Ai+ai+1)−f({ai+1}) = min {f(Ai + b)− f({b}) : b ∈ E \Ai}
where Ai = {a1, . . . , ai}

I a1 is arbitrary, and then a2, . . . , an are sequentially
determined by this condition

Lemma: If f is submodular, then for all i ∈ {1, . . . , n− 1},
b ∈ E \Ai and S ⊆ Ai−1, f(Ai) + f(b) ≤ f(Ai \ S) + f(S + b)

I i.e., for every b not in Ai, {b} is an optimum subset
separating b from ai for the symmetric function derived from
the restriction of f to Ai + b

Corollary: If f is submodular, then (an, an−1) is a pendent pair
for its symmetric function gf
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Pendent Pair Lemma

Proof of: f(Ai) + f(b) ≤ f(Ai \ S) + f(S + b)
for all i ∈ {1, . . . , n− 1}, b ∈ E \Ai and S ⊆ Ai−1

The inequality trivially holds for i = 1 (Why?)
By induction, assume that it holds for all i = 1, . . . , k − 1
Consider any u ∈ E \Ak, and S ⊆ Ak−1

The choice of ak implies f(Ak) + f(u) ≤ f(Ak−1 + u) + f(ak)

Let j be the smallest integer such that S ⊆ Aj−1

I If j = k then ak−1 ∈ S and Ak−1 \ S ⊆ Ak−2.
Therefore,

f(Ak \ S) + f(S + u) = f((Ak−1 \ S) + ak) + f(S + u)

≥ f((Ak−1) + f(ak)− f(S) + f(S + u)

≥ f((Ak−1 + u) + f(ak)

≥ f(Ak) + f(u)



Pendent Pair Lemma

Proof of: f(Ai) + f(b) ≤ f(Ai \ S) + f(S + b)
for all i ∈ {1, . . . , n− 1}, b ∈ E \Ai and S ⊆ Ai−1

The inequality trivially holds for i = 1 (Why?)

By induction, assume that it holds for all i = 1, . . . , k − 1
Consider any u ∈ E \Ak, and S ⊆ Ak−1

The choice of ak implies f(Ak) + f(u) ≤ f(Ak−1 + u) + f(ak)

Let j be the smallest integer such that S ⊆ Aj−1

I If j = k then ak−1 ∈ S and Ak−1 \ S ⊆ Ak−2.
Therefore,

f(Ak \ S) + f(S + u) = f((Ak−1 \ S) + ak) + f(S + u)

≥ f((Ak−1) + f(ak)− f(S) + f(S + u)

≥ f((Ak−1 + u) + f(ak)

≥ f(Ak) + f(u)



Pendent Pair Lemma

Proof of: f(Ai) + f(b) ≤ f(Ai \ S) + f(S + b)
for all i ∈ {1, . . . , n− 1}, b ∈ E \Ai and S ⊆ Ai−1

The inequality trivially holds for i = 1 (Why?)
By induction, assume that it holds for all i = 1, . . . , k − 1

Consider any u ∈ E \Ak, and S ⊆ Ak−1

The choice of ak implies f(Ak) + f(u) ≤ f(Ak−1 + u) + f(ak)

Let j be the smallest integer such that S ⊆ Aj−1

I If j = k then ak−1 ∈ S and Ak−1 \ S ⊆ Ak−2.
Therefore,

f(Ak \ S) + f(S + u) = f((Ak−1 \ S) + ak) + f(S + u)

≥ f((Ak−1) + f(ak)− f(S) + f(S + u)

≥ f((Ak−1 + u) + f(ak)

≥ f(Ak) + f(u)



Pendent Pair Lemma

Proof of: f(Ai) + f(b) ≤ f(Ai \ S) + f(S + b)
for all i ∈ {1, . . . , n− 1}, b ∈ E \Ai and S ⊆ Ai−1

The inequality trivially holds for i = 1 (Why?)
By induction, assume that it holds for all i = 1, . . . , k − 1
Consider any u ∈ E \Ak, and S ⊆ Ak−1

