Short Course on Submodular Functions

Part 2: Extensions and Related Problems
Session 2.A: Partitions

S. Thomas McCormick Maurice Queyranne

Sauder School of Business, UBC
JPOC Summer School, June 2013

A partition P = {Py,..., Py} of E satisfies
») # P, C E for all 4,
» P,NP;=0foralli#j, and
> UL Bi=F
for some k € {1,...,|E|} (P is a k-way partition)

A partition P = {Py,..., Py} of E satisfies
») # P, C E for all 4,
» P,NP;=0foralli#j, and
> UL Bi=F
for some k € {1,...,|E|} (P is a k-way partition)
Given a part cost function f : 28 — R, the cost of a partition P is

|P|

fP)=>f(P)
i=1

A partition P = {Py,..., P;} of E satisfies
») # P, C E for all 4,
» P,NP;=0foralli#j, and
> UL Bi=F
for some k € {1,...,|E|} (P is a k-way partition)

Given a part cost function f : 28 — R, the cost of a partition P is

|P|

fP)=>f(P)
i=1

Optimum Partition Problems:
e given F and f
e find a partition P with minimum cost f(P)
(subject to possible restrictions on the number k = |P| of parts)

Applications

Applications

Set Partitioning

» not all subsets are feasible
= let f(S) = 400 whenever S is not feasible

» many applications, e.g., airline crew scheduling, vehicle
routing, etc.

Applications

Set Partitioning

» not all subsets are feasible
= let f(S) = 400 whenever S is not feasible

» many applications, e.g., airline crew scheduling, vehicle
routing, etc.
Facility Location/Allocation
» F is a set of clients to be served

» f(S) is the minimum cost to serve subset S
(choosing a best location for serving S)

Applications

Set Partitioning

» not all subsets are feasible
= let f(S) = 400 whenever S is not feasible

» many applications, e.g., airline crew scheduling, vehicle
routing, etc.
Facility Location/Allocation
» F is a set of clients to be served
» f(S) is the minimum cost to serve subset .S
(choosing a best location for serving S)
Clustering
» F is a set of items to be classified

> f(S) is the (negative of) the value of cluster S, reflecting
o the similarities within S, and
o the dissimilarities with N \ S

Applications (2)

Multi-layer VLSI Circuit Design (Netlist Partitioning)

» F is a set of modules to be located on a k-layer chip
= find a k-way partition of F/

» f(5) is the cost of splitting netlist S

Applications (2)

Multi-layer VLSI Circuit Design (Netlist Partitioning)

» F is a set of modules to be located on a k-layer chip
= find a k-way partition of F/

» f(5) is the cost of splitting netlist S

In most applications, there are additional constraints:
> on the parts F;
o e.g., VLSI: each part must fit on one layer

» other “complicating” constraints
o e.g., Set Partitioning: aircraft types, home bases

Applications (2)

Multi-layer VLSI Circuit Design (Netlist Partitioning)

» F is a set of modules to be located on a k-layer chip
= find a k-way partition of F/

» f(5) is the cost of splitting netlist S

In most applications, there are additional constraints:

> on the parts F;
o e.g., VLSI: each part must fit on one layer

» other “complicating” constraints
o e.g., Set Partitioning: aircraft types, home bases
Most of these problems are NP-hard
» many are hard to approximate

> just finding feasible solutions can be NP-hard

Applications (2)

Multi-layer VLSI Circuit Design (Netlist Partitioning)

» F is a set of modules to be located on a k-layer chip
= find a k-way partition of F/

» f(5) is the cost of splitting netlist S

In most applications, there are additional constraints:

> on the parts F;
o e.g., VLSI: each part must fit on one layer

» other “complicating” constraints
o e.g., Set Partitioning: aircraft types, home bases
Most of these problems are NP-hard
» many are hard to approximate
> just finding feasible solutions can be NP-hard

Yet, some important and useful special cases can be solved
efficiently when the cost function f is submodular

Examples with Submodular Part Costs

Some important and useful special cases can be solved efficiently
when the cost function f is submodular:

Examples with Submodular Part Costs

Some important and useful special cases can be solved efficiently
when the cost function f is submodular:

Clustering
The negative of total (pairwise) similarity

1(8) == 3 si.k)

j,keS

is submodular when s > 0 (Why?)

Examples with Submodular Part Costs

Some important and useful special cases can be solved efficiently
when the cost function f is submodular:

Clustering
The negative of total (pairwise) similarity

1(8) == 3 si.k)

j,keS

is submodular when s > 0 (Why?)

VLSI Circuit Design
Given hypergraph (E, H) with edge weights wy, (h € H), the
hypergraph cut function

F(8) =Y {wn : hnS#0 and h\ S # 0}

is submodular when w > 0 (Why?)

Optimum Unconstrained Partitions

Optimum Unconstrained Partitions

The Dilworth truncation fP of a set function f : 2F — RY is the
set function P : 2F i RV defined by

fP(A) = {minPeH(A) f(P) ifA#Q
0 if A =0

where II(A) is the set of all partitions of set A

Optimum Unconstrained Partitions

The Dilworth truncation fP of a set function f : 2F — RY is the
set function P : 2F i RV defined by

D, Jminperay f(P) if A#0
= {0 if A=

where TI(A) is the set of all partitions of set A

Set partitioning formulation: w.l.o.g., assume A = F
1 ifSebp;

Let xg =
0 otherwise

fP(E) = min Ysceszg J(S) s
x>0

T integer

LPs and Dilworth Truncation

LPs and Dilworth Truncation

LP relaxation:

(P) min 3 scpgzy f(S) s
x>0

LPs and Dilworth Truncation

LP relaxation:

(P) min 3 scpgzy f(S) s
x>0

Its dual:
(D) max » y;
JjEE
s.t. y(S) < f(S) VSCE, S#10

LPs and Dilworth Truncation

LP relaxation:

(P) min ngE:s;s(z) f(S)zs

x>0
Its dual:
(D) max Zyj
JjEE

st. y(S) <f(S) VSCE, S£0

This dual is almost linear optimization on a submodular
polyhedron (solvable by the Greedy Algorithm seen yesterday)

LPs and Dilworth Truncation

LP relaxation:

(P) min ngE:s;s(z) f(S)zs

x>0
Its dual:
(D) max Zyj
JjEE

st. y(S) <f(S) VSCE, S£0

This dual is almost linear optimization on a submodular
polyhedron (solvable by the Greedy Algorithm seen yesterday)
e except that here we may have f(()) <0

What if f(0)) > 07

What if f(0)) > 07

If f is submodular and f(@) > 0 then: AN B = () implies
f(AUB) < f(A)+ f(B)

that is, f is subadditive

What if f(0)) > 07

If f is submodular and f(@) > 0 then: AN B = () implies
f(AUB) < f(A)+ f(B)

that is, f is subadditive

If fis subadditive, then fP = f
e except perhaps that () =
and we are done.

0

What if f(0)) > 07

If f is submodular and f(@) > 0 then: AN B = () implies
f(AUB) < f(A)+ f(B)

that is, f is subadditive

If fis subadditive, then fP = f
e except perhaps that () =
and we are done.

0

Hence we now consider the general case where we make no sign
restriction on f(())

A General Greedy Principle

(Edmonds, 1970; Frank & Tardos, 1988)

A General Greedy Principle

(Edmonds, 1970; Frank & Tardos, 1988)

Given polyhedron P C R¥ and w € R, assume w.l.o.g. that
E={e1,...,en} with we, > we, >+ > we, >0
e i.e, F is totally ordered by < as: e} <ex <--- < ey,

A General Greedy Principle

(Edmonds, 1970; Frank & Tardos, 1988)

Given polyhedron P C R¥ and w € R, assume w.l.o.g. that
E={e1,...,en} with we, > we, >+ > we, >0

e i.e, F is totally ordered by < as: e} <ex <--- < ey,
Recursively define y& € RF as follows

> forj=1,...,n let
yg =max{ye;, : Y EP Vi<j vy :yg}

A General Greedy Principle

(Edmonds, 1970; Frank & Tardos, 1988)

Given polyhedron P C R¥ and w € R, assume w.l.o.g. that
E={e1,...,en} with we, > we, >+ > we, >0
e i.e, F is totally ordered by < as: e} <ex <--- < ey,
Recursively define y& € RF as follows
> forj=1,...,n let
yg =max{ye, : W EP Vi<j ye = yg}
This ensures that the resulting greedy solution y© € P
e at the expense of solving n optimization problems

A General Greedy Principle

(Edmonds, 1970; Frank & Tardos, 1988)

Given polyhedron P C R¥ and w € R, assume w.l.o.g. that
E={e1,...,en} with we, > we, >+ > we, >0

e i.e, F is totally ordered by < as: e} <ex <--- < ey,
Recursively define y& € RF as follows

> forj=1,...,n let

yg =max{ye, : W EP Vi<j ye = yg}
This ensures that the resulting greedy solution y© € P

e at the expense of solving n optimization problems
If P=P(f)={y e RF : y(S) < f(S) VS C E, S # 0} for some
set function f, then

A General Greedy Principle

(Edmonds, 1970; Frank & Tardos, 1988)

Given polyhedron P C R¥ and w € R, assume w.l.o.g. that
E={e1,...,en} with we, > we, >+ > we, >0
e i.e, F is totally ordered by < as: e} <ex <--- < ey,
Recursively define y& € RF as follows
> forj=1,...,n let
y& =max{y,, 3y e P Vi<j vy, =y}
This ensures that the resulting greedy solution y© € P
e at the expense of solving n optimization problems
If P=P(f)={y e RF : y(S) < f(S) VS C E, S # 0} for some
set function f, then the Greedy Principle simplifies to:
> let y“(e1) = f({e1}) and for j =2,...,n let
ye :min{f(A+ej)—yG(A);Age;} (1)

where e ={g€ A:g<e;} ={er,....ej1} forall j=1,....n

Questions about the General Greedy Principle

Questions about the General Greedy Principle

Optimality Questions:
> is ¢ an optimum solution to max{wy : y € P}?

» is the corresponding primal solution 2 integer?

Questions about the General Greedy Principle

Optimality Questions:
> is ¢ an optimum solution to max{wy : y € P}?

» is the corresponding primal solution 2 integer?

Algorithmic Questions:

» can the optimization subroblem (1) be solved efficiently (i.e.,
in polynomial time)?

» if 2 is integer, can the corresponding optimal partition be
recovered efficiently?

Questions about the General Greedy Principle

Optimality Questions:
> is ¢ an optimum solution to max{wy : y € P}?

» is the corresponding primal solution 2 integer?

Algorithmic Questions:

» can the optimization subroblem (1) be solved efficiently (i.e.,
in polynomial time)?

» if 2 is integer, can the corresponding optimal partition be
recovered efficiently?

We have seen that when f is submodular and normalized (as in
f(0) = 0), the answer to all 4 questions is YES!/

Questions about the General Greedy Principle

Optimality Questions:
> is ¢ an optimum solution to max{wy : y € P}?

» is the corresponding primal solution 2 integer?

Algorithmic Questions:

» can the optimization subroblem (1) be solved efficiently (i.e.,
in polynomial time)?

» if 2 is integer, can the corresponding optimal partition be
recovered efficiently?

We have seen that when f is submodular and normalized (as in
f(0) = 0), the answer to all 4 questions is YES!
e in particular, subproblem (1) is solved as

yg = min{f(A—i—ej) —y9(A): AC ef}

Questions about the General Greedy Principle

Optimality Questions:
> is ¢ an optimum solution to max{wy : y € P}?

» is the corresponding primal solution 2 integer?

Algorithmic Questions:

» can the optimization subroblem (1) be solved efficiently (i.e.,
in polynomial time)?

» if 2 is integer, can the corresponding optimal partition be
recovered efficiently?

We have seen that when f is submodular and normalized (as in
f(0) = 0), the answer to all 4 questions is YES!
e in particular, subproblem (1) is solved as

yg = min{f(A—i—ej) —y%(A): AC ef} = 63’11 - ef

(i.e., optimum subset A = ¢')

Uncrossing Lemma

Consider the “general submodular case”, where f is submodular
and f(0) is arbitrary

Uncrossing Lemma

Consider the “general submodular case”, where f is submodular
and f(0) is arbitrary

Let A; be an optimum subset in subproblem (1) and B; = A; +e¢;
o so y%(B;) = f(By)

Uncrossing Lemma

Consider the “general submodular case”, where f is submodular
and f(0) is arbitrary

Let A; be an optimum subset in subproblem (1) and B; = A; +e¢;
o so y%(B;) = f(By)

Uncrossing Lemma: If B, N B; # () for i < j then
y“(B; UBj) = f(Bi U Bj)

Uncrossing Lemma

Consider the “general submodular case”, where f is submodular
and f(0) is arbitrary

Let A; be an optimum subset in subproblem (1) and B; = A; +e¢;
o so y(B;) = f(B))

Uncrossing Lemma: If B, N B; # () for i < j then

y“(B;UBj) = f(BiU By)

Proof.

Since y© € P we have:

f(BjUB;) < f(Bj)+ f(Bi)— f(Bi N By)

Uncrossing Lemma

Consider the “general submodular case”, where f is submodular
and f(0) is arbitrary

Let A; be an optimum subset in subproblem (1) and B; = A; +e¢;
o s0 y%(B;)) = f(B))

Uncrossing Lemma: If B, N B; # () for i < j then

y“(BiU Bj) = f(Bi U B))

Proof.
Since y“ € P we have:
f(BjUB;) < f(Bj)+ f(Bi)— f(Bi N By)
< y9(B;) +y%(B;) — y“(Bi N B;)

Uncrossing Lemma

Consider the “general submodular case”, where f is submodular
and f(0) is arbitrary

Let A; be an optimum subset in subproblem (1) and B; = A; +e¢;
o s0 y%(B;)) = f(B))

Uncrossing Lemma: If B, N B; # () for i < j then

y“(BiU Bj) = f(Bi U B))

Proof.
Since y© € P we have:

f(B;UB;) < f(Bj)+ f(Bi)— f(BiN Bj)
< y9(By) +y°(Bi) -y (BN By)
= y9(B; UB)

Uncrossing Lemma

Consider the “general submodular case”, where f is submodular
and f(0) is arbitrary

Let A; be an optimum subset in subproblem (1) and B; = A; +e¢;
o s0 y%(B;)) = f(B))

Uncrossing Lemma: If B, N B; # () for i < j then

y“(BiU Bj) = f(Bi U B))

Proof.
Since y“ € P we have:

f(B;jUB;) < [f(Bj)+ f(Bi)— f(BiNBj)
< y%(B)) +y“(B;) —y“(B; N B))
= y“(BjUB)
< f(BjUB)

Uncrossing Lemma

Consider the “general submodular case”, where f is submodular
and f(0) is arbitrary

Let A; be an optimum subset in subproblem (1) and B; = A; +e¢;
o s0 y%(B;)) = f(B))

Uncrossing Lemma: If B, N B; # () for i < j then

y“(BiU Bj) = f(Bi U B))

Proof.
Since y© € P we have:

f(B;jUB;) < [f(Bj)+ f(Bi)— f(BiNBj)
< y%(B)) +y“(B;) —y“(B; N B))
= y“(BjUB)
< f(BjUB)

hence all these inequalities must hold as equalities O

General Submodular Case: Optimality

General Submodular Case: Optimality

By the Uncrossing Lemma, at each step of the Greedy Algorithm,
we may replace the current set B; with its union with all earlier
sets that it intersects, and delete all these earlier intersected sets

General Submodular Case: Optimality

By the Uncrossing Lemma, at each step of the Greedy Algorithm,
we may replace the current set B; with its union with all earlier
sets that it intersects, and delete all these earlier intersected sets
At the end, the surviving sets, say, Py, ..., P, form a partition

of B and y¢(E) = Y, (P)

General Submodular Case: Optimality

By the Uncrossing Lemma, at each step of the Greedy Algorithm,
we may replace the current set B; with its union with all earlier
sets that it intersects, and delete all these earlier intersected sets

At the end, the surviving sets, say, P, ..., P, form a partition
of E and y“(E) =Y, f(P)
This implies that the primal solution 2 defined by
xG(S) _ 1 ifS:.Pi for some 1;
0 otherwise

General Submodular Case: Optimality

By the Uncrossing Lemma, at each step of the Greedy Algorithm,
we may replace the current set B; with its union with all earlier
sets that it intersects, and delete all these earlier intersected sets

At the end, the surviving sets, say, P, ..., P, form a partition
of E and y“(E) =Y, f(P)
This implies that the primal solution 2 defined by

xG(S) _ 1 ifS:.Pi for some 1;
0 otherwise

is feasible for (P) and the primal and dual objective values

Y FS)§ = uf
S 7j=1

General Submodular Case: Optimality

By the Uncrossing Lemma, at each step of the Greedy Algorithm,
we may replace the current set B; with its union with all earlier
sets that it intersects, and delete all these earlier intersected sets
At the end, the surviving sets, say, P, ..., P, form a partition

of B and y¢(E) = Y, (P)

This implies that the primal solution 2 defined by

xG(S) =

1 if § = P, for some i;
0 otherwise

is feasible for (P) and the primal and dual objective values
n
> F(S)zg =D of
S j=1

Hence both y“ and 2 are optimal, answering both Optimality
Questions, and giving an efficient construction of an optimum
partition P = (P, ..., Py)

Algorithmic Questions; Submodularity of Dilworth

Truncation

The optimization subproblem (1) is SFMin

Algorithmic Questions; Submodularity of Dilworth

Truncation

The optimization subproblem (1) is SFMin

Therefore, for any subset S C E, the value 7 (S) of the Dilworth
truncation can be obtained in polynomial time, by solving |S| — 1
submodular minimization problems

Algorithmic Questions; Submodularity of Dilworth

Truncation

The optimization subproblem (1) is SFMin

Therefore, for any subset S C E, the value 7 (S) of the Dilworth
truncation can be obtained in polynomial time, by solving |S| — 1
submodular minimization problems

Submodularity of the Dilworth Truncation

Algorithmic Questions; Submodularity of Dilworth

Truncation

The optimization subproblem (1) is SFMin

Therefore, for any subset S C E, the value 7 (S) of the Dilworth
truncation can be obtained in polynomial time, by solving |S| — 1
submodular minimization problems

Submodularity of the Dilworth Truncation

Proposition (Lovasz 1983) The Dilworth truncation of a
submodular function is submodular
Proof: Let f be submodular.