The choice of ak implies f(Ak) + f(u) ≤ f(Ak−1 + u) + f(ak)

Let j be the smallest integer such that S ⊆ Aj−1

I If j = k then ak−1 ∈ S and Ak−1 \ S ⊆ Ak−2.
Therefore,

f(Ak \ S) + f(S + u) = f((Ak−1 \ S) + ak) + f(S + u)

≥ f((Ak−1) + f(ak)− f(S) + f(S + u)

≥ f((Ak−1 + u) + f(ak)

≥ f(Ak) + f(u)



Pendent Pair Lemma

Proof of: f(Ai) + f(b) ≤ f(Ai \ S) + f(S + b)
for all i ∈ {1, . . . , n− 1}, b ∈ E \Ai and S ⊆ Ai−1

The inequality trivially holds for i = 1 (Why?)
By induction, assume that it holds for all i = 1, . . . , k − 1
Consider any u ∈ E \Ak, and S ⊆ Ak−1

The choice of ak implies f(Ak) + f(u) ≤ f(Ak−1 + u) + f(ak)

Let j be the smallest integer such that S ⊆ Aj−1

I If j = k then ak−1 ∈ S and Ak−1 \ S ⊆ Ak−2.
Therefore,

f(Ak \ S) + f(S + u) = f((Ak−1 \ S) + ak) + f(S + u)

≥ f((Ak−1) + f(ak)− f(S) + f(S + u)

≥ f((Ak−1 + u) + f(ak)

≥ f(Ak) + f(u)



Pendent Pair Lemma

Proof of: f(Ai) + f(b) ≤ f(Ai \ S) + f(S + b)
for all i ∈ {1, . . . , n− 1}, b ∈ E \Ai and S ⊆ Ai−1

The inequality trivially holds for i = 1 (Why?)
By induction, assume that it holds for all i = 1, . . . , k − 1
Consider any u ∈ E \Ak, and S ⊆ Ak−1

The choice of ak implies f(Ak) + f(u) ≤ f(Ak−1 + u) + f(ak)

Let j be the smallest integer such that S ⊆ Aj−1

I If j = k then ak−1 ∈ S and Ak−1 \ S ⊆ Ak−2.
Therefore,

f(Ak \ S) + f(S + u) = f((Ak−1 \ S) + ak) + f(S + u)

≥ f((Ak−1) + f(ak)− f(S) + f(S + u)

≥ f((Ak−1 + u) + f(ak)

≥ f(Ak) + f(u)



Pendent Pair Lemma

Proof of: f(Ai) + f(b) ≤ f(Ai \ S) + f(S + b)
for all i ∈ {1, . . . , n− 1}, b ∈ E \Ai and S ⊆ Ai−1

The inequality trivially holds for i = 1 (Why?)
By induction, assume that it holds for all i = 1, . . . , k − 1
Consider any u ∈ E \Ak, and S ⊆ Ak−1

The choice of ak implies f(Ak) + f(u) ≤ f(Ak−1 + u) + f(ak)

Let j be the smallest integer such that S ⊆ Aj−1

I If j = k then ak−1 ∈ S and Ak−1 \ S ⊆ Ak−2.

Therefore,

f(Ak \ S) + f(S + u) = f((Ak−1 \ S) + ak) + f(S + u)

≥ f((Ak−1) + f(ak)− f(S) + f(S + u)

≥ f((Ak−1 + u) + f(ak)

≥ f(Ak) + f(u)



Pendent Pair Lemma

Proof of: f(Ai) + f(b) ≤ f(Ai \ S) + f(S + b)
for all i ∈ {1, . . . , n− 1}, b ∈ E \Ai and S ⊆ Ai−1

The inequality trivially holds for i = 1 (Why?)
By induction, assume that it holds for all i = 1, . . . , k − 1
Consider any u ∈ E \Ak, and S ⊆ Ak−1