Algorithmic Questions; Submodularity of Dilworth

Truncation

The optimization subproblem (1) is SFMin

Therefore, for any subset S C E, the value 7 (S) of the Dilworth
truncation can be obtained in polynomial time, by solving |S| — 1
submodular minimization problems

Submodularity of the Dilworth Truncation

Proposition (Lovasz 1983) The Dilworth truncation of a
submodular function is submodular
Proof: Let f be submodular. Recall that f”()) =0

Algorithmic Questions; Submodularity of Dilworth

Truncation

The optimization subproblem (1) is SFMin

Therefore, for any subset S C E, the value 7 (S) of the Dilworth
truncation can be obtained in polynomial time, by solving |S| — 1
submodular minimization problems

Submodularity of the Dilworth Truncation

Proposition (Lovasz 1983) The Dilworth truncation of a
submodular function is submodular

Proof: Let f be submodular. Recall that f”()) =0

It suffices to prove: for all S C E, u,v € E\ S

PSS +u+v)— fP(S+u) < fP(S+0v) - fP(S)?

Algorithmic Questions; Submodularity of Dilworth

Truncation

The optimization subproblem (1) is SFMin

Therefore, for any subset S C E, the value 7 (S) of the Dilworth
truncation can be obtained in polynomial time, by solving |S| — 1
submodular minimization problems

Submodularity of the Dilworth Truncation

Proposition (Lovasz 1983) The Dilworth truncation of a
submodular function is submodular

Proof: Let f be submodular. Recall that f”()) =0
It suffices to prove: for all S C E, u,v € E\ S

PSS +u+v)— fP(S+u) < fP(S+0v) - fP(S)?

o If S =0 then fP(u+v) < fP(u) + fP(v) (Why?)

Submodularity of the Dilworth Truncation (continued)

Else, i.e., S # (), number the elements in E so S = eij_l, €it] = U
and €i+2 =V

Submodularity of the Dilworth Truncation (continued)

Else, i.e., S # (), number the elements in E so S = eij_l, €it] = U
and e; o2 = v and apply the Greedy Algorithm: we have

ye(T) = fP (1) for T =S5, S+u, and S +u+wv

Submodularity of the Dilworth Truncation (continued)

Else, i.e., S # (), number the elements in E so S = eij_l, €it] = U
and e; o2 = v and apply the Greedy Algorithm: we have

ye(T) = fP (1) for T =S5, S+u, and S +u+wv

The Greedy Algorithm applied to S + v just after S produces 7
satisfying QJG = yJG forall j €S

Submodularity of the Dilworth Truncation (continued)

Else, i.e., S # (), number the elements in E so S = eij_l, €it] = U
and e; o2 = v and apply the Greedy Algorithm: we have

ye(T) = fP (1) for T =S5, S+u, and S +u+wv

The Greedy Algorithm applied to S + v just after S produces 7
satisfying QJG = JG forall j €S and forsome AC S

FPS +0) = fP(S) =37 = f(A+v) = §9(A)

Submodularity of the Dilworth Truncation (continued)

Else, i.e., S # (), number the elements in E so S = eij_l, €it] = U
and e; o2 = v and apply the Greedy Algorithm: we have

ye(T) = fP (1) for T =S5, S+u, and S +u+wv

The Greedy Algorithm applied to S + v just after S produces 7
satisfying QJG = JG forall j €S and forsome AC S

FPS +0) = fP(S) =37 = f(A+v) = §9(A)

Then:
fP(S+u+v)— fP(S +u)

Submodularity of the Dilworth Truncation (continued)

Else, i.e., S # (), number the elements in E so S = eij_l, €it] = U
and e; o2 = v and apply the Greedy Algorithm: we have

ye(T) = fP (1) for T =S5, S+u, and S +u+wv

The Greedy Algorithm applied to S + v just after S produces 7
satisfying QJG = JG forall j €S and forsome AC S

FP(S+v) = fP(8) =35 = F(A+v) —§°(4)
Then:
fP(S+u+v)— fP(S +u)
= oY
= min{f(B+v)—y%B): BC S +u}

Submodularity of the Dilworth Truncation (continued)

Else, i.e., S # (), number the elements in E so S = eij_l, €it] = U
and e; o2 = v and apply the Greedy Algorithm: we have

ye(T) = fP (1) for T =S5, S+u, and S +u+wv

The Greedy Algorithm applied to S + v just after S produces 7
satisfying QJG = yJG forall j €S and forsome AC S

FPS +0) = fP(S) =37 = f(A+v) = §9(A)

Then:
fP(S+u+v)— fP(S +u)

-
= min{f(B+v)—y%B): BC S +u}
F(A+v)—y%(A

IN

Submodularity of the Dilworth Truncation (continued)

Else, i.e., S # (), number the elements in E so S = eij_l, €it] = U
and e; o2 = v and apply the Greedy Algorithm: we have

ye(T) = fP (1) for T =S5, S+u, and S +u+wv

The Greedy Algorithm applied to S + v just after S produces 7
satisfying QJG = yJG forall j €S and forsome AC S

FP(S+v) = fP(8) =35 = F(A+v) —§°(4)
Then:
fP(S+u+v)— fP(S +u)
v
min{f(B 4+ v) —y“(B): BC § + u}
f(A+v) —y%(4)
FP(S +v) = fP(9)

IAN I

Submodularity of the Dilworth Truncation (continued)

Else, i.e., S # (), number the elements in E so S = eij_l, €it] = U
and e; o2 = v and apply the Greedy Algorithm: we have

ye(T) = fP (1) for T =S5, S+u, and S +u+wv

The Greedy Algorithm applied to S + v just after S produces 7
satisfying QJG = yJG forall j €S and forsome AC S

FP(S+v) = fP(8) =35 = F(A+v) —§°(4)
Then:
fP(S+u+v)— fP(S +u)
v
min{f(B 4+ v) —y“(B): BC § + u}
f(A+v) —y%(4)
FP(S +v) = fP(9)

IAN I

QED

An Application in Statistical Mechanics

Asymptotics of Potts Partition Functions
(Anglés d'Auriac & al., 2002)

Statistical Mechanics ‘ Graph Theory
Lattice (V, E) Graph G = (V, E)
Sitei e V Node
Bond ij € Edge
Coupling K;; Edge weight

An Application in Statistical Mechanics

Asymptotics of Potts Partition Functions
(Anglés d'Auriac & al., 2002)

Statistical Mechanics ‘ Graph Theory
Lattice (V, E) Graph G = (V, E)

Sitei e V Node
Bond ij € Edge
Coupling K;; Edge weight

Given are: the lattice, the couplings K > 0, and integer ¢ > 2
(number of spin values)

An Application in Statistical Mechanics

Asymptotics of Potts Partition Functions
(Anglés d'Auriac & al., 2002)

Statistical Mechanics ‘ Graph Theory
Lattice (V, E) Graph G = (V, E)

Sitei e V Node
Bond ij € Edge
Coupling K;; Edge weight

Given are: the lattice, the couplings K > 0, and integer ¢ > 2
(number of spin values)

A variable o; € {0,1,...,qg — 1}, called a spin, is associated with
eachsite i € V

An Application in Statistical Mechanics

Asymptotics of Potts Partition Functions
(Anglés d'Auriac & al., 2002)

Statistical Mechanics ‘ Graph Theory
Lattice (V, E) Graph G = (V, E)

Sitei e V Node
Bond ij € Edge
Coupling K;; Edge weight

Given are: the lattice, the couplings K > 0, and integer ¢ > 2
(number of spin values)

A variable o; € {0,1,...,qg — 1}, called a spin, is associated with
eachsite i € V

Energy of configuration o = (01,...,0,): E(0) = ZijeE Kijdo,0;
1 ifa=05b

where the Kronecker symbol 64, =]
0 otherwise

Potts Partition Function

2(K) = 3 exp(B(o))

Potts Partition Function

Z(K) = exp(E(0))
Letting v;; = exp(K;;) —1 > 0, we have

exp(E(0)) =[] exp(Kijdo,o;)
ijeE

Potts Partition Function

Z(K) = exp(E(0))
Letting v;; = exp(K;;) —1 > 0, we have

exp(E(0)) =[] exp(Kijdo,o;)
ijeE

— H (14 (exp(Kyj) — 1) b5,0,)
ij€EE

Potts Partition Function

Z(K) = exp(E(0))
Letting v;; = exp(K;;) —1 > 0, we have
exp(E(0)) =[] exp(Kijdo,o;)
ij€EE

— H (14 (exp(Kyj) — 1) b5,0,)
ij€EE

= Z H Vij 601'0']'

Fe2F ijeF

Potts Partition Function (2)

Z(K) = > Y.] vibow,

0 Fe2F ijeF

Potts Partition Function (2)

Z(K) = > Y.] vibow,

o Fe2F ijeF

- ¥ % Mwie

Fe2E o ijeF

Potts Partition Function (2)

Z(K) = > Y.] vibow,

o Fe2F ijeF

- ¥ % Mwie

Fe2E o ijeF

= 3 O] vy

Fe2E ijeF

where nc(F) is the number of connected components of

Potts Partition Function (2)

Z(K) = > Y.] vibow,

0 Fe2F ijeF

- ¥ % Mwie

Fe2E o ijeF

= 3 O] vy

Fe2E ijeF

where nc(F) is the number of connected components of
e Recall that nc is a supermodular function

Potts Partition Function (2)

Z(K) = > Y.] vibow,

o Fe2F ijeF

- ¥ % Mwie

Fe2E o ijeF

= 3 O] vy

Fe2E ijeF

where nc(F) is the number of connected components of
e Recall that nc is a supermodular function

Let a;; = log, vy so Z(K) = peor ")
where h(F) = ne(F) + 325 p @i

Asymptotics of Potts Partition Function

Asymptotics of Potts Partition Function

When ¢ goes to infinity, Z(K) — Nq"" where N is the number of
optimum sets F' and

h* = h(F) = F)+ i
s AP = g | () + 3

Asymptotics of Potts Partition Function

When ¢ goes to infinity, Z(K) — Nq"" where N is the number of
optimum sets F' and

h* = h(F) = F)+ i
s AP = g | () + 3

Since h is supermodular, finding the asymptotic exponent h* is
SFMin (where the ground set is the edge set E)

Asymptotics of Potts Partition Function

When ¢ goes to infinity, Z(K) — Nq"" where N is the number of
optimum sets F' and

h* = h(F) = F)+ i
s AP = g | () + 3

Since h is supermodular, finding the asymptotic exponent h* is
SFMin (where the ground set is the edge set E)

e Can we do better than general SFMin?

Two Simple Observations

Two Simple Observations

1. All ij € E with o;; < 0 may be eliminated
(they cannot belong to any optimum subset)
= assume o > 0

Two Simple Observations

1. All ij € E with o;; < 0 may be eliminated
(they cannot belong to any optimum subset)
= assume o > 0

2. Let F* be an optimum subset and P, ..., P, the connected
components of G* = (V, F™*),

Two Simple Observations

1. All ij € E with o;; < 0 may be eliminated
(they cannot belong to any optimum subset)
= assume o > 0

2. Let F* be an optimum subset and P, ..., P, the connected
components of G* = (V, F™*),

Two Simple Observations

1. All ij € E with o;; < 0 may be eliminated
(they cannot belong to any optimum subset)
= assume o > 0

2. Let F* be an optimum subset and P, ..., P, the connected
components of G* = (V, F™*),
then we may add to F™* all edges in E within each P;

Two Simple Observations

1. All ij € E with o;; < 0 may be eliminated
(they cannot belong to any optimum subset)
= assume o > 0
2. Let F* be an optimum subset and P, ..., P, the connected
components of G* = (V, F™*),
then we may add to F™* all edges in E within each P;

Therefore WEF*) = a(E) = S8 f(P)
where f: 2V — R, defined by f(S) = 3 (ZjeS,kg_iS ajk> -1,
is the cut function of the graph G = (V, E) with edge “capacities”

« > 0, minus the constant 1
eso, f(0)=-1<0

A Faster Algorithm

A Faster Algorithm

Thus, finding h# is equivalent to finding the value fP (V) of the
Dilworth truncation of f
e Note: the ground set is now V/, the node set

A Faster Algorithm

Thus, finding h# is equivalent to finding the value fP (V) of the
Dilworth truncation of f

e Note: the ground set is now V/, the node set

The minimizations at each step of the Greedy Algorithm can be
performed efficiently by network flow techniques (minimum
s,t-cuts in an associated network)

A Faster Algorithm

Thus, finding h# is equivalent to finding the value fP (V) of the
Dilworth truncation of f
e Note: the ground set is now V/, the node set

The minimizations at each step of the Greedy Algorithm can be
performed efficiently by network flow techniques (minimum
s,t-cuts in an associated network)

The running time is O(|V |2 |E|)
e much faster than general SFMin on the old ground set |E|

Optimum Bipartition

Find a bipartition P = { Py, P} of E with least total cost f(P)?

Optimum Bipartition

Find a bipartition P = { Py, P} of E with least total cost f(P)?

Equivalently, find a proper subset S (i.e.,) # S C E) which
minimizes f(S) + f(E\ S).

Optimum Bipartition

Find a bipartition P = { Py, P} of E with least total cost f(P)?

Equivalently, find a proper subset S (i.e.,) # S C E) which
minimizes f(S) + f(E\ S).

A set function g : 2% — R is symmetric iff

g(S)=g(E\ S) forall SCE

Optimum Bipartition

Find a bipartition P = { Py, P} of E with least total cost f(P)?

Equivalently, find a proper subset S (i.e.,) # S C E) which
minimizes f(S) + f(E\ S).

A set function g : 2% — R is symmetric iff
g(S)=g(E\Y) forall SCE
The function g defined by g(S) = f(S) + f(E\ S) is:

e symmetric; and
e submodular if f is submodular

Sym-SFMin

If g is symmetric and submodular then, for all S C FE

9(8) = 1/2(9(5) +9(E\9))

Sym-SFMin

If g is symmetric and submodular then, for all S C FE

g(8) = 1/2(9(S)+g(E\S))
> 1/2 (g(E) +9(0))

Sym-SFMin

If g is symmetric and submodular then, for all S C FE

9(5) 1/2 (g(S) + g(E\ S))
1/2 (g(E) + g(0))
9(0)

[AVARI

Sym-SFMin

If g is symmetric and submodular then, for all S C FE

9(S) 1/2 (9(S) + g(E\ 5))
1/2 (9(E) + g(0))
90) = g(E)

[AVARI

Sym-SFMin

If g is symmetric and submodular then, for all S C FE

g9(5) 1/2 (g(S) +g9(E\ S))
1/2 (g(E) + 9(0))
9g(0) = g(E)

hence (), and also E, minimize g.

[AVARI

Sym-SFMin

If g is symmetric and submodular then, for all S C FE

9(8) = 1/2(9(5) +9(E\9))
> 1/2 (9(E) +9(0))
9@) = 9(E)

hence (), and also E, minimize g.

The Optimum Bipartition problem with submodular part costs, is
equivalent to the Symmetric Submodular Minimization
problem (Sym-SFMin):

» given a symmetric submodular function ¢ : 2¥ — R

» find a proper subset S of E which minimizes g(S)

Sym-SFMin and Decomposition

Sym-SFMin and Decomposition

Proposition Assume that f is normalized and submodular,

Sym-SFMin and Decomposition

Proposition Assume that f is normalized and submodular, and
tuhat there exists a proper subset A C Evsuch that y y
f(A) = f(A) + f(A) — f(E) satisfies f(A) =0= f(0) = f(E).
where A = E'\ A.

Sym-SFMin and Decomposition

Proposition Assume that f is normalized and submodular, and
tuhat there exists a proper subset A C Evsuch that y y
F(A) = F(A) + F(A) — F(B) satisfies F(A) =0 = f(0) = J(E).
where A = E\ A. Then f is decomposable as

f(B)=f(BNA)+ f(BNA) foral BCE

Sym-SFMin and Decomposition

Proposition Assume that f is normalized and submodular, and
that there exists a proper subset A C Evsuch that y y
F(A) = F(A) + F(A) — F(B) satisfies F(A) =0 = f(0) = J(E).
where A= E \ A. Then f is decomposable as

f(B)=f(BNA)+ f(BNA) foral BCE
Proof: Since f is normalized and submodular

f(B)=f((BNA)U(BNA)

Sym-SFMin and Decomposition

Proposition Assume that f is normalized and submodular, and
that there exists a proper subset A C Evsuch that y y
F(A) = F(A) + F(A) — F(B) satisfies F(A) =0 = f(0) = J(E).
where A= E \ A. Then f is decomposable as

f(B)=f(BNA)+ f(BNA) foral BCE
Proof: Since f is normalized and submodular

J(B)=f((BAA)U(BAA) < [(BNA)+ [(BNA)

Sym-SFMin and Decomposition

Proposition Assume that f is normalized and submodular, and
that there exists a proper subset A C E such that

f(A) = F(A) + f(A) — f(E) satisfies f(A) = 0= f(0) = f(E).
where A= E \ A. Then f is decomposable as

f(B)=f(BNA)+ f(BNA) foral BCE
Proof: Since f is normalized and submodular
f(B)=f((BNAYUBNA) < f(BNA) + [(BNA)
and

f(B) = f(BNA)— f(BNA) > f(BUA)- f(A)— f(BNA)

Sym-SFMin and Decomposition

Proposition Assume that f is normalized and submodular, and
tuhat there exists a proper subset A C Evsuch that y y
F(A) = F(A) + f(A) — f(E) satisfies f(4) = 0= f(0) = f(E).
where A= E \ A. Then f is decomposable as
f(B)=f(BNA)+ f(BNA) foral BCE
Proof: Since f is normalized and submodular
J(B)=f((BAA)U(BAA) < [(BNA)+ [(BNA)

and

f(B) = f(BNA) - f(BNA)

VIV
=
w
C
=
C
=
|
=
=
|
=
=

Sym-SFMin and Decomposition

Proposition Assume that f is normalized and submodular, and
that there exists a proper subset A C E such that

f(A) = F(A) + f(A) — f(E) satisfies f(A) = 0= f(0) = f(E).
where A= E \ A. Then f is decomposable as

f(B)=f(BNA)+ f(BNA) foral BCE
Proof: Since f is normalized and submodular
f(B)=f((BNAYUBNA) < f(BNA) + [(BNA)

and

f(B) = f(BNA) - f(BNA) f(BUA) - f(A) - f(BNA)

v v
g
C
-
N
C
2
|

A proper subset A of E such that
f(B)=f(BNA)+ f(BNA) foral BCE

is called a separator of f.