The choice of ak implies f(Ak) + f(u) ≤ f(Ak−1 + u) + f(ak)

Let j be the smallest integer such that S ⊆ Aj−1

I If j = k then ak−1 ∈ S and Ak−1 \ S ⊆ Ak−2.
Therefore,

f(Ak \ S) + f(S + u) = f((Ak−1 \ S) + ak) + f(S + u)

≥ f((Ak−1) + f(ak)− f(S) + f(S + u)

≥ f((Ak−1 + u) + f(ak)

≥ f(Ak) + f(u)



Pendent Pair Lemma

Proof of: f(Ai) + f(b) ≤ f(Ai \ S) + f(S + b)
for all i ∈ {1, . . . , n− 1}, b ∈ E \Ai and S ⊆ Ai−1

The inequality trivially holds for i = 1 (Why?)
By induction, assume that it holds for all i = 1, . . . , k − 1
Consider any u ∈ E \Ak, and S ⊆ Ak−1

The choice of ak implies f(Ak) + f(u) ≤ f(Ak−1 + u) + f(ak)

Let j be the smallest integer such that S ⊆ Aj−1

I If j = k then ak−1 ∈ S and Ak−1 \ S ⊆ Ak−2.
Therefore,

f(Ak \ S) + f(S + u) = f((Ak−1 \ S) + ak) + f(S + u)

≥ f((Ak−1) + f(ak)− f(S) + f(S + u)

≥ f((Ak−1 + u) + f(ak)

≥ f(Ak) + f(u)



Pendent Pair Lemma

Proof of: f(Ai) + f(b) ≤ f(Ai \ S) + f(S + b)
for all i ∈ {1, . . . , n− 1}, b ∈ E \Ai and S ⊆ Ai−1

The inequality trivially holds for i = 1 (Why?)
By induction, assume that it holds for all i = 1, . . . , k − 1
Consider any u ∈ E \Ak, and S ⊆ Ak−1

The choice of ak implies f(Ak) + f(u) ≤ f(Ak−1 + u) + f(ak)

Let j be the smallest integer such that S ⊆ Aj−1

I If j = k then ak−1 ∈ S and Ak−1 \ S ⊆ Ak−2.
Therefore,

f(Ak \ S) + f(S + u) = f((Ak−1 \ S) + ak) + f(S + u)

≥ f((Ak−1) + f(ak)− f(S) + f(S + u)

≥ f((Ak−1 + u) + f(ak)

≥ f(Ak) + f(u)



Pendent Pair Lemma

Proof of: f(Ai) + f(b) ≤ f(Ai \ S) + f(S + b)
for all i ∈ {1, . . . , n− 1}, b ∈ E \Ai and S ⊆ Ai−1

The inequality trivially holds for i = 1 (Why?)
By induction, assume that it holds for all i = 1, . . . , k − 1
Consider any u ∈ E \Ak, and S ⊆ Ak−1

The choice of ak implies f(Ak) + f(u) ≤ f(Ak−1 + u) + f(ak)

Let j be the smallest integer such that S ⊆ Aj−1

I If j = k then ak−1 ∈ S and Ak−1 \ S ⊆ Ak−2.
Therefore,

f(Ak \ S) + f(S + u) = f((Ak−1 \ S) + ak) + f(S + u)

≥ f((Ak−1) + f(ak)− f(S) + f(S + u)

≥ f((Ak−1 + u) + f(ak)

≥ f(Ak) + f(u)



Pendent Pair Lemma Proof (2)

I Else j ≤ k − 1, thus aj−1 ∈ S and none of vj , . . . , vk is in S

Since {vj , . . . , vk} = Ak \Aj−1, we have,

f(Ak \ S) + f(S + u) = f ((Aj−1 \ S) ∪ (Ak \Aj−1)) + f(S + u)

≥ f ((Aj−1 \ S) ∪ (Ak \Aj−1))

+ f(Aj)− f(Aj \ S) + f(u)

≥ f(Ak) + f(u) QED

The overall Sym-SFMin algorithm requires

I n− i EO calls to find ai+1 (if we precompute all f({u}))

I O(n2) EO calls to find a MA order a1, a2, . . . , an

I O(n3) EO calls to find a proper subset minimizing gf
and O(n3) other operations

• Purely combinatorial, and faster than (current) general SFMin
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Sym-SFMin: Examples and Extensions

Examples:
I Global MinCut in a Graph (Nagamochi & Ibaraki, 1992),

where f is a graph cut function
I O(|V |2 log |V |) operations

I 2-Layer VLSI Circuit Design (Klimmek & Wagner, 1996),
where f is a hypergraph cut function

I O(|V |2 log |V |+ |V ||H|) operations

Extensions: Minimizing

I posimodular functions (Nagamochi & Ibaraki, 1998), i.e.,
functions satisfying
f(A) + f(B) ≥ f(A \B) + f(B \A) for all A,B ⊆ V

I symmetric submodular function subject to hereditary family
constraints (Goemans & Soto, 2013): min{f(S) : S ∈ I}
where I ⊆ 2V satisfies, for all A,B ⊆ V ,
∅ 6= A ⊂ B ∈ I ⇒ A ∈ I
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Optimum Proper Partition

(Bäıou, Barahona & Mahjoub, 2000), motivated by a separation
problem for certain connectivity constraints

Find a proper partition P of E i.e., of size |P| ≥ 2, with minimum
total cost f(P)?

For any set function f , if P = {P1, P2, . . . , Pk} is optimum then:
• {P1} itself is an optimum partition of P1 and thus

f(P1) = fD(P1), and
• {P2, . . . , Pk} is an optimum partition of E \ P1 and thus

f(P2) + · · ·+ f(Pk) = fD(E \ P1)

Hence it suffices to find an optimum bipartition of the Dilworth
truncation fD

⇒ When f is submodular, O(n4) EO’s suffice
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More Parts?

What is the computational complexity of finding an optimum
k-way partition with submodular part cost function f (given by a
value oracle)?

I NP-hard when k is part of the input, even for graph cut
functions (Goldschmidt & Hochbaum, 1994)

I When f is submodular (and normalized) an optimum 3-way
partition can be found in polytime (Okumoto & al., 2012)

I When f is symmetric and submodular an optimum 4-way
partition can be found in polytime

I e.g., based on (Nagamochi & Ibaraki 2000) and using
optimum submodular-costs 3-way cuts

I . . . see Thursday afternoon talk for related complexity results
and open questions
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Optimum k-Way Partitions: An Approximation Algorithm

Assume that g is symmetric, submodular and nonnegative
(g(S) ≥ 0 for all S ⊆ E)

Greedy Splitting Algorithm:

1. Let P = {A1} where A1 = E

2. For j = 2, . . . , k
I Let Ai (i ∈ {1, . . . , j − 1}) be a subset whose optimum

bipartition {B1, B2} least increases the total cost
I Replace Ai in P with B1 and add B2 to P

This requires 2 k − 3 Sym-SFMin,
⇒ O(k n3) EO’s, and O(k n3) other operations

Theorem: [Q 1999; Zhao, Nagamochi & Ibaraki 2005]
If g is symmetric, submodular and nonnegative, then (for every
k ≥ 2) the Greedy Splitting Algorithm produces a k-way partition
with total cost at most 2− 2

k times the optimum
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SFMax

Maximizing an oracle-given submodular function f

I easy if f is a polymatroid function, i.e., also monotone
(nondecreasing)

I take the whole set E
I (works for any monotone set function)

I NP-hard for (non-monotone) submodular f

I example: MaxCut

We shall be interested in approximation algorithms
and two special cases:

1. Maximizing a polymatroid function subject to a cardinality
constraint

2. Maximizing a (non-monotone, nonnegative) submodular
function
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Max k-Cover

Given m (feasible) subsets E1, . . . , Em of ground set E,
define the cover function f : 2V 7→ R as f(S) = |

⋃
i∈S Ei|

for any S ⊆ V = {1, . . . ,m}

I the total number of elements of E covered by the subsets in
(indexed by) S

I f is a polymatroid function (Why?)