A proper subset A of E such that
f(B)=f(BNA)+ f(BNA) foral BCE
is called a separator of f.

Example: Let X be a random vector indexed by F

A proper subset A of E such that
f(B)=f(BNA)+ f(BNA) foral BCE
is called a separator of f.

Example: Let X be a random vector indexed by F
and let X denote the subvector indexed by any subset B C E

A proper subset A of E such that
f(B)=f(BNA)+ f(BNA) foral BCE
is called a separator of f.

Example: Let X be a random vector indexed by F
and let X denote the subvector indexed by any subset B C E
If X4 and X4 are independent,

A proper subset A of E such that
f(B)=f(BNA)+ f(BNA) foral BCE
is called a separator of f.

Example: Let X be a random vector indexed by F
and let X denote the subvector indexed by any subset B C E
If X4 and X are independent, then

» for every BC A and C C A, Xp and X¢ are independent

A proper subset A of E such that
f(B)=f(BNA)+ f(BNA) foral BCE
is called a separator of f.

Example: Let X be a random vector indexed by F
and let X denote the subvector indexed by any subset B C E
If X4 and X are independent, then

» for every BC A and C C A, Xp and X¢ are independent

» Such a subset A is a separator of the entropy function for X

A proper subset A of E such that
f(B)=f(BNA)+ f(BNA) foral BCE
is called a separator of f.

Example: Let X be a random vector indexed by F
and let X denote the subvector indexed by any subset B C E
If X4 and X4 are independent, then

» for every BC A and C C A, Xp and X¢ are independent

» Such a subset A is a separator of the entropy function for X

The set of all separators of f is closed under intersection, union,
and complementation

A proper subset A of E such that
f(B)=f(BNA)+ f(BNA) foral BCE
is called a separator of f.

Example: Let X be a random vector indexed by F
and let X denote the subvector indexed by any subset B C E
If X4 and X are independent, then

» for every BC A and C C A, Xp and X¢ are independent

» Such a subset A is a separator of the entropy function for X

The set of all separators of f is closed under intersection, union,
and complementation

» Hence, the separators partition F

A pair (u,v) € E x E (u # v) is a pendent pair for (symmetric)
set function g if

g({u}) =min{g(S): VS C Ewithu e Sandv ¢S}

A pair (u,v) € E x E (u # v) is a pendent pair for (symmetric)
set function g if

g({u}) =min{g(S): VS C Ewithu e Sandv ¢S}

A set U C E separates u and v if
»ucUandv ¢S, or
»udUandoves

A pair (u,v) € E x E (u # v) is a pendent pair for (symmetric)
set function g if

g({u}) =min{g(S): VS C Ewithu e Sandv ¢S}

A set U C E separates u and v if
»ucUandv ¢S, or
»udUandoves

e equivalently, if |[S N {u,v}| =1

A pair (u,v) € E x E (u # v) is a pendent pair for (symmetric)
set function g if

g({u}) =min{g(S): VS C Ewithu e Sandv ¢S}

A set U C E separates u and v if
»ucUandv ¢S, or
»udUandoves

e equivalently, if |[S N {u,v}| =1

If (u,v) is a pendent pair for symmetric function g
and S* is a proper subset minimizing g then:

A pair (u,v) € E x E (u # v) is a pendent pair for (symmetric)
set function g if

g({u}) =min{g(S): VS C Ewithu e Sandv ¢S}

A set U C E separates u and v if
»ucUandv ¢S, or
»udUandoves

e equivalently, if |[S N {u,v}| =1

If (u,v) is a pendent pair for symmetric function g
and S* is a proper subset minimizing g then:

> either S* separates u and v, and we may choose S* = {u}

A pair (u,v) € E x E (u # v) is a pendent pair for (symmetric)
set function g if

g({u}) =min{g(S): VS C Ewithu e Sandv ¢S}

A set U C E separates u and v if
»ucUandv ¢S, or
»udUandoves

e equivalently, if |[S N {u,v}| =1

If (u,v) is a pendent pair for symmetric function g
and S* is a proper subset minimizing g then:

> either S* separates u and v, and we may choose S* = {u}

> or else u and v are on the same side of S* and we may
contract w and v into a single element

A Contraction Algorithm

(Q 1995, 1998; generalizing Nagamochi & Ibaraki, 1992)

A Contraction Algorithm

(Q 1995, 1998; generalizing Nagamochi & Ibaraki, 1992)

Assume we can efficiently find a pendent pair for any symmetric
function in a class closed under contraction,

A Contraction Algorithm

(Q 1995, 1998; generalizing Nagamochi & Ibaraki, 1992)

Assume we can efficiently find a pendent pair for any symmetric
function in a class closed under contraction, then we can find a
proper subset S* minimizing ¢ after finding and contracting n — 1
pendent pairs (ug,v1), (u2,v2), ..., (Up—1,Vn—1):

A Contraction Algorithm

(Q 1995, 1998; generalizing Nagamochi & Ibaraki, 1992)

Assume we can efficiently find a pendent pair for any symmetric
function in a class closed under contraction, then we can find a
proper subset S* minimizing ¢ after finding and contracting n — 1

pendent pairs (ug,v1), (u2,v2), ..., (Up—1,Vn—1):
Indeed, letting U; be the original subset of E corresponding to u;
(for every iteration i = 1,...,n — 1), then

e choose S* as an U; with least value g(Uy;)

A Contraction Algorithm

(Q 1995, 1998; generalizing Nagamochi & Ibaraki, 1992)

Assume we can efficiently find a pendent pair for any symmetric
function in a class closed under contraction, then we can find a
proper subset S* minimizing ¢ after finding and contracting n — 1

pendent pairs (ug,v1), (u2,v2), ..., (Up—1,Vn—1):
Indeed, letting U; be the original subset of E corresponding to u;
(for every iteration i = 1,...,n — 1), then

e choose S* as an U; with least value g(Uy;)
Contracting u and v amounts to replacing
> the ground set E with £, , = (E —u —v) + w
» the function g with g, : 2P4 —+ R defined by
g(S—w)+u+v) fuwels
Guw(S) = .
g(9) otherwise

A Contraction Algorithm

(Q 1995, 1998; generalizing Nagamochi & Ibaraki, 1992)

Assume we can efficiently find a pendent pair for any symmetric
function in a class closed under contraction, then we can find a
proper subset S* minimizing ¢ after finding and contracting n — 1

pendent pairs (ug,v1), (u2,v2), ..., (Up—1,Vn—1):
Indeed, letting U; be the original subset of E corresponding to u;
(for every iteration i = 1,...,n — 1), then

e choose S* as an U; with least value g(Uy;)
Contracting u and v amounts to replacing
» the ground set E with £, , = (F —u —v) +uv
» the function g with g, : 2P4 —+ R defined by
) 9((S—w) +utv) fuweS
gus(5) = g(9) otherwise
e If g is symmetric submodular then it remains so after contraction

A Contraction Algorithm

(Q 1995, 1998; generalizing Nagamochi & Ibaraki, 1992)

Assume we can efficiently find a pendent pair for any symmetric
function in a class closed under contraction, then we can find a
proper subset S* minimizing ¢ after finding and contracting n — 1

pendent pairs (ug,v1), (u2,v2), ..., (Up—1,Vn—1):
Indeed, letting U; be the original subset of E corresponding to u;
(for every iteration i = 1,...,n — 1), then

e choose S* as an U; with least value g(Uy;)
Contracting u and v amounts to replacing
> the ground set E with £, , = (E —u —v) + w
» the function g with g, : 2P4 —+ R defined by
g(S—w)+u+v) fuwels
Guw(S) = .
g(9) otherwise

e If g is symmetric submodular then it remains so after contraction
e ... hence it remains to prove the existence of a pendent pair,

A Contraction Algorithm

(Q 1995, 1998; generalizing Nagamochi & Ibaraki, 1992)

Assume we can efficiently find a pendent pair for any symmetric
function in a class closed under contraction, then we can find a
proper subset S* minimizing ¢ after finding and contracting n — 1

pendent pairs (ug,v1), (u2,v2), ..., (Up—1,Vn—1):
Indeed, letting U; be the original subset of E corresponding to u;
(for every iteration i = 1,...,n — 1), then

e choose S* as an U; with least value g(Uy;)
Contracting u and v amounts to replacing
> the ground set E with £, , = (E —u —v) + w
» the function g with g, : 2P4 —+ R defined by
g(S—w)+u+v) fuwels
Guw(S) = .
g(9) otherwise

e If g is symmetric submodular then it remains so after contraction
e ... hence it remains to prove the existence of a pendent pair,
and to efficiently find one. ..

Finding a Pendent Pair

Finding a Pendent Pair

E = (a1, az,...,a,) is in Maximum Adjacency (MA) order if, for
alli=1,...,n—1, a;41 satisfies

f(Ai+aiz1) — f({ais1}) = min {f(A4; +b) — f({b}) : b € E\ A}
where A; = {a1,...,a;}

Finding a Pendent Pair

E = (a1, az,...,a,) is in Maximum Adjacency (MA) order if, for

alli=1,...,n—1, a;41 satisfies
f(Ai+aiz1) — f({ais1}) = min {f(A4; +b) — f({b}) : b € E\ A}
where A; = {a1,...,a;}

> a is arbitrary, and then ao, ..., a, are sequentially

determined by this condition

Finding a Pendent Pair

E = (a1, az,...,a,) is in Maximum Adjacency (MA) order if, for

alli=1,...,n—1, a;41 satisfies
f(Ai+aiz1) — f({ais1}) = min {f(A4; +b) — f({b}) : b € E\ A}
where A; = {a1,...,a;}

> a is arbitrary, and then ao, ..., a, are sequentially

determined by this condition

Lemma: If f is submodular, then for all i € {1,...,n — 1},
be E\NAjand S C Ay, f(A)+f(b) < f(AN\S)+ f(S+D)

Finding a Pendent Pair

E = (a1, az,...,a,) is in Maximum Adjacency (MA) order if, for

alli=1,...,n—1, a;41 satisfies
f(Ai+aiz1) — f({ais1}) = min {f(A4; +b) — f({b}) : b € E\ A}
where A; = {a1,...,a;}

> a is arbitrary, and then ao, ..., a, are sequentially

determined by this condition

Lemma: If f is submodular, then for all i € {1,...,n — 1},
be E\A;and SC A1, f(A)+fb) < f(AN\S)+ f(S+Db)
> i.e., for every b not in A;, {b} is an optimum subset
separating b from a; for the symmetric function derived from
the restriction of f to A; +b

Finding a Pendent Pair

E = (a1, az,...,a,) is in Maximum Adjacency (MA) order if, for

alli=1,...,n—1, a;41 satisfies
f(Ai+aiz1) — f({ais1}) = min {f(A4; +b) — f({b}) : b € E\ A}
where A; = {a1,...,a;}

> a is arbitrary, and then ao, ..., a, are sequentially

determined by this condition

Lemma: If f is submodular, then for all i € {1,...,n — 1},
be E\A;and SC A1, f(A)+fb) < f(AN\S)+ f(S+Db)
> i.e., for every b not in A;, {b} is an optimum subset
separating b from a; for the symmetric function derived from
the restriction of f to A; +b

Corollary: If f is submodular, then (a,,a,—1) is a pendent pair
for its symmetric function g;

Pendent Pair Lemma

Proof of: F(A) + f(b) < f(A\S)+ f(S+Db)
forallie{l,...,n—1}, be E\ A;and SC A;_

Pendent Pair Lemma

Proof of: F(A) + f(b) < f(A\S)+ f(S+Db)
forallie{l,...,n—1}, be E\ A;and SC A;_

The inequality trivially holds for i = 1 (Why?)

Pendent Pair Lemma

Proof of: F(A) + f(b) < f(A\S)+ f(S+Db)
forallie{l,...,n—1}, be E\ A;and SC A;_

The inequality trivially holds for i = 1 (Why?)
By induction, assume that it holds for all i =1,..., k-1

Pendent Pair Lemma

Proof of: F(A) + f(b) < f(A\S)+ f(S+Db)
forallie{l,...,n—1}, be E\ A;and SC A;_

The inequality trivially holds for i = 1 (Why?)
By induction, assume that it holds for all i =1,..., k-1
Consider any u € E'\ Ay, and S C Ap_4

Pendent Pair Lemma

Proof of: F(A) + f(b) < f(A\S)+ f(S+Db)
forallie{l,...,n—1}, be E\ A;and SC A;_

The inequality trivially holds for i = 1 (Why?)

By induction, assume that it holds for all i =1,..., k-1
Consider any u € E'\ Ay, and S C Ap_4

The choice of ay implies f(Ax) + f(u) < f(Ak—1 +u) + f(ag)

Pendent Pair Lemma

Proof of: F(A) + f(b) < f(A\S)+ f(S+Db)
forallie{l,...,n—1}, be E\ A;and SC A;_

The inequality trivially holds for i = 1 (Why?)

By induction, assume that it holds for all i =1,..., k-1
Consider any u € E'\ Ay, and S C Ap_4

The choice of ay implies f(Ax) + f(u) < f(Ak—1 +u) + f(ag)

Let j be the smallest integer such that S C A;_;

Pendent Pair Lemma

Proof of: F(A) + f(b) < f(A\S)+ f(S+Db)
forallie{l,...,n—1}, be E\ A;and SC A;_

The inequality trivially holds for i = 1 (Why?)

By induction, assume that it holds for all i =1,..., k-1
Consider any u € E'\ Ay, and S C Ap_4

The choice of ay implies f(Ax) + f(u) < f(Ak—1 +u) + f(ag)

Let j be the smallest integer such that S C A;_;
» If j=Fkthen ay_1 € Sand Ap_1\ S C Ap_o.

Pendent Pair Lemma

Proof of: F(A) + f(b) < f(A\S)+ f(S+Db)
forallie{l,...,n—1}, be E\ A;and SC A;_

The inequality trivially holds for i = 1 (Why?)

By induction, assume that it holds for all i =1,..., k-1
Consider any u € E'\ Ay, and S C Ap_4

The choice of ay implies f(Ax) + f(u) < f(Ak—1 +u) + f(ag)

Let j be the smallest integer such that S C A;_;

» If j=Fkthen ay_1 € Sand Ap_1\ S C Ap_o.
Therefore,

fLARNS) + f(S+u) = f((Ar-1\S) +ar) + f(5+u)

Pendent Pair Lemma

Proof of: F(A) + f(b) < f(A\S)+ f(S+Db)
forallie{l,...,n—1}, be E\ A;and SC A;_

The inequality trivially holds for i = 1 (Why?)

By induction, assume that it holds for all i =1,..., k-1
Consider any u € E'\ Ay, and S C Ap_4

The choice of ay implies f(Ax) + f(u) < f(Ak—1 +u) + f(ag)

Let j be the smallest integer such that S C A;_;

» If j=Fkthen ay_1 € Sand Ap_1\ S C Ap_o.
Therefore,

fLARNS) + f(S+u) = [f((Ap—1\S)+ar)+ f(S+u)
> f((Ag=1) + flag) — f(S)+ f(S+u)

Pendent Pair Lemma

Proof of: F(A) + f(b) < f(A\S)+ f(S+Db)
forallie{l,...,n—1}, be E\ A;and SC A;_

The inequality trivially holds for i = 1 (Why?)

By induction, assume that it holds for all i =1,..., k-1
Consider any u € E'\ Ay, and S C Ap_4

The choice of ay implies f(Ax) + f(u) < f(Ak—1 +u) + f(ag)

Let j be the smallest integer such that S C A;_;

» If j=Fkthen ay_1 € Sand Ap_1\ S C Ap_o.
Therefore,

fLARNS) + f(S+u) = [f((Ap—1\S)+ar)+ f(S+u)
> f((Ag=1) + flag) — f(S)+ f(S+u)
> f((Ag—1+u) + f(ar)

Pendent Pair Lemma

Proof of: F(A) + f(b) < f(A\S)+ f(S+Db)
forallie{l,...,n—1}, be E\ A;and SC A;_

The inequality trivially holds for i = 1 (Why?)

By induction, assume that it holds for all i =1,..., k-1
Consider any u € E'\ Ay, and S C Ap_4

The choice of ay implies f(Ax) + f(u) < f(Ak—1 +u) + f(ag)

Let j be the smallest integer such that S C A;_;
» If j=Fkthen ay_1 € Sand Ap_1\ S C Ap_o.