Given integer k ∈ V , Max k-Cover is max{f(S) : S ⊆ V, |S| ≤ k}

I maximize the total number of elements covered by at most k
subsets

I equivalently: max{f(S) : S ⊆ E, |S| = k} (Why?)

I NP-hard

I cannot be approximated within a ratio better (larger) than
1− 1/e ≈ 0.632, unless P = NP (Feige 1998)
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Cardinality-Constrained Polymatroid Maximization

Given a normalized polymatroid function f on E

I hence f is nonnegative

and integer k, let OPTk = max{f(S) : S ⊆ E, |S| ≤ k}
Greedy Algorithm
Starting with S0 = ∅, repeat the following greedy step:
for i = 0, . . . , (k − 1) let

Si+1 = Si + vi where vi ∈ argmaxu∈E\Si
f(Si + u)

I equivalently, vi yields the largest increment
f(u|Si) = f(Si + u)− f(Si)

Theorem (Nemhauser, Wolsey & Fisher, 1978)
If f is a normalized polymatroid function then the Greedy
Algorithm returns sets Si with values

f(Si) ≥ (1− 1/e)OPTi for all i = 0, . . . , k

I since Max k-cover is a special case, by Feige’s result this is
the best possible approximation guarantee (unless P = NP)

I this guarantee holds at every step i (relative to OPTi)
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(1− 1/e)-Approximation: Proof Idea

We shall prove a more general result, but here is where the
(1− 1/e) factor comes from:

I Let S∗ ∈ argmax{f(S) : S ⊆ E, |S| ≤ k}, so f(S∗) = OPTk

I By submodularity and the greedy step, we will prove that
there exist u ∈ S∗ \ Si such that the increment

f(u|Si) ≥ 1
k (OPTk − f(Si))

I (OPTk − f(Si)) is the current (absolute) gap at iteration Si
(relative to the size-k optimum)

I The increment at greedy step i is at least that large, hence
f(Si+1)− f(Si) ≥ 1

k (OPTk − f(Si))
I Equivalently, OPTk − f(Si+1) ≤

(
1− 1

k

)
(OPTk − f(Si))

i.e., the gap decreases by a factor ≥ (1− 1/k) at each step

I Since the initial gap OPTk − f(S0) ≤ OPTk, the final gap

OPTk − Sk ≤
(
1− 1

k

)k
OPTk ≤ 1

e OPTk

I and therefore f(Sk) ≥
(
1− 1

e

)
OPTk > 0.632OPTk
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A More General Approximation Guarantee

Theorem (Nemhauser, Wolsey & Fisher, 1978)
If f is a normalized polymatroid function then the Greedy
Algorithm returns sets Si (i = 1, . . . , n) with values

f(Si) ≥ (1− e−i/k)OPTi for all i = 0, . . . , n

I the approximation guarantee improves with the iteration
(obviously – why?)

I values i > k may be interpreted as resource augmentation
I what if we want to guarantee at least 0.95OPTk?

I 0.95 = 1− ei/k gives i = d−k ln(1− 0.95e ≤ 4k
I (and for 0.999, d−k ln(1− 0.999e = 7)

I typical practical performance is much better
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Proof of Greedy Performance

I Fix ` (size of greedy solution) and k (size of optimal set)

I Fix S∗ ∈ argmax{f(S) : S ⊆ E, |S| ≤ k}, so f(S∗) = OPTk

I Assume w.l.o.g., that |S∗| = k and let S∗ = {v∗1, . . . , v∗k}
I Let (v1, . . . , v`) be the greedy order chosen by the algorithm

I Then, for all i < `, the gap

δi = f(S∗)− f(Si) ≤ f(S∗ ∪ Si)− f(Si)

=
k∑

j=1

f(v∗j |Si + v∗1 + · · ·+ v∗j−1) ≤
k∑

j=1

f(v∗j |Si)

≤ k f(vi|Si) = k (f(Si+1)− f(Si)) = k (δi − δi+1)

implying δi+1 ≤ (1− 1
k )δi and thus

δ` ≤ (1− 1
k )

` δ0 ≤ (1− 1
k )

` OPTk ≤ e−`/k OPTk QED
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Greedy Algorithm: Running Time

I Greedy computes a new maximum n = |V | times

I each maximum computation requires O(n) comparisons

hence O(n2) time overall

This is not good enough for very large practical instances

I large water networks with many contamination scenarios;
social networks; selecting blogs of greatest influence;
document summarization; etc.

and can be made (much) faster by a simple trick, also based on
submodularity:

Minoux’s Accelerated Greedy (aka, Lazy Selection)
Idea: to reduce the number of function evaluations and of
comparisons, store upper bounds αv on the increments f(v|Si) in
a priority queue, and only update αv when element v is examined
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Minoux’s Accelerated Greedy

I Store the initial increments αv = f(v|S0) in a priority queue,
and the iteration index βv = 0 at which it was least updated

I At iteration i, repeat

I “pop” the top element (largest αv), and let u be the new top
I if βv < i then compute the exact increment αv := f(v|Si) and

update βv = i
I if αv < αu then return v to the queue

until αv ≥ αu: v is now selected by Greedy

Validity follows from submodularity, i.e., nonincreasing increments:
as i increases, the current Si also increases, the increments f(v|Si)
decrease, and thus each αv remains an upper bound on f(v|Si)

In practice, Minoux’s trick often yields enormous speedups (over
700-fold) over standard implementation of Greedy, for very large
data sets
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Nonmonotone SFMax

I If f is an arbitrary submodular function (neither
polymatroidal, nor necessarily positive or negative), then
verifying whether its maximum is positive or negative is
already NP-hard

I Therefore, submodular function max in such case is
inapproximable (unless P=NP)

I since any such procedure would give us the sign of the max

I Thus, we will assume that f is non-negative and otherwise
arbitrary submodular

I Feige, Mirrokni & Vondrak (2007, 2011) show that, in the
value oracle model, for every ε > 0 a

(
1
2 + ε

)
-approximation

requires an exponential number of oracle calls

I even if f is known to be symmetric

I We will see a (13 − ε)-approximation, also due to Feige & al,

I using O( 1
εn

3 log n) EO’s
I and based on local search (not on a greedy approach!)
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Local Search

I A sequential method that starts at a feasible solution

I e.g., any subset S of the ground set E

and tries to improve it by a sequence of (usually, simple)
moves

I e.g., add, or drop, an element to/from the current set S
I It must be possible, in polytime, to find an improving move or

decide none exists

I Local search methods differ in their search strategy
I simple hill climbing, restarts, “tabu search”, simulated

annealing,. . .

but they terminate with a local optimum, i.e., a feasible
solution that cannot be improved by the available moves

I Two main issues in evaluating a local search method:
I Running time: does it go thru a polynomially bounded

number of steps?
I Solution quality: do we have a performance guarantee?

i.e., how “bad” (in objective value) can a local optimum be?
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Generic Local Search

The neighbourhood N(S) of a solution is the set of all solutions
that can be reached from S by an available move.

Generic Local Search (“Hill Climbing”)

1. Initialization: find a (feasible) solution S

2. While there exists an improving solution S+ ∈ N(S) do
S := S+

3. Output S

If there is a finite number of solutions (and we only accept strict
improvements) then Generic Local Search terminates in a finite
number of steps and outputs a local optimum

I at this point, we can only guarantee finiteness, but not
polynomiality

I in fact, most of these problems are PLS-complete
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A Polytime Version of Local Search

Given ε > 0, S+ ∈ N(S) is ε-improving if its objective value
f(S+) > (1 + ε)f(S) (for a maximization problem)