Therefore,
fARNS) + f(S+u) = f((Ap=1\S) +ar) + f(S+u)
> f((Ag=1) + flar) = f(S) + f(S +u)
> f((Ak—1 +u) + flar)
> f(Ar) + f(u)

Pendent Pair Lemma Proof (2)

» Else j <k —1, thusaj_1 € S and none of vj,...,v; isin S

Pendent Pair Lemma Proof (2)

» Else j <k —1, thusaj_1 € S and none of vj,...,v; isin S
Since {vj,..., v} = Ax \ A;—1, we have,

FARNS) + f(S+u) = F((A4j-1\S) U (Ap \ Aj1)) + f(S +u)

Pendent Pair Lemma Proof (2)

» Else j <k —1, thusaj_1 € S and none of vj,...,v; isin S
Since {vj,..., v} = Ax \ A;—1, we have,

FANS) + f(S+u) = fF(A4-1\S)U A\ 4j1)) + f(S+u)
> f((Aji—1 \ S) U (A \ Aj-1))

+(4)) = F(A;\S) + f(w)

Pendent Pair Lemma Proof (2)

» Else j <k —1, thusaj_1 € S and none of vj,...,v; isin S
Since {vj,..., v} = Ax \ A;—1, we have,

fOARNS) + f(5 + u)

AV

A\

FUA—\NS) U (Ax\ Aj1)) + f(S +w)
FUA=1\S) U (Ax\ Aj-1))

+ f(4;) = f(A4;\ S) + f(u)
f(Ar) + f(w) QED

Pendent Pair Lemma Proof (2)

» Else j <k —1, thusaj_1 € S and none of vj,...,v; isin S
Since {vj,..., v} = Ax \ A;—1, we have,

fOARNS) + f(5 + u) F(Aja\S) U (Ap \ A1) + f(S +u)

AV

F(Ajm1 \ S) U (Ak \ 45-1))
+ f(A45) — f(A4;\ 9) + f(u)
> f(Ar) + f(u) QED

The overall Sym-SFMin algorithm requires
» n —1i EO calls to find a;+1 (if we precompute all f({u}))

Pendent Pair Lemma Proof (2)

» Else j <k —1, thusaj_1 € S and none of vj,...,v; isin S
Since {vj,..., v} = Ax \ A;—1, we have,

FARNS) + f(S+u) = F((A4j-1\S) U (Ap \ Aj1)) + f(S +u)

> f((Aji—1 \ S) U (A \ Aj-1))
+ f(A45) — f(A4;\ 9) + f(u)
> f(Ar) + f(u) QED

The overall Sym-SFMin algorithm requires
» n —1i EO calls to find a;+1 (if we precompute all f({u}))
» O(n?) EO calls to find a MA order ay,as,...,a,

Pendent Pair Lemma Proof (2)

» Else j <k —1, thusaj_1 € S and none of vj,...,v; isin S
Since {vj,..., v} = Ax \ A;—1, we have,

FARNS) + f(S+u) = F((A4j-1\S) U (Ap \ Aj1)) + f(S +u)

> f((Aji—1 \ S) U (A \ Aj-1))
+ f(A45) — f(A4;\ 9) + f(u)
> f(Ar) + f(u) QED

The overall Sym-SFMin algorithm requires
» n —1i EO calls to find a;+1 (if we precompute all f({u}))
» O(n?) EO calls to find a MA order ay,as,...,a,

» O(n®) EO calls to find a proper subset minimizing g
and O(n?) other operations

Pendent Pair Lemma Proof (2)

» Else j <k —1, thusaj_1 € S and none of vj,...,v; isin S
Since {vj,..., v} = Ax \ A;—1, we have,

FARNS) + f(S+u) = F((A4j-1\S) U (Ap \ Aj1)) + f(S +u)

> f((Aji—1 \ S) U (A \ Aj-1))
+ f(A45) — f(A4;\ 9) + f(u)
> f(Ar) + f(u) QED

The overall Sym-SFMin algorithm requires
» n —1i EO calls to find a;+1 (if we precompute all f({u}))
» O(n?) EO calls to find a MA order ay,as,...,a,

» O(n®) EO calls to find a proper subset minimizing g
and O(n?) other operations

Pendent Pair Lemma Proof (2)

» Else j <k —1, thusaj_1 € S and none of vj,...,v; isin S
Since {vj,..., v} = Ax \ A;—1, we have,

FARNS) + f(S+u) = F((A4j-1\S) U (Ap \ Aj1)) + f(S +u)

> f((Aji—1 \ S) U (A \ Aj-1))
+ f(A45) — f(A4;\ 9) + f(u)
> f(Ar) + f(u) QED

The overall Sym-SFMin algorithm requires
» n —1i EO calls to find a;+1 (if we precompute all f({u}))
» O(n?) EO calls to find a MA order ay,as,...,a,

» O(n®) EO calls to find a proper subset minimizing g
and O(n?) other operations

e Purely combinatorial, and faster than (current) general SFMin

Sym-SFMin: Examples and Extensions

Sym-SFMin: Examples and Extensions

Examples:

» Global MinCut in a Graph (Nagamochi & Ibaraki, 1992),
where f is a graph cut function

» O(|V|?1og |V|) operations

Sym-SFMin: Examples and Extensions

Examples:
» Global MinCut in a Graph (Nagamochi & Ibaraki, 1992),
where f is a graph cut function
» O(|V|?1og |V|) operations
» 2-Layer VLSI Circuit Design (Klimmek & Wagner, 1996),
where f is a hypergraph cut function
» O(|V|?1log |V| + |V||H|) operations

Sym-SFMin: Examples and Extensions

Examples:
» Global MinCut in a Graph (Nagamochi & Ibaraki, 1992),
where f is a graph cut function
» O(|V|?1og |V|) operations
» 2-Layer VLSI Circuit Design (Klimmek & Wagner, 1996),
where f is a hypergraph cut function
» O(|V|?1log |V| + |V||H|) operations

Extensions: Minimizing
» posimodular functions (Nagamochi & Ibaraki, 1998), i.e.,

functions satisfying
f(A)+ f(B) =2 f(A\B) + f(B\ A) forall AL BCV

Sym-SFMin: Examples and Extensions

Examples:

» Global MinCut in a Graph (Nagamochi & Ibaraki, 1992),
where f is a graph cut function
» O(|V|?1og |V|) operations
» 2-Layer VLSI Circuit Design (Klimmek & Wagner, 1996),
where f is a hypergraph cut function
» O(|V|?1log |V| + |V||H|) operations

Extensions: Minimizing
» posimodular functions (Nagamochi & Ibaraki, 1998), i.e.,
functions satisfying
A+ f(B) = f(A\ B) + f(B\ A) forall A,BCV
» symmetric submodular function subject to hereditary family
constraints (Goemans & Soto, 2013): min{f(S): S € 7}
where Z C 2V satisfies, for all A BCYV,
0AAcCcBel = AcT

Optimum Proper Partition

(Baiou, Barahona & Mahjoub, 2000), motivated by a separation
problem for certain connectivity constraints

Optimum Proper Partition

(Baiou, Barahona & Mahjoub, 2000), motivated by a separation
problem for certain connectivity constraints

Find a proper partition P of E i.e., of size |P| > 2, with minimum
total cost f(P)?

Optimum Proper Partition

(Baiou, Barahona & Mahjoub, 2000), motivated by a separation
problem for certain connectivity constraints

Find a proper partition P of E i.e., of size |P| > 2, with minimum
total cost f(P)?

For any set function f, if P = {Py, P5,..., P} is optimum then:

Optimum Proper Partition

(Baiou, Barahona & Mahjoub, 2000), motivated by a separation
problem for certain connectivity constraints

Find a proper partition P of E i.e., of size |P| > 2, with minimum
total cost f(P)?

For any set function f, if P = {Py, P5,..., P} is optimum then:
e { P} itself is an optimum partition of P;

Optimum Proper Partition

(Baiou, Barahona & Mahjoub, 2000), motivated by a separation
problem for certain connectivity constraints

Find a proper partition P of E i.e., of size |P| > 2, with minimum
total cost f(P)?

For any set function f, if P = {Py, P5,..., P} is optimum then:
e { P} itself is an optimum partition of P, and thus
f(P1) = fP(P1), and

Optimum Proper Partition

(Baiou, Barahona & Mahjoub, 2000), motivated by a separation
problem for certain connectivity constraints

Find a proper partition P of E i.e., of size |P| > 2, with minimum
total cost f(P)?

For any set function f, if P = {Py, P5,..., P} is optimum then:
e { P} itself is an optimum partition of P, and thus

f(Py) = fP(P1), and
o {P5,..., P} is an optimum partition of £\ P;

Optimum Proper Partition

(Baiou, Barahona & Mahjoub, 2000), motivated by a separation
problem for certain connectivity constraints

Find a proper partition P of E i.e., of size |P| > 2, with minimum
total cost f(P)?

For any set function f, if P = {Py, P5,..., P} is optimum then:
e { P} itself is an optimum partition of P, and thus
f(Py) = fP(P1), and
o {P5,..., P} is an optimum partition of E'\ P; and thus
f(P2) + -+ f(Py) = fP(E\ 1)

Optimum Proper Partition

(Baiou, Barahona & Mahjoub, 2000), motivated by a separation
problem for certain connectivity constraints

Find a proper partition P of E i.e., of size |P| > 2, with minimum
total cost f(P)?

For any set function f, if P = {Py, P5,..., P} is optimum then:
e { P} itself is an optimum partition of P, and thus
f(Py) = fP(P1), and
o {P5,..., P} is an optimum partition of E'\ P; and thus
f(P2) + -+ f(Py) = fP(E\ 1)

Hence it suffices to find an optimum bipartition of the Dilworth
truncation fP

Optimum Proper Partition

(Baiou, Barahona & Mahjoub, 2000), motivated by a separation
problem for certain connectivity constraints

Find a proper partition P of E i.e., of size |P| > 2, with minimum
total cost f(P)?

For any set function f, if P = {Py, P5,..., P} is optimum then:
e { P} itself is an optimum partition of P, and thus

f(Py) = fP(P1), and
o {P5,..., P} is an optimum partition of E'\ P; and thus

f(P2)+ -+ f(Pe) = fP(E\ P)

Hence it suffices to find an optimum bipartition of the Dilworth
truncation fP

= When f is submodular, O(n*) EO’s suffice

What is the computational complexity of finding an optimum
k-way partition with submodular part cost function f (given by a
value oracle)?

What is the computational complexity of finding an optimum
k-way partition with submodular part cost function f (given by a
value oracle)?

» NP-hard when k is part of the input, even for graph cut
functions (Goldschmidt & Hochbaum, 1994)

What is the computational complexity of finding an optimum
k-way partition with submodular part cost function f (given by a
value oracle)?
» NP-hard when k is part of the input, even for graph cut
functions (Goldschmidt & Hochbaum, 1994)
» When f is submodular (and normalized) an optimum 3-way
partition can be found in polytime (Okumoto & al., 2012)

What is the computational complexity of finding an optimum
k-way partition with submodular part cost function f (given by a
value oracle)?
» NP-hard when k is part of the input, even for graph cut
functions (Goldschmidt & Hochbaum, 1994)
» When f is submodular (and normalized) an optimum 3-way
partition can be found in polytime (Okumoto & al., 2012)

» When f is symmetric and submodular an optimum 4-way
partition can be found in polytime

What is the computational complexity of finding an optimum
k-way partition with submodular part cost function f (given by a
value oracle)?
» NP-hard when k is part of the input, even for graph cut
functions (Goldschmidt & Hochbaum, 1994)

» When f is submodular (and normalized) an optimum 3-way
partition can be found in polytime (Okumoto & al., 2012)
» When f is symmetric and submodular an optimum 4-way
partition can be found in polytime
» e.g., based on (Nagamochi & Ibaraki 2000) and using
optimum submodular-costs 3-way cuts

What is the computational complexity of finding an optimum
k-way partition with submodular part cost function f (given by a
value oracle)?
» NP-hard when k is part of the input, even for graph cut
functions (Goldschmidt & Hochbaum, 1994)
» When f is submodular (and normalized) an optimum 3-way
partition can be found in polytime (Okumoto & al., 2012)
» When f is symmetric and submodular an optimum 4-way
partition can be found in polytime
» e.g., based on (Nagamochi & Ibaraki 2000) and using
optimum submodular-costs 3-way cuts
> ...see Thursday afternoon talk for related complexity results
and open questions

Optimum k-Way Partitions: An Approximation Algorithm

Optimum k-Way Partitions: An Approximation Algorithm

Assume that ¢ is symmetric, submodular and nonnegative
(9(S) > 0 for all S C E)

Optimum k-Way Partitions: An Approximation Algorithm

Assume that ¢ is symmetric, submodular and nonnegative
(9(S) > 0 for all S C E)

Greedy Splitting Algorithm:
1. Let P={A;} where A; = FE

Optimum k-Way Partitions: An Approximation Algorithm

Assume that ¢ is symmetric, submodular and nonnegative
(9(S) > 0 for all S C E)

Greedy Splitting Algorithm:
1. Let P={A;} where A; = FE
2. Forj=2,...k

» Let A; (i € {1,...,5 — 1}) be a subset whose optimum
bipartition {By, By} least increases the total cost

Optimum k-Way Partitions: An Approximation Algorithm

Assume that g is symmetric, submodular and nonnegative
(g(S) >0 forall S C F)
Greedy Splitting Algorithm:
1. Let P={A;} where A; = FE
2. Forj=2,...k
» Let A; (i € {1,...,5 — 1}) be a subset whose optimum

bipartition {By, By} least increases the total cost
» Replace A; in P with By and add B; to P

Optimum k-Way Partitions: An Approximation Algorithm

Assume that g is symmetric, submodular and nonnegative
(g(S) >0 forall S C F)
Greedy Splitting Algorithm:
1. Let P={A;} where A; = FE
2. Forj=2,...k
» Let A; (i € {1,...,5 — 1}) be a subset whose optimum

bipartition {By, By} least increases the total cost
» Replace A; in P with By and add B; to P

This requires 2k — 3 Sym-SFMin,
= O(kn3) EQ’s, and O(kn?) other operations

Optimum k-Way Partitions: An Approximation Algorithm

Assume that g is symmetric, submodular and nonnegative
(9(S) > 0 for all S C E)

Greedy Splitting Algorithm:
1. Let P={A;} where A; = FE
2. Forj=2,...,k
» Let A; (i € {1,...,5 — 1}) be a subset whose optimum

bipartition {By, By} least increases the total cost
» Replace A; in P with By and add B; to P

This requires 2k — 3 Sym-SFMin,
= O(kn3) EQ’s, and O(kn?) other operations

Theorem: [Q 1999; Zhao, Nagamochi & Ibaraki 2005]

If g is symmetric, submodular and nonnegative, then (for every

k > 2) the Greedy Splitting Algorithm produces a k-way partition
with total cost at most 2 — % times the optimum

Short Course on Submodular Functions

Part 2: Extensions and Related Problems
Session 2.B: SFmax

S. Thomas McCormick Maurice Queyranne

Sauder School of Business, UBC
JPOC Summer School, June 2013

Maximizing an oracle-given submodular function f

Maximizing an oracle-given submodular function f

» easy if f is a polymatroid function, i.e., also monotone
(nondecreasing)

Maximizing an oracle-given submodular function f

» easy if f is a polymatroid function, i.e., also monotone
(nondecreasing)
> take the whole set £

Maximizing an oracle-given submodular function f
» easy if f is a polymatroid function, i.e., also monotone
(nondecreasing)

> take the whole set I
» (works for any monotone set function)

Maximizing an oracle-given submodular function f
» easy if f is a polymatroid function, i.e., also monotone
(nondecreasing)

> take the whole set I
» (works for any monotone set function)

» NP-hard for (non-monotone) submodular f

Maximizing an oracle-given submodular function f
» easy if f is a polymatroid function, i.e., also monotone
(nondecreasing)

> take the whole set I
» (works for any monotone set function)

» NP-hard for (non-monotone) submodular f
» example: MaxCut

Maximizing an oracle-given submodular function f
» easy if f is a polymatroid function, i.e., also monotone
(nondecreasing)

> take the whole set I
» (works for any monotone set function)

» NP-hard for (non-monotone) submodular f
» example: MaxCut

Maximizing an oracle-given submodular function f

» easy if f is a polymatroid function, i.e., also monotone
(nondecreasing)

> take the whole set I
» (works for any monotone set function)

» NP-hard for (non-monotone) submodular f
» example: MaxCut

We shall be interested in approximation algorithms

Maximizing an oracle-given submodular function f
» easy if f is a polymatroid function, i.e., also monotone
(nondecreasing)

> take the whole set I
» (works for any monotone set function)

» NP-hard for (non-monotone) submodular f
» example: MaxCut
We shall be interested in approximation algorithms
and two special cases:

1. Maximizing a polymatroid function subject to a cardinality
constraint

Maximizing an oracle-given submodular function f
» easy if f is a polymatroid function, i.e., also monotone
(nondecreasing)

> take the whole set I
» (works for any monotone set function)

» NP-hard for (non-monotone) submodular f
» example: MaxCut
We shall be interested in approximation algorithms
and two special cases:
1. Maximizing a polymatroid function subject to a cardinality
constraint

2. Maximizing a (non-monotone, nonnegative) submodular
function

Given m (feasible) subsets E1, ..., E,, of ground set E,

Given m (feasible) subsets E1, ..., E,, of ground set E,
define the cover function f: 2" — R as f(5) = |U,cq Eil
forany SCV ={1,...,m}

Given m (feasible) subsets E1, ..., E,, of ground set E,
define the cover function f: 2" — R as f(5) = |U,cq Eil
forany SCV ={1,...,m}
> the total number of elements of E covered by the subsets in
(indexed by) S

Given m (feasible) subsets E1, ..., E,, of ground set E,
define the cover function f: 2" — R as f(5) = |U,cq Eil
forany SCV ={1,...,m}
> the total number of elements of E covered by the subsets in
(indexed by) S

» fis a polymatroid function (Why?)

Given m (feasible) subsets E1, ..., E,, of ground set E,
define the cover function f: 2" — R as f(5) = |U,cq Eil
forany SCV ={1,...,m}
> the total number of elements of E covered by the subsets in
(indexed by) S

» fis a polymatroid function (Why?)