S is an ε-local optimum if f(S+) ≤ (1 + ε)f(S) for all S+ ∈ N(S)

I i.e., if it has no ε-improving neighbor

Modified Local Search (MLS): given ε > 0,

1. Initialization: find a (feasible) solution S

2. While there exists an ε-improving solution S+ ∈ N(S) do
S := S+

3. Output S

If f(S0) > 0 then after k iterations the current solution Sk satisfies
f(Sk) > (1 + ε)k f(S0)
⇒ If log(OPT/f(S0)) is polynomially bounded (in the instance
input size) then for every fixed ε > 0, MLS terminates and outputs
an ε-local optimum after at most log(OPT/f(S0)) / log(1 + ε)
iterations, i.e. in polytime
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Local Optima for SFMax

Let S ⊆ E be a local maximum for the add & drop moves

Lemma
If f : 2E 7→ R is normalized and submodular, and S is such a local
optimum then

1. f(R) ≤ f(S) for all R ⊂ S, and

2. f(T ) ≤ f(S) for all T ⊃ S

Proof by induction on d = |S \R| for 1.
Base case: if d = 1 then R ∈ N(S) and f(R) ≤ f(S)
Induction: assume 1 holds for d− 1 and consider any R ⊂ S with
|S \R| = d. Choose u ∈ S \R. Then

f(R) ≤ f(R+ u) + f(S − u)− f(S)
≤ f(S − u)
≤ f(S)

The proof of 2 is similar QED
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Local Optima for SFMax (2)

Theorem [Feige, Mirrokni & Vondrák, 2011]
If f : 2E 7→ R is normalized, nonnegative and submodular,

and S is a local optimum for the add & drop moves, then
S′ ∈ argmax{f(T ) : T ∈ {S,N \ S}},

the better of S and its complement, is a 1/3-approximation

Proof: Let S∗ be an optimum solution, then

3 f(S′) ≥ 2 f(S′) + f(N \ S′)
≥ f(S′ ∩ S∗) + f(S′ ∪ S∗) + f(N \ S′)
≥ f(S′ ∩ S∗) + f(N) + f(S∗ \ S′)
≥ f(S∗) + f(∅) + f(N) ≥ f(S∗) QED

Theorem. If, in addition to the assumptions of the preceding
theorem, f is also symmetric then S′ is a 1/2-approximation

Proof: N \ S′ is also a local optimum, so

2 f(S′) = f(S′) + f(N \ S′) ≥ f(S′ ∩ S∗) + f((N \ S′) ∩ S∗)
≥ f(S∗) + f(∅) ≥ f(S∗) QED
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Proof: Let S∗ be an optimum solution, then

3 f(S′) ≥ 2 f(S′) + f(N \ S′)
≥ f(S′ ∩ S∗) + f(S′ ∪ S∗) + f(N \ S′)
≥ f(S′ ∩ S∗) + f(N) + f(S∗ \ S′)
≥ f(S∗) + f(∅) + f(N) ≥ f(S∗) QED

Theorem. If, in addition to the assumptions of the preceding
theorem, f is also symmetric then S′ is a 1/2-approximation

Proof:

N \ S′ is also a local optimum, so

2 f(S′) = f(S′) + f(N \ S′) ≥ f(S′ ∩ S∗) + f((N \ S′) ∩ S∗)
≥ f(S∗) + f(∅) ≥ f(S∗) QED
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Approximation Algorithms for SFMax

Combining with MLS (for polytime) we get

I a (13 − ε)-approximation for SFMax with a normalized
nonnegative objective, and

I a (12 − ε)-approximation if it is also symmetric

I matches the
(
1
2 + ε

)
inapproximability for Sym-SFMax

Buchbinder, Feldman, Naor & Schwartz (2012): a randomized,
linear-time, greedy-like algorithm which is a 1

2 -approximation

I therefore best possible for SFMax

Other recent approximation results for monotone and
non-monotone SFMax subject to a variety of constraints

I one or several knapsacks, matroidal constraints, . . .
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