Given m (feasible) subsets E1, ..., E,, of ground set E,
define the cover function f: 2" — R as f(5) = |U,cq Eil
forany SCV ={1,...,m}
> the total number of elements of E covered by the subsets in
(indexed by) S

» fis a polymatroid function (Why?)
Given integer k € V, Max k-Cover is max{f(S) : S CV, |S| <k}

Given m (feasible) subsets E1, ..., E,, of ground set E,
define the cover function f: 2" — R as f(5) = |U,cq Eil
forany SCV ={1,...,m}
> the total number of elements of E covered by the subsets in
(indexed by) S

» fis a polymatroid function (Why?)
Given integer k € V, Max k-Cover is max{f(S) : S CV, |S| <k}

» maximize the total number of elements covered by at most k
subsets

Given m (feasible) subsets E1, ..., E,, of ground set E,
define the cover function f: 2" — R as f(5) = |U,cq Eil
forany SCV ={1,...,m}
> the total number of elements of E covered by the subsets in
(indexed by) S

» fis a polymatroid function (Why?)
Given integer k € V, Max k-Cover is max{f(S) : S CV, |S| <k}

» maximize the total number of elements covered by at most k
subsets
» equivalently: max{f(S):S C E, |S| =k} (Why?)

Given m (feasible) subsets E1, ..., E,, of ground set E,
define the cover function f: 2" — R as f(5) = |U,cq Eil
forany SCV ={1,...,m}
> the total number of elements of E covered by the subsets in
(indexed by) S

» fis a polymatroid function (Why?)

Given integer k € V, Max k-Cover is max{f(S) : S CV, |S| <k}

» maximize the total number of elements covered by at most k
subsets

» equivalently: max{f(S):S C E, |S| =k} (Why?)

» NP-hard

Given m (feasible) subsets E1, ..., E,, of ground set E,
define the cover function f: 2" — R as f(5) = |U,cq Eil
forany SCV ={1,...,m}
> the total number of elements of E covered by the subsets in
(indexed by) S

» fis a polymatroid function (Why?)
Given integer k € V, Max k-Cover is max{f(S) : S CV, |S| <k}

» maximize the total number of elements covered by at most k
subsets

» equivalently: max{f(S):S C E, |S| =k} (Why?)
» NP-hard

» cannot be approximated within a ratio better (larger) than
1—1/e=0.632, unless P = NP (Feige 1998)

Cardinality-Constrained Polymatroid Maximization

Cardinality-Constrained Polymatroid Maximization

Given a normalized polymatroid function f on E
> hence f is nonnegative

Cardinality-Constrained Polymatroid Maximization

Given a normalized polymatroid function f on E
> hence f is nonnegative

Cardinality-Constrained Polymatroid Maximization

Given a normalized polymatroid function f on E
> hence f is nonnegative
and integer k, let OPT, = max{f(S): S C E, |S| <k}

Cardinality-Constrained Polymatroid Maximization

Given a normalized polymatroid function f on E
> hence f is nonnegative
and integer k, let OPT, = max{f(S): S C E, |S| <k}

Greedy Algorithm

Cardinality-Constrained Polymatroid Maximization

Given a normalized polymatroid function f on E

> hence f is nonnegative
and integer k, let OPT, = max{f(S): S C E, |S| <k}

Greedy Algorithm
Starting with Sy = (), repeat the following greedy step:
fori=0,...,(k—1) let

Siy1 = S; +v; where v; € argmax,cp\g, f(S; + u)

Cardinality-Constrained Polymatroid Maximization

Given a normalized polymatroid function f on E

> hence f is nonnegative
and integer k, let OPT, = max{f(S): S C E, |S| <k}

Greedy Algorithm
Starting with Sy = (), repeat the following greedy step:
fori=0,...,(k—1) let
Siy1 = S; +v; where v; € argmax,cp\g, f(S; + u)
» equivalently, v; yields the largest increment

J(u|S;) = f(Si +u) — f(Si)

Cardinality-Constrained Polymatroid Maximization

Given a normalized polymatroid function f on E

> hence f is nonnegative
and integer k, let OPT, = max{f(S): S C E, |S| <k}

Greedy Algorithm
Starting with Sy = (), repeat the following greedy step:
fori=0,...,(k—1) let
Siy1 = S; +v; where v; € argmax,cp\g, f(S; + u)
» equivalently, v; yields the largest increment

J(u|S;) = f(Si +u) — f(Si)

Cardinality-Constrained Polymatroid Maximization

Given a normalized polymatroid function f on E
> hence f is nonnegative
and integer k, let OPT, = max{f(S): S CE, |S| <k}
Greedy Algorithm
Starting with Sy = (), repeat the following greedy step:
fori=0,...,(k—1) let
Siy1 = S; +v; where v; € argmax,cp\g, f(S; + u)
» equivalently, v; yields the largest increment
f(ulSi) = f(Si +u) — f(Si)
Theorem (Nemhauser, Wolsey & Fisher, 1978)

Cardinality-Constrained Polymatroid Maximization

Given a normalized polymatroid function f on E
> hence f is nonnegative
and integer k, let OPT, = max{f(S): S CE, |S| <k}
Greedy Algorithm
Starting with Sy = (), repeat the following greedy step:
fori=0,...,(k—1) let
Sit1 = S; + v; where v; € arg maxyec g\ S f(Sl + u)
» equivalently, v; yields the largest increment
f(ulS;) = f(Si +u) — f(Si)
Theorem (Nemhauser, Wolsey & Fisher, 1978)
If fis a normalized polymatroid function then the Greedy

Algorithm returns sets S; with values
f(SZ) Z (1 — 1/€)OPT1 fOI’ all 1 = 0, e ,k‘

Cardinality-Constrained Polymatroid Maximization

Given a normalized polymatroid function f on E
> hence f is nonnegative
and integer k, let OPT, = max{f(S): S C E, |S| <k}

Greedy Algorithm
Starting with Sy = (), repeat the following greedy step:
fori=0,...,(k—1) let
Sit1 = S; + v; where v; € arg maxyec g\ S f(Sl + u)
» equivalently, v; yields the largest increment
f(ulS;) = f(Si +u) — f(Si)
Theorem (Nemhauser, Wolsey & Fisher, 1978)
If fis a normalized polymatroid function then the Greedy
Algorithm returns sets S; with values
f(SZ) > (1 - 1/€)OPT1 for all i = 0, e ,k‘
> since Max k-cover is a special case, by Feige's result this is
the best possible approximation guarantee (unless P = NP)

Cardinality-Constrained Polymatroid Maximization

Given a normalized polymatroid function f on E
> hence f is nonnegative
and integer k, let OPT, = max{f(S): S C E, |S| <k}

Greedy Algorithm
Starting with Sy = (), repeat the following greedy step:
fori=0,...,(k—1) let
Siy1 = S; +v; where v; € argmax,cp\g, f(S; + u)
» equivalently, v; yields the largest increment
f(ulS;) = f(Si +u) — f(Si)
Theorem (Nemhauser, Wolsey & Fisher, 1978)
If fis a normalized polymatroid function then the Greedy
Algorithm returns sets S; with values
f(SZ) > (1 - 1/€)OPT1 for all i = 0, e ,k‘
> since Max k-cover is a special case, by Feige's result this is
the best possible approximation guarantee (unless P = NP)
» this guarantee holds at every step i (relative to OPT;)

(1 — 1/e)-Approximation: Proof Idea

We shall prove a more general result, but here is where the
(1 —1/e) factor comes from:

(1 — 1/e)-Approximation: Proof Idea

We shall prove a more general result, but here is where the
(1 —1/e) factor comes from:

> Let S* € argmax{f(S): S C E, |S| <k}, so f(S*) = OPT,

(1 — 1/e)-Approximation: Proof Idea

We shall prove a more general result, but here is where the
(1 —1/e) factor comes from:

» Let S* € argmax{f(S): S CE, |S| <k}, so f(S*) =OPTy
> By submodularity and the greedy step, we will prove that

there exist u € S* \ S; such that the increment

f(ulS;) > ¢ (OPT), — £(S5))

(1 — 1/e)-Approximation: Proof Idea

We shall prove a more general result, but here is where the
(1 —1/e) factor comes from:

» Let S* € argmax{f(S): S CE, |S| <k}, so f(S*) =OPTy
> By submodularity and the greedy step, we will prove that
there exist u € S* \ S; such that the increment
f(ulS;) > 1 (OPTy, — f(Sy))
» (OPTy — f(S;)) is the current (absolute) gap at iteration S;
(relative to the size-k optimum)

(1 — 1/e)-Approximation: Proof Idea

We shall prove a more general result, but here is where the
(1 —1/e) factor comes from:

» Let S* € argmax{f(S): S CE, |S| <k}, so f(S*) =OPTy
> By submodularity and the greedy step, we will prove that
there exist u € S* \ S; such that the increment
f(ulS;) > 1 (OPTy, — f(Sy))
» (OPTy — f(S;)) is the current (absolute) gap at iteration S;
(relative to the size-k optimum)

» The increment at greedy step ¢ is at least that large, hence
f(Siz1) = £(Si) = 7 (OPTy, — £(5)))

(1 — 1/e)-Approximation: Proof Idea

We shall prove a more general result, but here is where the
(1 —1/e) factor comes from:

» Let S* € argmax{f(S): S CE, |S| <k}, so f(S*) =OPTy
> By submodularity and the greedy step, we will prove that
there exist u € S* \ S; such that the increment
f(ulS;) > 1 (OPTy, — f(Sy))
» (OPTy — f(S;)) is the current (absolute) gap at iteration S;
(relative to the size-k optimum)

» The increment at greedy step ¢ is at least that large, hence
f(Siz1) = £(Si) = 7 (OPTy, — £(5)))
» Equivalently, OPT), — f(Sit1) < (1 — 1) (OPTy, — f£(5)))

(1 — 1/e)-Approximation: Proof Idea

We shall prove a more general result, but here is where the
(1 —1/e) factor comes from:

» Let S* € argmax{f(S): S CE, |S| <k}, so f(S*) =OPTy
> By submodularity and the greedy step, we will prove that
there exist u € S* \ S; such that the increment
f(ulS;) > 1 (OPTy, — f(Sy))
» (OPTy — f(S;)) is the current (absolute) gap at iteration S;
(relative to the size-k optimum)

» The increment at greedy step ¢ is at least that large, hence
f(Siz1) = £(Si) = 7 (OPTy, — £(5)))
» Equivalently, OPT), — f(Sit1) < (1 — 1) (OPTy, — f£(5)))

(1 — 1/e)-Approximation: Proof Idea

We shall prove a more general result, but here is where the
(1 —1/e) factor comes from:

» Let S* € argmax{f(S): S CE, |S| <k}, so f(S*) =OPTy
> By submodularity and the greedy step, we will prove that
there exist u € S* \ S; such that the increment
f(ulS;) > 1 (OPTy, — f(Sy))
» (OPTy — f(S;)) is the current (absolute) gap at iteration S;
(relative to the size-k optimum)

v

The increment at greedy step ¢ is at least that large, hence
f(Siz1) = £(Si) = 7 (OPTy, — £(5)))

Equivalently, OPT;, — f(Si+1) < (1 —) (OPT, — f(5i))

i.e., the gap decreases by a factor > (1 — 1/k) at each step

Since the initial gap OPTy — f(Sy) < OPTy, the final gap
OPT) — S < (1—1)* oPT,

v

v

(1 — 1/e)-Approximation: Proof Idea

We shall prove a more general result, but here is where the
(1 —1/e) factor comes from:

» Let S* € argmax{f(S): S CE, |S| <k}, so f(S*) =OPTy
> By submodularity and the greedy step, we will prove that
there exist u € S* \ S; such that the increment
f(ulS;) > 1 (OPTy, — f(Sy))
» (OPTy — f(S;)) is the current (absolute) gap at iteration S;
(relative to the size-k optimum)

v

The increment at greedy step ¢ is at least that large, hence
f(Siz1) = £(Si) = 7 (OPTy, — £(5)))

Equivalently, OPT;, — f(Si+1) < (1 —) (OPT, — f(5i))

i.e., the gap decreases by a factor > (1 — 1/k) at each step

Since the initial gap OPTy — f(Sy) < OPTy, the final gap
OPT) — S < (1—1)* oPT,

v

v

(1 — 1/e)-Approximation: Proof Idea

We shall prove a more general result, but here is where the
(1 —1/e) factor comes from:

» Let S* € argmax{f(S): S CE, |S| <k}, so f(S*) =OPTy
> By submodularity and the greedy step, we will prove that
there exist u € S* \ S; such that the increment
f(ulS;) > 1 (OPTy, — f(Sy))
» (OPTy — f(S;)) is the current (absolute) gap at iteration S;
(relative to the size-k optimum)

v

The increment at greedy step ¢ is at least that large, hence
f(Siz1) = £(Si) = 7 (OPTy, — £(5)))

Equivalently, OPT;, — f(Si+1) < (1 —) (OPT, — f(5i))

i.e., the gap decreases by a factor > (1 — 1/k) at each step

Since the initial gap OPTy — f(Sy) < OPTy, the final gap
OPT) — S, < (1—1)*oPT, < L OPT,

v

v

(1 — 1/e)-Approximation: Proof Idea

We shall prove a more general result, but here is where the
(1 —1/e) factor comes from:

» Let S* € argmax{f(S): S CE, |S| <k}, so f(S*) =OPTy
> By submodularity and the greedy step, we will prove that
there exist u € S* \ S; such that the increment
f(ulS;) > 1 (OPTy, — f(Sy))
» (OPTy — f(S;)) is the current (absolute) gap at iteration S;
(relative to the size-k optimum)

v

The increment at greedy step ¢ is at least that large, hence
f(Siv1) — £(Si) = £ (OPT, — £(Si))

Equivalently, OPT; — f(SZH) (1— 1) (OPT, — f(5)))

i.e., the gap decreases by a factor > (1 — 1/k) at each step

Since the initial gap OPTy, — f(SO) < OPTk, the final gap
OPT, — 5, < (1 — *) OPTy, < OPTk

and therefore f(S;) > (1 —1) OPT; > 0. 632 OPTy

v

v

v

A More General Approximation Guarantee

A More General Approximation Guarantee

Theorem (Nemhauser, Wolsey & Fisher, 1978)

A More General Approximation Guarantee

Theorem (Nemhauser, Wolsey & Fisher, 1978)
If f is a normalized polymatroid function then the Greedy

Algorithm returns sets S; (i = 1,...,n) with values
f(S;) > (1 —e "*)OPT; foralli=0,...,n

A More General Approximation Guarantee

Theorem (Nemhauser, Wolsey & Fisher, 1978)
If f is a normalized polymatroid function then the Greedy

Algorithm returns sets S; (i = 1,...,n) with values
f(S;) > (1 —e "*)OPT; foralli=0,...,n

> the approximation guarantee improves with the iteration
(obviously — why?)

A More General Approximation Guarantee

Theorem (Nemhauser, Wolsey & Fisher, 1978)
If f is a normalized polymatroid function then the Greedy

Algorithm returns sets S; (i = 1,...,n) with values
f(S;) > (1 —e "*)OPT; foralli=0,...,n

> the approximation guarantee improves with the iteration
(obviously — why?)

> values i > k may be interpreted as resource augmentation

A More General Approximation Guarantee

Theorem (Nemhauser, Wolsey & Fisher, 1978)
If f is a normalized polymatroid function then the Greedy

Algorithm returns sets S; (i = 1,...,n) with values
f(S;) > (1 —e "*)OPT; foralli=0,...,n

> the approximation guarantee improves with the iteration
(obviously — why?)

> values i > k may be interpreted as resource augmentation

» what if we want to guarantee at least 0.95 OPT?

A More General Approximation Guarantee

Theorem (Nemhauser, Wolsey & Fisher, 1978)
If f is a normalized polymatroid function then the Greedy

Algorithm returns sets S; (i = 1,...,n) with values
f(S;) > (1 —e "*)OPT; foralli=0,...,n

> the approximation guarantee improves with the iteration
(obviously — why?)
> values i > k may be interpreted as resource augmentation
» what if we want to guarantee at least 0.95 OPT?
> 0.95 =1—¢'/* gives i = [—kIn(1 —0.95] < 4k

A More General Approximation Guarantee

Theorem (Nemhauser, Wolsey & Fisher, 1978)
If f is a normalized polymatroid function then the Greedy

Algorithm returns sets S; (i = 1,...,n) with values
f(S;) > (1 —e "*)OPT; foralli=0,...,n

> the approximation guarantee improves with the iteration
(obviously — why?)
> values i > k may be interpreted as resource augmentation
» what if we want to guarantee at least 0.95 OPT?
> 0.95 =1—¢'/* gives i = [—kIn(1 —0.95] < 4k
» (and for 0.999, [—kIn(1 —0.999] = 7)

A More General Approximation Guarantee

Theorem (Nemhauser, Wolsey & Fisher, 1978)
If f is a normalized polymatroid function then the Greedy

Algorithm returns sets S; (i = 1,...,n) with values
f(S;) > (1 —e "*)OPT; foralli=0,...,n

v

the approximation guarantee improves with the iteration
(obviously — why?)

v

values ¢ > k may be interpreted as resource augmentation

v

what if we want to guarantee at least 0.95 OPT;?
» 0.95=1—¢€'/* gives i = [~kIn(1 — 0.95] < 4k
» (and for 0.999, [—kIn(1 —0.999] = 7)

typical practical performance is much better

v

Proof of Greedy Performance

Proof of Greedy Performance

» Fix ¢ (size of greedy solution) and k (size of optimal set)

Proof of Greedy Performance

» Fix ¢ (size of greedy solution) and k (size of optimal set)
» Fix S* € argmax{f(S): S CE, |S| <k}, so f(S*) =OPTy

Proof of Greedy Performance

» Fix ¢ (size of greedy solution) and k (size of optimal set)
» Fix S* € argmax{f(S): S CE, |S| <k}, so f(S*) =OPTy
» Assume w.l.o.g., that |S*| =k and let S* = {v},...,v}}

Proof of Greedy Performance

» Fix ¢ (size of greedy solution) and k (size of optimal set)

» Fix S* € argmax{f(S): S CE, |S| <k}, so f(S*) =OPTy
» Assume w.l.o.g., that |S*| =k and let S* = {v},...,v}}

> Let (v1,...,v) be the greedy order chosen by the algorithm

Proof of Greedy Performance

» Fix ¢ (size of greedy solution) and k (size of optimal set)

» Fix S* € argmax{f(S): S CE, |S| <k}, so f(S*) =OPTy
» Assume w.l.o.g., that |S*| =k and let S* = {v},...,v}}

Let (v1,...,vy) be the greedy order chosen by the algorithm
Then, for all i < £, the gap

v

v

Proof of Greedy Performance

» Fix ¢ (size of greedy solution) and k (size of optimal set)

» Fix S* € argmax{f(S): S CE, |S| <k}, so f(S*) =OPTy
» Assume w.l.o.g., that |S*| =k and let S* = {v},...,v}}

Let (v1,...,vy) be the greedy order chosen by the algorithm
Then, for all i < £, the gap

v

v

Proof of Greedy Performance

» Fix ¢ (size of greedy solution) and k (size of optimal set)

» Fix S* € argmax{f(S): S CE, |S| <k}, so f(S*) =OPTy
» Assume w.l.o.g., that |S*| =k and let S* = {v},...,v}}

> Let (v1,...,v) be the greedy order chosen by the algorithm
» Then, for all 7 < ¢, the gap

5= J(8) = f(S)

Proof of Greedy Performance

» Fix ¢ (size of greedy solution) and k (size of optimal set)

» Fix S* € argmax{f(S): S CE, |S| <k}, so f(S*) =OPTy
» Assume w.l.o.g., that |S*| =k and let S* = {v},...,v}}

> Let (v1,...,v) be the greedy order chosen by the algorithm
» Then, for all 7 < ¢, the gap

0 = f(S)—f(S) < f(STUS) — f(S:)

Proof of Greedy Performance

» Fix ¢ (size of greedy solution) and k (size of optimal set)

» Fix S* € argmax{f(S): S CE, |S| <k}, so f(S*) =OPTy
» Assume w.l.o.g., that |S*| =k and let S* = {v},...,v}}

> Let (v1,...,v) be the greedy order chosen by the algorithm
» Then, for all 7 < ¢, the gap

o = f(S7)—f(S) < [f(STUS)— f(S)

k
= > f@lSi+ i+ +opy)
J=1

Proof of Greedy Performance

» Fix ¢ (size of greedy solution) and k (size of optimal set)

» Fix S* € argmax{f(S): S CE, |S| <k}, so f(S*) =OPTy
» Assume w.l.o.g., that |S*| =k and let S* = {v},...,v}}

> Let (v1,...,v) be the greedy order chosen by the algorithm
» Then, for all 7 < ¢, the gap

o = f(S7)—f(S) < [f(STUS)— f(S)

k

k
= > f@lSi+vi o) < > F(5lS)
j=1 J=

1

Proof of Greedy Performance

» Fix ¢ (size of greedy solution) and k (size of optimal set)

» Fix S* € argmax{f(S): S CE, |S| <k}, so f(S*) =OPTy
» Assume w.l.o.g., that |S*| =k and let S* = {v},...,v}}

> Let (v1,...,v) be the greedy order chosen by the algorithm
» Then, for all 7 < ¢, the gap

0 = f(S)—f(S) < f(STUS) — f(S:)
k k

1 j=1

Proof of Greedy Performance

» Fix ¢ (size of greedy solution) and k (size of optimal set)

» Fix S* € argmax{f(S): S CE, |S| <k}, so f(S*) =OPTy
» Assume w.l.o.g., that |S*| =k and let S* = {v},...,v}}

> Let (v1,...,v) be the greedy order chosen by the algorithm
» Then, for all 7 < ¢, the gap

0 = f(S)—f(S) < f(STUS) — f(S:)
k k

1 j=1

< kf(uilSi) = k (f(Sit1) — f(S5))

Proof of Greedy Performance

» Fix ¢ (size of greedy solution) and k (size of optimal set)

» Fix S* € argmax{f(S): S CE, |S| <k}, so f(S*) =OPTy
» Assume w.l.o.g., that |S*| =k and let S* = {v},...,v}}

> Let (v1,...,v) be the greedy order chosen by the algorithm
» Then, for all 7 < ¢, the gap

0 = f(S)—f(S) < f(STUS) — f(S:)
k k

= > OIS+ o+ i) <Y f(1S)

1 j=1

< kf(uilSi) = k (f(Sit1) — f(Si) = k(6 —dit1)

Proof of Greedy Performance

» Fix ¢ (size of greedy solution) and k (size of optimal set)

» Fix S* € argmax{f(S): S CE, |S| <k}, so f(S*) =OPTy
» Assume w.l.o.g., that |S*| =k and let S* = {v},...,v}}

> Let (v1,...,v) be the greedy order chosen by the algorithm
» Then, for all 7 < ¢, the gap

0 = f(S)—f(S) < f(STUS) — f(S:)

k k
= Zf(U;’SiJrUfJF"'JFU;—l) < Zf(vﬂsi)
j=1 j=1
< kf(wlS)) = k(f(Sit1) — f(Si) = k(0 — dis1)

implying di41 < (1 —)6

Proof of Greedy Performance

» Fix ¢ (size of greedy solution) and k (size of optimal set)

» Fix S* € argmax{f(S): S CE, |S| <k}, so f(S*) =OPTy
» Assume w.l.o.g., that |S*| =k and let S* = {v},...,v}}

> Let (v1,...,v) be the greedy order chosen by the algorithm
» Then, for all 7 < ¢, the gap

0 = f(S)—f(S) < f(STUS) — f(S:)

k k
= D fISioi 4 vy <Y f51S)
j=1 j=1
< kf(uilS) = k(f(Siv1) = f(Si) = k(0 —dit1)
implying 0iv1 < (1 — %)51 and thus
6 < (1—4)%8 < (1-4)*OPT, < e “*OPTy QED

Greedy Algorithm: Running Time

Greedy Algorithm: Running Time

» Greedy computes a new maximum n = |V/| times

Greedy Algorithm: Running Time

» Greedy computes a new maximum n = |V/| times

» each maximum computation requires O(n) comparisons

Greedy Algorithm: Running Time

» Greedy computes a new maximum n = |V/| times

» each maximum computation requires O(n) comparisons

Greedy Algorithm: Running Time

» Greedy computes a new maximum n = |V/| times

» each maximum computation requires O(n) comparisons

hence O(n?) time overall

Greedy Algorithm: Running Time

» Greedy computes a new maximum n = |V| times
» each maximum computation requires O(n) comparisons

hence O(n?) time overall
This is not good enough for very large practical instances

> large water networks with many contamination scenarios;
social networks; selecting blogs of greatest influence;

document summarization; etc.
and can be made (much) faster by a simple trick, also based on

submodularity:

Greedy Algorithm: Running Time

» Greedy computes a new maximum n = |V| times
» each maximum computation requires O(n) comparisons

hence O(n?) time overall
This is not good enough for very large practical instances

> large water networks with many contamination scenarios;
social networks; selecting blogs of greatest influence;

document summarization; etc.
and can be made (much) faster by a simple trick, also based on

submodularity:

Greedy Algorithm: Running Time

» Greedy computes a new maximum n = |V| times
» each maximum computation requires O(n) comparisons

hence O(n?) time overall
This is not good enough for very large practical instances
> large water networks with many contamination scenarios;
social networks; selecting blogs of greatest influence;
document summarization; etc.
and can be made (much) faster by a simple trick, also based on

submodularity:
Minoux’s Accelerated Greedy (aka, Lazy Selection)

Greedy Algorithm: Running Time

» Greedy computes a new maximum n = |V/| times

» each maximum computation requires O(n) comparisons

hence O(n?) time overall

This is not good enough for very large practical instances
> large water networks with many contamination scenarios;
social networks; selecting blogs of greatest influence;
document summarization; etc.
and can be made (much) faster by a simple trick, also based on
submodularity:

Minoux’s Accelerated Greedy (aka, Lazy Selection)

Idea: to reduce the number of function evaluations and of
comparisons, store upper bounds «,, on the increments f(v|S;) in
a priority queue, and only update «, when element v is examined

Minoux's Accelerated Greedy

» Store the initial increments «,, = f(v|Sp) in a priority queue,
and the iteration index 3, = 0 at which it was least updated

Minoux's Accelerated Greedy

» Store the initial increments «,, = f(v|Sp) in a priority queue,
and the iteration index 3, = 0 at which it was least updated
» At iteration %, repeat

Minoux's Accelerated Greedy

» Store the initial increments a,, = f(v|Sp) in a priority queue,
and the iteration index 3, = 0 at which it was least updated

» At iteration %, repeat
» “pop” the top element (largest), and let u be the new top

Minoux's Accelerated Greedy

» Store the initial increments «,, = f(v|Sp) in a priority queue,
and the iteration index 3, = 0 at which it was least updated
» At iteration %, repeat

» “pop” the top element (largest), and let u be the new top
» if 8, < i then compute the exact increment a,, := f(v|S;) and
update 8, =i

Minoux's Accelerated Greedy

» Store the initial increments a,, = f(v|Sp) in a priority queue,
and the iteration index 3, = 0 at which it was least updated
» At iteration %, repeat
» “pop” the top element (largest), and let u be the new top
» if 8, < i then compute the exact increment a,, := f(v|S;) and
update 8, =i
> if a,, < oy then return v to the queue

Minoux's Accelerated Greedy

» Store the initial increments a,, = f(v|Sp) in a priority queue,
and the iteration index 3, = 0 at which it was least updated
» At iteration %, repeat
» “pop” the top element (largest), and let u be the new top
» if 8, < i then compute the exact increment a,, := f(v|S;) and
update 8, =i
> if a,, < oy then return v to the queue

Minoux's Accelerated Greedy

» Store the initial increments «,, = f(v|Sp) in a priority queue,
and the iteration index 3, = 0 at which it was least updated
» At iteration %, repeat

» “pop” the top element (largest), and let u be the new top

» if 8, < i then compute the exact increment a,, := f(v|S;) and
update 8, =i

> if a,, < oy then return v to the queue

until a, > ;v is now selected by Greedy

Minoux's Accelerated Greedy

» Store the initial increments «,, = f(v|Sp) in a priority queue,
and the iteration index 3, = 0 at which it was least updated
» At iteration %, repeat

» “pop” the top element (largest), and let u be the new top

» if 8, < i then compute the exact increment a,, := f(v|S;) and
update 8, =i

> if a,, < oy then return v to the queue

until a, > ;v is now selected by Greedy
Validity follows from submodularity, i.e., nonincreasing increments:

as 7 increases, the current \S; also increases, the increments f(v|]S;)
decrease, and thus each «, remains an upper bound on f(v|S;)

Minoux's Accelerated Greedy

» Store the initial increments «,, = f(v|Sp) in a priority queue,
and the iteration index 3, = 0 at which it was least updated
» At iteration %, repeat
» “pop” the top element (largest), and let u be the new top
» if 8, < i then compute the exact increment a,, := f(v|S;) and
update 8, =i
> if a,, < oy then return v to the queue

until a, > ;v is now selected by Greedy

Validity follows from submodularity, i.e., nonincreasing increments:
as 7 increases, the current \S; also increases, the increments f(v|]S;)
decrease, and thus each «, remains an upper bound on f(v|S;)

In practice, Minoux's trick often yields enormous speedups (over
700-fold) over standard implementation of Greedy, for very large
data sets

Nonmonotone SFMax

» If f is an arbitrary submodular function (neither
polymatroidal, nor necessarily positive or negative), then
verifying whether its maximum is positive or negative is
already NP-hard

Nonmonotone SFMax

» If f is an arbitrary submodular function (neither
polymatroidal, nor necessarily positive or negative), then
verifying whether its maximum is positive or negative is
already NP-hard

» Therefore, submodular function max in such case is
inapproximable (unless P=NP)

Nonmonotone SFMax

» If f is an arbitrary submodular function (neither
polymatroidal, nor necessarily positive or negative), then
verifying whether its maximum is positive or negative is
already NP-hard

» Therefore, submodular function max in such case is
inapproximable (unless P=NP)

» since any such procedure would give us the sign of the max

Nonmonotone SFMax

» If f is an arbitrary submodular function (neither
polymatroidal, nor necessarily positive or negative), then
verifying whether its maximum is positive or negative is
already NP-hard

» Therefore, submodular function max in such case is
inapproximable (unless P=NP)

» since any such procedure would give us the sign of the max

» Thus, we will assume that f is non-negative and otherwise
arbitrary submodular

Nonmonotone SFMax

» If f is an arbitrary submodular function (neither
polymatroidal, nor necessarily positive or negative), then
verifying whether its maximum is positive or negative is
already NP-hard

» Therefore, submodular function max in such case is
inapproximable (unless P=NP)

» since any such procedure would give us the sign of the max

» Thus, we will assume that f is non-negative and otherwise
arbitrary submodular

» Feige, Mirrokni & Vondrak (2007, 2011) show that, in the

value oracle model, for every € > 0 a (% + €)-approximation
requires an exponential number of oracle calls

Nonmonotone SFMax

» If f is an arbitrary submodular function (neither
polymatroidal, nor necessarily positive or negative), then
verifying whether its maximum is positive or negative is
already NP-hard

» Therefore, submodular function max in such case is
inapproximable (unless P=NP)

» since any such procedure would give us the sign of the max

» Thus, we will assume that f is non-negative and otherwise
arbitrary submodular
» Feige, Mirrokni & Vondrak (2007, 2011) show that, in the
value oracle model, for every € > 0 a (% + €)-approximation
requires an exponential number of oracle calls
» even if f is known to be symmetric

Nonmonotone SFMax

» If f is an arbitrary submodular function (neither
polymatroidal, nor necessarily positive or negative), then
verifying whether its maximum is positive or negative is
already NP-hard

» Therefore, submodular function max in such case is
inapproximable (unless P=NP)

» since any such procedure would give us the sign of the max

» Thus, we will assume that f is non-negative and otherwise
arbitrary submodular

» Feige, Mirrokni & Vondrak (2007, 2011) show that, in the
value oracle model, for every € > 0 a (% + €)-approximation
requires an exponential number of oracle calls

» even if f is known to be symmetric

> We will see a (3 — €)-approximation, also due to Feige & al,

Nonmonotone SFMax

» If f is an arbitrary submodular function (neither
polymatroidal, nor necessarily positive or negative), then
verifying whether its maximum is positive or negative is
already NP-hard

» Therefore, submodular function max in such case is
inapproximable (unless P=NP)

» since any such procedure would give us the sign of the max

» Thus, we will assume that f is non-negative and otherwise
arbitrary submodular

» Feige, Mirrokni & Vondrak (2007, 2011) show that, in the
value oracle model, for every € > 0 a (% + €)-approximation
requires an exponential number of oracle calls

» even if f is known to be symmetric

> We will see a (3 — €)-approximation, also due to Feige & al,

> using O(1n3logn) EO's

Nonmonotone SFMax

» If f is an arbitrary submodular function (neither
polymatroidal, nor necessarily positive or negative), then
verifying whether its maximum is positive or negative is
already NP-hard

» Therefore, submodular function max in such case is
inapproximable (unless P=NP)

» since any such procedure would give us the sign of the max

» Thus, we will assume that f is non-negative and otherwise
arbitrary submodular

» Feige, Mirrokni & Vondrak (2007, 2011) show that, in the
value oracle model, for every € > 0 a (% + €)-approximation
requires an exponential number of oracle calls

» even if f is known to be symmetric

> We will see a (3 — €)-approximation, also due to Feige & al,

> using O(1n3logn) EO's
» and based on local search (not on a greedy approach!)

Local Search

Local Search

» A sequential method that starts at a feasible solution

Local Search

» A sequential method that starts at a feasible solution
> e.g., any subset S of the ground set

Local Search

» A sequential method that starts at a feasible solution
> e.g., any subset S of the ground set

Local Search

» A sequential method that starts at a feasible solution
> e.g., any subset S of the ground set

and tries to improve it by a sequence of (usually, simple)
moves

Local Search

» A sequential method that starts at a feasible solution
> e.g., any subset S of the ground set

and tries to improve it by a sequence of (usually, simple)
moves

» e.g., add, or drop, an element to/from the current set S

Local Search

» A sequential method that starts at a feasible solution
> e.g., any subset S of the ground set
and tries to improve it by a sequence of (usually, simple)
moves

» e.g., add, or drop, an element to/from the current set S
> |t must be possible, in polytime, to find an improving move or
decide none exists

Local Search

» A sequential method that starts at a feasible solution
> e.g., any subset S of the ground set

and tries to improve it by a sequence of (usually, simple)
moves

» e.g., add, or drop, an element to/from the current set S
> |t must be possible, in polytime, to find an improving move or
decide none exists

» Local search methods differ in their search strategy

Local Search

» A sequential method that starts at a feasible solution
> e.g., any subset S of the ground set
and tries to improve it by a sequence of (usually, simple)
moves
» e.g., add, or drop, an element to/from the current set S
> |t must be possible, in polytime, to find an improving move or
decide none exists
» Local search methods differ in their search strategy

» simple hill climbing, restarts, “tabu search”, simulated
annealing,. ..

Local Search

» A sequential method that starts at a feasible solution
> e.g., any subset S of the ground set
and tries to improve it by a sequence of (usually, simple)
moves
» e.g., add, or drop, an element to/from the current set S
> |t must be possible, in polytime, to find an improving move or
decide none exists
» Local search methods differ in their search strategy

» simple hill climbing, restarts, “tabu search”, simulated
annealing,. ..

Local Search

» A sequential method that starts at a feasible solution
> e.g., any subset S of the ground set

and tries to improve it by a sequence of (usually, simple)
moves

» e.g., add, or drop, an element to/from the current set S
> |t must be possible, in polytime, to find an improving move or
decide none exists
» Local search methods differ in their search strategy
» simple hill climbing, restarts, “tabu search”, simulated
annealing,. ..
but they terminate with a local optimum, i.e., a feasible
solution that cannot be improved by the available moves

Local Search

» A sequential method that starts at a feasible solution
> e.g., any subset S of the ground set

and tries to improve it by a sequence of (usually, simple)
moves

» e.g., add, or drop, an element to/from the current set S
> |t must be possible, in polytime, to find an improving move or
decide none exists
» Local search methods differ in their search strategy
» simple hill climbing, restarts, “tabu search”, simulated
annealing,. ..
but they terminate with a local optimum, i.e., a feasible
solution that cannot be improved by the available moves
» Two main issues in evaluating a local search method:

Local Search

» A sequential method that starts at a feasible solution
> e.g., any subset S of the ground set

and tries to improve it by a sequence of (usually, simple)
moves

» e.g., add, or drop, an element to/from the current set S
> |t must be possible, in polytime, to find an improving move or
decide none exists
» Local search methods differ in their search strategy
» simple hill climbing, restarts, “tabu search”, simulated
annealing,. ..
but they terminate with a local optimum, i.e., a feasible
solution that cannot be improved by the available moves
» Two main issues in evaluating a local search method:

> Running time: does it go thru a polynomially bounded
number of steps?

Local Search

» A sequential method that starts at a feasible solution
> e.g., any subset S of the ground set

and tries to improve it by a sequence of (usually, simple)
moves

» e.g., add, or drop, an element to/from the current set S
> |t must be possible, in polytime, to find an improving move or
decide none exists
» Local search methods differ in their search strategy
» simple hill climbing, restarts, “tabu search”, simulated
annealing,. ..
but they terminate with a local optimum, i.e., a feasible
solution that cannot be improved by the available moves
» Two main issues in evaluating a local search method:

> Running time: does it go thru a polynomially bounded
number of steps?
» Solution quality: do we have a performance guarantee?

Local Search

» A sequential method that starts at a feasible solution
> e.g., any subset S of the ground set
and tries to improve it by a sequence of (usually, simple)
moves
» e.g., add, or drop, an element to/from the current set S
> |t must be possible, in polytime, to find an improving move or
decide none exists
» Local search methods differ in their search strategy
» simple hill climbing, restarts, “tabu search”, simulated
annealing,. ..
but they terminate with a local optimum, i.e., a feasible
solution that cannot be improved by the available moves
» Two main issues in evaluating a local search method:
> Running time: does it go thru a polynomially bounded
number of steps?
» Solution quality: do we have a performance guarantee?
i.e., how “bad” (in objective value) can a local optimum be?

Generic Local Search

Generic Local Search

The neighbourhood N (.S) of a solution is the set of all solutions
that can be reached from S by an available move.

Generic Local Search

The neighbourhood N (.S) of a solution is the set of all solutions
that can be reached from S by an available move.

Generic Local Search (“Hill Climbing")

Generic Local Search

The neighbourhood N (.S) of a solution is the set of all solutions
that can be reached from S by an available move.

Generic Local Search (“Hill Climbing")

1. Initialization: find a (feasible) solution S

Generic Local Search

The neighbourhood N (.S) of a solution is the set of all solutions
that can be reached from S by an available move.

Generic Local Search (“Hill Climbing")

1. Initialization: find a (feasible) solution S

2. While there exists an improving solution ST € N(S) do
S:=8"

Generic Local Search

The neighbourhood N (.S) of a solution is the set of all solutions
that can be reached from S by an available move.

Generic Local Search (“Hill Climbing")

1. Initialization: find a (feasible) solution S

2. While there exists an improving solution ST € N(S) do
S:=8"

3. Output S

Generic Local Search

The neighbourhood N (.S) of a solution is the set of all solutions
that can be reached from S by an available move.

Generic Local Search (“Hill Climbing")

1. Initialization: find a (feasible) solution S

2. While there exists an improving solution ST € N(S) do
S:=8"

3. Output S

Generic Local Search

The neighbourhood N (.S) of a solution is the set of all solutions
that can be reached from S by an available move.

Generic Local Search (“Hill Climbing")

1. Initialization: find a (feasible) solution S

2. While there exists an improving solution ST € N(S) do
S:=8"

3. Output S
If there is a finite number of solutions (and we only accept strict

improvements) then Generic Local Search terminates in a finite
number of steps and outputs a local optimum

Generic Local Search

The neighbourhood N (.S) of a solution is the set of all solutions
that can be reached from S by an available move.

Generic Local Search (“Hill Climbing")

1. Initialization: find a (feasible) solution S

2. While there exists an improving solution ST € N(S) do
S:=8"

3. Output S

If there is a finite number of solutions (and we only accept strict
improvements) then Generic Local Search terminates in a finite
number of steps and outputs a local optimum

» at this point, we can only guarantee finiteness, but not
polynomiality

Generic Local Search

The neighbourhood N (.S) of a solution is the set of all solutions
that can be reached from S by an available move.

Generic Local Search (“Hill Climbing")

1. Initialization: find a (feasible) solution S

2. While there exists an improving solution ST € N(S) do
S:=8"

3. Output S
If there is a finite number of solutions (and we only accept strict

improvements) then Generic Local Search terminates in a finite
number of steps and outputs a local optimum

» at this point, we can only guarantee finiteness, but not
polynomiality

> in fact, most of these problems are PLS-complete

A Polytime Version of Local Search

Given € > 0, ST € N(S) is e-improving if its objective value
F(ST) > (1+¢€)f(S) (for a maximization problem)

A Polytime Version of Local Search

Given € > 0, ST € N(S) is e-improving if its objective value
F(ST) > (1+¢€)f(S) (for a maximization problem)
S is an e-local optimum if f(S*) < (1+¢€)f(S) for all ST € N(S)

A Polytime Version of Local Search

Given € > 0, ST € N(S) is e-improving if its objective value
F(ST) > (1+¢€)f(S) (for a maximization problem)
S is an e-local optimum if f(S*) < (1+¢€)f(S) for all ST € N(S)

> i.e., if it has no e-improving neighbor

A Polytime Version of Local Search

Given € > 0, ST € N(S) is e-improving if its objective value

F(ST) > (1+¢€)f(S) (for a maximization problem)

S is an e-local optimum if f(S*) < (1+¢€)f(S) for all ST € N(S)
> i.e., if it has no e-improving neighbor

Modified Local Search (MLS): given € > 0,

A Polytime Version of Local Search

Given € > 0, ST € N(S) is e-improving if its objective value
F(ST) > (1+¢€)f(S) (for a maximization problem)
S is an e-local optimum if f(S*) < (1+¢€)f(S) for all ST € N(S)

> i.e., if it has no e-improving neighbor
Modified Local Search (MLS): given € > 0,

1. Initialization: find a (feasible) solution S

A Polytime Version of Local Search

Given € > 0, ST € N(S) is e-improving if its objective value

F(ST) > (1+¢€)f(S) (for a maximization problem)

S is an e-local optimum if f(ST) < (1+4¢)f(S) for all ST € N(9)
> i.e., if it has no e-improving neighbor

Modified Local Search (MLS): given € > 0,

1. Initialization: find a (feasible) solution S

2. While there exists an e-improving solution ST € N(S) do
S:=8*

A Polytime Version of Local Search

Given € > 0, ST € N(S) is e-improving if its objective value
F(ST) > (1+¢€)f(S) (for a maximization problem)
S is an e-local optimum if f(ST) < (1+4¢)f(S) for all ST € N(9)

> i.e., if it has no e-improving neighbor
Modified Local Search (MLS): given € > 0,
1. Initialization: find a (feasible) solution S
2. While there exists an e-improving solution ST € N(S) do
S:=8*
3. Output S

A Polytime Version of Local Search

Given € > 0, ST € N(S) is e-improving if its objective value
F(ST) > (1+¢€)f(S) (for a maximization problem)
S is an e-local optimum if f(ST) < (1+4¢)f(S) for all ST € N(9)

> i.e., if it has no e-improving neighbor
Modified Local Search (MLS): given € > 0,
1. Initialization: find a (feasible) solution S
2. While there exists an e-improving solution ST € N(S) do
S:=8*
3. Output S

A Polytime Version of Local Search

Given € > 0, ST € N(S) is e-improving if its objective value
F(ST) > (1+¢€)f(S) (for a maximization problem)
S is an e-local optimum if f(ST) < (1+4¢)f(S) for all ST € N(9)

> i.e., if it has no e-improving neighbor
Modified Local Search (MLS): given € > 0,
1. Initialization: find a (feasible) solution S
2. While there exists an e-improving solution ST € N(S) do
S:=8*
3. Output S

If f(So) > O then after k iterations the current solution S, satisfies
F(Sk) > (1+)" £(S0)

A Polytime Version of Local Search

Given € > 0, ST € N(S) is e-improving if its objective value

F(ST) > (1+¢€)f(S) (for a maximization problem)

S is an e-local optimum if f(ST) < (1+4¢)f(S) for all ST € N(9)
> i.e., if it has no e-improving neighbor

Modified Local Search (MLS): given € > 0,

1. Initialization: find a (feasible) solution S

2. While there exists an e-improving solution ST € N(S) do
S:=8*

3. Output S

If f(So) > O then after k iterations the current solution S, satisfies
F(Sk) > (1+)" £(S0)

= If log(OPT/f(So)) is polynomially bounded (in the instance
input size) then for every fixed € > 0, MLS terminates and outputs
an e-local optimum after at most log(OPT/f(Sp)) / log(1 + ¢)
iterations, i.e. in polytime

Local Optima for SFMax

Local Optima for SFMax

Let S C E be a local maximum for the add & drop moves

Local Optima for SFMax

Let S C E be a local maximum for the add & drop moves

Lemma
If f: 2E 5 R is normalized and submodular, and S is such a local
optimum then

1. f(R) < f(S) forall RC S, and

Local Optima for SFMax

Let S C E be a local maximum for the add & drop moves

Lemma
If f: 2E 5 R is normalized and submodular, and S is such a local
optimum then

1. f(R) < f(S) forall RC S, and

2. f(T) < f(S)forall T DS

Local Optima for SFMax

Let S C E be a local maximum for the add & drop moves

Lemma
If f: 2E 5 R is normalized and submodular, and S is such a local
optimum then

1. f(R) < f(S) forall RC S, and

2. f(T) < f(S)forall T DS

Local Optima for SFMax

Let S C E be a local maximum for the add & drop moves

Lemma
If f: 2E 5 R is normalized and submodular, and S is such a local
optimum then

1. f(R) < f(S) forall RC S, and
2. f(T) < f(S)forall T DS

Proof by induction on d = |S'\ R| for 1.

Local Optima for SFMax

Let S C E be a local maximum for the add & drop moves

Lemma
If f: 2E 5 R is normalized and submodular, and S is such a local
optimum then

1. f(R) < f(S) forall RC S, and

2. f(T) < f(S)forall T DS

Proof by induction on d = |S'\ R| for 1.
Base case: if d =1 then R € N(S) and f(R) < f(S5)

Local Optima for SFMax

Let S C E be a local maximum for the add & drop moves

Lemma
If f: 2E 5 R is normalized and submodular, and S is such a local
optimum then

1. f(R) < f(S) forall RC S, and

2. f(T) < f(S)forall T DS

Proof by induction on d = |S'\ R| for 1.

Base case: if d =1 then R € N(S) and f(R) < f(95)

Induction: assume 1 holds for d — 1 and consider any R C S with
|S\ R| =d. Choose u € S\ R. Then

f(R) < f(R+u)+ f(S—u) = f(S)

Local Optima for SFMax

Let S C E be a local maximum for the add & drop moves

Lemma
If f: 2E 5 R is normalized and submodular, and S is such a local
optimum then

1. f(R) < f(S) forall RC S, and

2. f(T) < f(S)forall T DS

Proof by induction on d = |S'\ R| for 1.

Base case: if d =1 then R € N(S) and f(R) < f(95)

Induction: assume 1 holds for d — 1 and consider any R C S with
|S\ R| =d. Choose u € S\ R. Then

f(R) R +u)+ f(S—u) = f(5)
f(S —u)

<
<

Local Optima for SFMax

Let S C E be a local maximum for the add & drop moves

Lemma
If f: 2E 5 R is normalized and submodular, and S is such a local
optimum then

1. f(R) < f(S) forall RC S, and
2. f(T) < f(S)forall T DS

Proof by induction on d = |S'\ R| for 1.

Base case: if d =1 then R € N(S) and f(R) < f(95)

Induction: assume 1 holds for d — 1 and consider any R C S with
|S\ R| =d. Choose u € S\ R. Then

f(R) < f(R+wu)+ f(S—u)— f(S)
< f(S—w)
< f(S)

Local Optima for SFMax

Let S C E be a local maximum for the add & drop moves

Lemma
If f: 2E 5 R is normalized and submodular, and S is such a local
optimum then

1. f(R) < f(S) forall RC S, and

2. f(T) < f(S)forall T DS

Proof by induction on d = |S'\ R| for 1.

Base case: if d =1 then R € N(S) and f(R) < f(95)

Induction: assume 1 holds for d — 1 and consider any R C S with
|S\ R| =d. Choose u € S\ R. Then

f(R) < f(R+wu)+ f(S—u)— f(S)
< f(S—w)
< f(S)

The proof of 2 is similar QED

Local Optima for SFMax (2)

Theorem [Feige, Mirrokni & Vondrak, 2011]
If f:2F = R is normalized, nonnegative and submodular,

Local Optima for SFMax (2)

Theorem [Feige, Mirrokni & Vondrak, 2011]
If f:2F = R is normalized, nonnegative and submodular,
and S is a local optimum for the add & drop moves,

Local Optima for SFMax (2)

Theorem [Feige, Mirrokni & Vondrak, 2011]

If f:2F = R is normalized, nonnegative and submodular,

and S is a local optimum for the add & drop moves, then
S € argmax{f(T):T € {S,N\ S}},

the better of S and its complement, is a 1/3-approximation

Local Optima for SFMax (2)

Theorem [Feige, Mirrokni & Vondrak, 2011]

If f:2F = R is normalized, nonnegative and submodular,

and S is a local optimum for the add & drop moves, then
S € argmax{f(T):T € {S,N\ S}},

the better of S and its complement, is a 1/3-approximation

Proof:

Local Optima for SFMax (2)

Theorem [Feige, Mirrokni & Vondrak, 2011]

If £:2F = R is normalized, nonnegative and submodular,

and S is a local optimum for the add & drop moves, then
S € argmax{f(T):T € {S,N\ S}},

the better of S and its complement, is a 1/3-approximation

Proof: Let S* be an optimum solution, then

Local Optima for SFMax (2)

Theorem [Feige, Mirrokni & Vondrak, 2011]

If £:2F = R is normalized, nonnegative and submodular,

and S is a local optimum for the add & drop moves, then
S € argmax{f(T):T € {S,N\ S}},

the better of S and its complement, is a 1/3-approximation

Proof: Let S* be an optimum solution, then

3f(8") = 2f(S")+ fF(N\S)

Local Optima for SFMax (2)

Theorem [Feige, Mirrokni & Vondrak, 2011]

If £:2F = R is normalized, nonnegative and submodular,

and S is a local optimum for the add & drop moves, then
S € argmax{f(T):T € {S,N\ S}},

the better of S and its complement, is a 1/3-approximation

Proof: Let S* be an optimum solution, then

3£(5") 2£(5) + f(N\S)

>
> f(S'NS)+fSUS)+ N\

Local Optima for SFMax (2)

Theorem [Feige, Mirrokni & Vondrak, 2011]

If £:2F = R is normalized, nonnegative and submodular,

and S is a local optimum for the add & drop moves, then
S € argmax{f(T):T € {S,N\ S}},

the better of S and its complement, is a 1/3-approximation

Proof: Let S* be an optimum solution, then
3f(8") = 2f(8)+f(N\S)

> f(S'NS*)+ f(S'UST)+ fF(N\S)
> f(8'NS*)+ f(N)+ f(S*\ S

Local Optima for SFMax (2)

Theorem [Feige, Mirrokni & Vondrak, 2011]

If £:2F = R is normalized, nonnegative and submodular,

and S is a local optimum for the add & drop moves, then
S € argmax{f(T):T € {S,N\ S}},

the better of S and its complement, is a 1/3-approximation

Proof: Let S* be an optimum solution, then
3£(8") 2f(8") + fF(N\S)

f(S'NS") + f(STUS") + fF(N\S)

F(S'NS") + fF(N)+ f(S*\ S)

fFS")+ £(0) + f(N)

>
>
>
>

Local Optima for SFMax (2)

Theorem [Feige, Mirrokni & Vondrak, 2011]

If £:2F = R is normalized, nonnegative and submodular,

and S is a local optimum for the add & drop moves, then
S € argmax{f(T):T € {S,N\ S}},

the better of S and its complement, is a 1/3-approximation

Proof: Let S* be an optimum solution, then
3£(8") 2f(8") + fF(N\S)
f(S'NS") + f(STUS") + fF(N\S)
F(S'NS") + fF(N)+ f(S*\ S)
FS*) + f0)+ F(N) > f(57) QED

>
>
>
>

Local Optima for SFMax (2)

Theorem [Feige, Mirrokni & Vondrak, 2011]

If £:2F = R is normalized, nonnegative and submodular,

and S is a local optimum for the add & drop moves, then
S € argmax{f(T):T € {S,N\ S}},

the better of S and its complement, is a 1/3-approximation

Proof: Let S* be an optimum solution, then

3£(8") 2f(8") + fF(N\S)
f(S'NS") + f(STUS") + fF(N\S)
F(S'NS") + fF(N)+ f(S*\ S)
FS*) + f0)+ F(N) > f(57) QED

Theorem. If, in addition to the assumptions of the preceding
theorem, f is also symmetric then S’ is a 1/2-approximation

>
>
>
>

Local Optima for SFMax (2)

Theorem [Feige, Mirrokni & Vondrak, 2011]

If £:2F = R is normalized, nonnegative and submodular,

and S is a local optimum for the add & drop moves, then
S € argmax{f(T):T € {S,N\ S}},

the better of S and its complement, is a 1/3-approximation

Proof: Let S* be an optimum solution, then

3£(8") 2f(8") + fF(N\S)
f(S'NS") + f(STUS") + fF(N\S)
F(S'NS") + fF(N)+ f(S*\ S)
FS*) + f0)+ F(N) > f(57) QED

Theorem. If, in addition to the assumptions of the preceding
theorem, f is also symmetric then S’ is a 1/2-approximation

>
>
>
>

Proof:

Local Optima for SFMax (2)

Theorem [Feige, Mirrokni & Vondrak, 2011]

If £:2F = R is normalized, nonnegative and submodular,

and S is a local optimum for the add & drop moves, then
S € argmax{f(T):T € {S,N\ S}},

the better of S and its complement, is a 1/3-approximation

Proof: Let S* be an optimum solution, then

3£(8") 2f(8") + fF(N\S)
f(S'NS") + f(STUS") + fF(N\S)
F(S'NS") + fF(N)+ f(S*\ S)
FS*) + f0)+ F(N) > f(57) QED

Theorem. If, in addition to the assumptions of the preceding
theorem, f is also symmetric then S’ is a 1/2-approximation

>
>
>
>

Proof: N\ S’ is also a local optimum, so

2£(8") =)+ FIN\S)

Local Optima for SFMax (2)

Theorem [Feige, Mirrokni & Vondrak, 2011]

If £:2F = R is normalized, nonnegative and submodular,

and S is a local optimum for the add & drop moves, then
S € argmax{f(T):T € {S,N\ S}},

the better of S and its complement, is a 1/3-approximation

Proof: Let S* be an optimum solution, then

3£(8") 2f(8") + fF(N\S)
f(S'NS") + f(STUS") + fF(N\S)
F(S'NS") + fF(N)+ f(S*\ S)
FS*) + f0)+ F(N) > f(57) QED

Theorem. If, in addition to the assumptions of the preceding
theorem, f is also symmetric then S’ is a 1/2-approximation

>
>
>
>

Proof: N\ S’ is also a local optimum, so
2/(8) = fS)+FINNS) = f(S'NS)+ [(N\S)NS)

Local Optima for SFMax (2)

Theorem [Feige, Mirrokni & Vondrak, 2011]

If £:2F = R is normalized, nonnegative and submodular,

and S is a local optimum for the add & drop moves, then
S € argmax{f(T):T € {S,N\ S}},

the better of S and its complement, is a 1/3-approximation

Proof: Let S* be an optimum solution, then

3£(8") 2f(8") + fF(N\S)
f(S'NS") + f(STUS") + fF(N\S)
F(S'NS") + fF(N)+ f(S*\ S)
FS*) + f0)+ F(N) > f(57) QED

Theorem. If, in addition to the assumptions of the preceding
theorem, f is also symmetric then S’ is a 1/2-approximation

>
>
>
>

Proof: N\ S’ is also a local optimum, so
2/(8) = fS)+FINNS) = f(S'NS)+ [(N\S)NS)
> f(S*)+ f(0)

Local Optima for SFMax (2)

Theorem [Feige, Mirrokni & Vondrak, 2011]

If £:2F = R is normalized, nonnegative and submodular,

and S is a local optimum for the add & drop moves, then
S € argmax{f(T):T € {S,N\ S}},

the better of S and its complement, is a 1/3-approximation

Proof: Let S* be an optimum solution, then

3£(8") 2f(8") + fF(N\S)
f(S'NS") + f(STUS") + fF(N\S)
F(S'NS") + fF(N)+ f(S*\ S)
FS*) + f0)+ F(N) > f(57) QED

Theorem. If, in addition to the assumptions of the preceding
theorem, f is also symmetric then S’ is a 1/2-approximation

>
>
>
>

Proof: N\ S’ is also a local optimum, so
2/(8) = fS)+FINNS) = f(S'NS)+ [(N\S)NS)
> f(SH)+f(0) > f(5% QED

Approximation Algorithms for SFMax

Approximation Algorithms for SFMax

Combining with MLS (for polytime) we get

> a (% — €)-approximation for SFMax with a normalized

nonnegative objective, and

Approximation Algorithms for SFMax

Combining with MLS (for polytime) we get

> a (% — €)-approximation for SFMax with a normalized

nonnegative objective, and

> a (% — €)-approximation if it is also symmetric

Approximation Algorithms for SFMax

Combining with MLS (for polytime) we get

> 2 (% — €)-approximation for SFMax with a normalized

nonnegative objective, and
> a (% — €)-approximation if it is also symmetric

» matches the (5 + €) inapproximability for Sym-SFMax

Approximation Algorithms for SFMax

Combining with MLS (for polytime) we get

> 2 (% — €)-approximation for SFMax with a normalized

nonnegative objective, and
> a (% — €)-approximation if it is also symmetric

» matches the (5 + €) inapproximability for Sym-SFMax

Approximation Algorithms for SFMax

Combining with MLS (for polytime) we get

> 2 (% — €)-approximation for SFMax with a normalized

nonnegative objective, and
> a (% — €)-approximation if it is also symmetric

» matches the (5 + €) inapproximability for Sym-SFMax
Buchbinder, Feldman, Naor & Schwartz (2012): a randomized,
linear-time, greedy-like algorithm which is a %—approximation

> therefore best possible for SFMax

Approximation Algorithms for SFMax

Combining with MLS (for polytime) we get

> 2 (% — €)-approximation for SFMax with a normalized

nonnegative objective, and
> a (% — €)-approximation if it is also symmetric

» matches the (5 + €) inapproximability for Sym-SFMax

Buchbinder, Feldman, Naor & Schwartz (2012): a randomized,
linear-time, greedy-like algorithm which is a %—approximation

> therefore best possible for SFMax

Other recent approximation results for monotone and
non-monotone SFMax subject to a variety of constraints

> one or several knapsacks, matroidal constraints, ...

Additional References (1)

» Angles d’'Auriac, Jean -Christian, Ferenc Igléi, Myriam Preissmann, and Andras
Sebé, 2002. “Optimal cooperation and submodularity for computing Potts’
partition functions with a large number of states” J. Phys. A35 6973-6983.

» Baiou, Mourad, Francisco Barahona, and Ridha Mahjoub, 2000. " Separation of
Partition Inequalities” Math. of OR 25 243-254.

» Buchbinder, Niv, Moran Feldman, Joseph Seffi Naor, and Roy Schwartz, 2012.
“A tight linear time (1/2)-approximation for unconstrained submodular
maximization” FOCS 2012 649-658.

» Feige, Uriel, 1998. “A threshold of In n for approximating Set Cover” J. ACM
45 634—652.

» Feige, Uriel, Vahab S. Mirrokni, and Jan Vondrak, 2011. “Maximizing
non-monotone submodular functions” SIAM J. Comput. 40(4) 1133-1153.

» Frank, Andrds, and Eva Tardos, 1988. " Generalized polymatroids and
submodular flows” Math. Prog. 42(1-3) 489-563.

» Goemans, Michel X., and José A. Soto, 2013. “Algorithms for Symmetric
Submodular Function Minimization under Hereditary Constraints and
Generalizations” SIAM J. Discr. Math. 27(2) 1123-1145.

Additional References

» Goldschmidt, Olivier, and Dorit S. Hochbaum, 1994. “A polynomial algorithm
for the k-cut problem for fixed k" Math. of OR 19(1) 24-37.

» Minoux, Michel, 1978. “Accelerated greedy algorithms for maximizing
submodular set functions” Optimization Techniques (8th IFIP TC 7
Optimization Conference, Springer) 234-243.

» Nagamochi, Hiroshi, and Toshihide Ibaraki, 1998. “A note on minimizing
submodular functions” Info. Proc. Letters 67 239-244.

» Nagamochi, Hiroshi, and Toshihide Ibaraki, 2000. “A fast algorithm for
computing minimum 3-way and 4-way cuts” Math. Prog. 88(3) 507-520.

» Okumoto, Kazumasa, Takuro Fukunaga, and Hiroshi Nagamochi, 2010.
“Divide-and-Conquer Algorithms for Partitioning Hypergraphs and Submodular
Systems” Algorithmica 62(3-4) 787-806.

» Zhao, Liang, Hiroshi Nagamochi, and Toshihide Ibaraki, 2005. "Greedy splitting

algorithms for approximating multiway partition problems” Math. Prog. 102(1)
167-183.

Short Course on Submodular Functions
Part 2: Extensions and Related Problems
Session 3: Submodularity in Vector Spaces

S. Thomas McCormick and Maurice Queyranne
Sauder School of Business, UBC

Ra.r ro{s v hn TFPelles (e~ n»:_S(ou:,-. Lq_f'('?a) ool M v ageble fMITJ{emmT
rhonné (an “poset’) (L, =) el gue, pour s afel il vt
. ne ',Lm FJ?L‘Z Loene Supelieuns. Communns OV L, le 40 L (ou S‘u—r;) do a o b
(0 g, e Jotn of mamd b)) clol & dire pun g Elémet p=avbel
el g A ED, Lo o pour Touw™ Ce L fel g ace wbsc o
AT aven L &C
v ef wne plw geande borne fnfelriene Commmme anl, ('tafimum (ou nf) de ool
(*Ee meet of & wd 0):anb ca, anb b o Heel (cea o ceh) 2 ceank
Exerpln s (25,2) awe avb = avh (wniow) o anb=zanh (infewedin)
o (T5 =) o T= (Vi Fow) , T o Llonouudle dey bradios gt Abiien un €,
S ot Llpbolin (a5 b sigeRe pu b)=Vl ponc fis Ly ecE 12k o 4)= V)
V ot b disonclin (Mo logine - Yee € avh(ef=Vim! o o semlemr st
[o masins ke ale) o bie) =)
Ao b Grjonedion (o Lsiqe Heet anble)=Vra: sl ale)eb(g=Vro)
. (ﬂl", 2) % = ot ke paid “pan conpesants,” wey & %< 5 A= td

V er b supremm pan C a5
T pe o 5__3____?“;
(XVQ.)J“: Xj ij:Ww,{xj,jJ:}, -VJ'.:L'J 2 :
R AT FMCM—F;MA: %_,,4'.._ &
("“‘D)'”‘"‘ﬁ‘=”**\{x- Y A=t :5! 4 I
J g J'JJ:,I J =t -) x, 3 RL

On deRir de wlu ('Z,‘{ (784, é) (o ®={o, 1) 122
o fhor yind M(@Aj,é) a~ S@jA; ol gl Gopfebio e
Sous-empenble, m—@?‘anu,» A cR, awee (lovla podcd pon Corposacle, <
Ew mefw@‘u,rw\ ,ue Z* tels g € =u,
(a bel Bf,m - {ne Z4 . €< sw} VW~ T
(C'Z‘/m sons-hedlls Ae ZA, R Aive v sows-trselle de Z A
sGble (on bumi) prm Ly tpendine v A (T, <))
Resnguas: 1) o AR e ws iy bty (o nectinl) xmfw
2) b Blls (25, 2), (T€ =) o (BE, ¢) snt, nafmmcktunX] “iSomorphies”
) o sows-allie Ao (25, 2) pod (i onmeanr o'onseble
8) daw, Foud” Rildes oo (o dguividoosn a2l avb =l ganb=a
FoncdTons Sous-wwdnlotre, dons by Taill, o b wyncs Velnid, ;
Une Eadic 40 L 5R o1 seus- noddaie 2
(((av%) -(—/L[ﬂt/tl) éj[a)—e,fféj /l/a,éé[_
Canaclerisafim fe (0 Sous - o dida &
e ZA 50 (L, <) o van oo Beills e ZH LrL2R o s s dulae
poi ehe aaTsfalt [yeopnihs’ o Vnoalnens Aecruissanfs .
/f(»ue +ej)- [(n+e;) </€[x+&,_) -£0) M Tl g e f xrege L

o~ e _(O, ,0,1 0. 0) o b (¢ vedun wmnlfai,
L rof'ra_

exancite ?mw/bf‘ Cuﬂi eTM I/A.(MA-C@

Ao RY: L RASR difleatialle o sous - mdnloine
= ;}‘ ,{["- o Mh-WiSSQV\E . X /\7[(' :,fJ‘

J
g6y <o A

< D ?-'xd

exancite Aonver cette Cﬂ\vv: vel emce

RJ'MM.]“ H C-LH-Z AMM-\'&U. Couflﬁ‘r::._\ VV\-DL..E,__ quq_ [q Douns 'W"M[ﬂ/\: t_’h,_- @'_3_
o{,\‘go'u,wc a {a Qn's,(_,. (r\ Corveel & S Ao ‘6\ Cou\.caw\'&". wé#d'
£ RASMR , dous A Aiffat Ll

¢ Sovs wodilac. po0 son Hessten 'H_t(u_) —(/—,f[%> __,,

J=t-
o pov'f'_uf')tem'(U\M e TZ\"“\‘—; WNon- ’(Ajow quﬂ OﬂqTV\DD\ f” V;P

(I/\M mer.a.'tl tho{lypvvl(/-\t Ae, e dia O ,27‘--2_:((y.))

o tonvnce art A€, HIBY 7 potl] peoni- Aifid &"9) propnelss A foui
o Comcowe Ml, ’V"frﬂz*/ "‘H,f(’") ‘J—P”{ bovnliie 'H,f(u.)

SFMin daro e bils dinorets
Lot downes L 2ue 7,4
o1 By @ 0w modidaile | Aowmed pn v raike Ao velewn
S FMin(B,): vw{/c(%) e 2% @éxéu}.
o Potoom nirods e problie oo Toups prlymmi (polynmel en A, Lo dcll,
o(’r"\—a;vr de € o of dvme borme 47%‘&«“ M > wane { VOIREY: Bw}) 4
. Lo /w’r,mm wr- NOAn
Propenilin . ﬁfﬁ%p\.m pon Azodoa SEM (8,) A=t wlbisa
o oing Z (ue=Le+1), wm mowbre psendo-polynoricd, f'appals
i llovwd A v-»&m
Prenve : TZJTZ,?@«J-%\ pipoatte { = Z Lo AR s By, o,
P = Z_/f (rc) w chage £t {eulbw_f U)o R e pm—mMm
bt oncite © veile cke afficualia,
(omne o biTins . pewsnt"zbe TJO%, 4 BT Comarle toufes L valews

—rou‘ Fowvvl\\l_ hn WA Sen (_g. Some .

2.3.4
[?l/w: rrcfm'se_w\anf,m »Cg\'w\'f L\ sﬁ,ﬁj.v ohvese pu' e le pow

Cloncle do Vel pofomnen [vettn f(o) =l pos Tl neqtlC € By,
AZM, pown 1o Wl Aé)mu. de ot de LZ;I,{L'(’L:) /\-La’h:&_: f‘wm‘:
e Comdonnds ¢ I ue veliwn, Vi € {(",,e‘__“ - q;} 7:4:, p\'ar}’w\wf,t
Aors Pu~Cine /\LYIA:C_ . Llajjn.fl’&ﬂ. PR l'r\Cchq.LL. A aﬁ%da
4 1 2 -
{”’/ﬁ”""ﬁ'“” «{ =1+ %;ia—' “ ,fzr,fa *%—L.i,;_ o~
ﬁS(V) =1 p o f b, Loy Crmdouwns, J:L..,(g velbiu, v,
0”"’4 fnt }{z(\,d):o ,/r;fz'(vu)_—i.)u‘—
R R

MJMM{/{"CK) nebB, - {X.EB(’H g # Vi)] ®@ED

R-I.-MM1W-:- wkmjwmr fuTL‘Yw. s’ vane borne ,ov?,(r\'m Ae (\—-_Al__‘)
Sun '{ ir/mvl'w»u&c/ As ST__MH [B{“) (,Mjw_ i z0

Vetei von slynlbiane promto-polomonict prn S (8,
con ABwit U e powstim umodns de Chegue comalounds
%= b5 « Zw*j.k A wWp=Use) o e
Wil 2 Ypa Z o 2 Y5,
a0l E = [(oK) jeted, Kby | L parsdte diy Toicn, Jo enm uainll g
T-{ssE:(k)esS Shk-)eS Ao d, Jhzl..w;- j
¢$: 3 — Bf,u ol X = Yl(s) * pom covwrebm&
zJ-=QJ—+|{k:(j,k)eS}'l
F:jﬂoﬂf N S @ (cad, F(s) - ;C(c(:(s)))

71—4 jjk e’IB Do "5&4'1‘-

, 2.3.5
XX CLte ! UW}\'& olw

RSTREP A G N poan L "wrton of 8 iSmedio, done mn ownemn o tapenbla
e e e biedion, o ST & ¢(s) s 9(T)

done (& n IﬂMmf‘al's‘m{ AL (Sons-) et i
e F ool vt Bondion nows-modiduine 2 Llamneoun d 'ons okt 5

et o € wjm:ugi : neBCM'i = ((_,[x) € MSMH{F(S) -.Se';\]
O rw/T oLw«_ e o wdre SFM:M(@,{"_\> e @7,; ‘Ps-buo‘n-rabﬂ-ﬁ_“ﬂ
<A N:;a'e\/d-&_ SFML':« FM A jm:)\l"\ 'F'_ oA -’(Iﬂhmﬂm OZIMLMA(-J'; ?:

Rée-c:fu«.u. (0{% /(a (Mc‘:_ o(.(qﬁ'xq,t«c’e owec Lﬂe Q?fbuc\ws>
[22] K. Mureta (2003) Disowls Gonver Amalysis (Lvre)

	Mini-course SFOpt MQ slides
	Mini-course SFOpt MQ slides Wed
	Sous-modularite dans Ies espaces vectoriels

