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A partition P = {Py,..., P;} of E satisfies
» ) # P, C E for all 4,
» P,NP;=0foralli#j, and
> UL Bi=F
for some k € {1,...,|E|} (P is a k-way partition)

Given a part cost function f : 28 — R, the cost of a partition P is

|P|

fP)=>f(P)
i=1

Optimum Partition Problems:
e given F and f
e find a partition P with minimum cost f(P)
(subject to possible restrictions on the number k = |P| of parts)
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Applications

Set Partitioning

» not all subsets are feasible
= let f(S) = 400 whenever S is not feasible

» many applications, e.g., airline crew scheduling, vehicle
routing, etc.
Facility Location/Allocation
» F is a set of clients to be served
» f(S) is the minimum cost to serve subset .S
(choosing a best location for serving S)
Clustering
» F is a set of items to be classified

> f(S) is the (negative of) the value of cluster S, reflecting
o the similarities within S, and
o the dissimilarities with N \ S
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» F is a set of modules to be located on a k-layer chip
= find a k-way partition of F/

» f(5) is the cost of splitting netlist S

In most applications, there are additional constraints:

> on the parts F;
o e.g., VLSI: each part must fit on one layer

» other “complicating” constraints
o e.g., Set Partitioning: aircraft types, home bases
Most of these problems are NP-hard
» many are hard to approximate
> just finding feasible solutions can be NP-hard

Yet, some important and useful special cases can be solved
efficiently when the cost function f is submodular
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Examples with Submodular Part Costs

Some important and useful special cases can be solved efficiently
when the cost function f is submodular:

Clustering
The negative of total (pairwise) similarity

1(8) == 3 si.k)

j,keS

is submodular when s > 0 (Why?)

VLSI Circuit Design
Given hypergraph (E, H) with edge weights wy, (h € H), the
hypergraph cut function

F(8) =Y {wn : hnS#0 and h\ S # 0}

is submodular when w > 0 (Why?)
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Optimum Unconstrained Partitions

The Dilworth truncation fP of a set function f : 2F — RY is the
set function P : 2F i RV defined by

D, Jminperay f(P) if A#0
= {0 if A=

where TI(A) is the set of all partitions of set A

Set partitioning formulation: w.l.o.g., assume A = F
1 ifSebp;

Let xg =
0 otherwise

fP(E) = min Ysceszg J(S) s
x>0

T integer
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LPs and Dilworth Truncation

LP relaxation:

(P) min ngE:s;s(z) f(S)zs

x>0
Its dual:
(D) max Zyj
JjEE

st. y(S) <f(S) VSCE, S£0

This dual is almost linear optimization on a submodular
polyhedron (solvable by the Greedy Algorithm seen yesterday)
e except that here we may have f(()) <0
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What if f(0)) > 07

If f is submodular and f(@) > 0 then: AN B = () implies
f(AUB) < f(A)+ f(B)

that is, f is subadditive

If fis subadditive, then fP = f
e except perhaps that () =
and we are done.

0

Hence we now consider the general case where we make no sign
restriction on f(())
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A General Greedy Principle

(Edmonds, 1970; Frank & Tardos, 1988)

Given polyhedron P C R¥ and w € R, assume w.l.o.g. that
E={e1,...,en} with we, > we, >+ > we, >0
e i.e, F is totally ordered by < as: e} <ex <--- < ey,
Recursively define y& € RF as follows
> forj=1,...,n let
y& =max{y,, 3y e P Vi<j vy, =y}
This ensures that the resulting greedy solution y© € P
e at the expense of solving n optimization problems
If P=P(f)={y e RF : y(S) < f(S) VS C E, S # 0} for some
set function f, then the Greedy Principle simplifies to:
> let y“(e1) = f({e1}) and for j =2,...,n let
ye :min{f(A+ej)—yG(A);Age;} (1)

where e ={g€ A:g<e;} ={er,....ej1} forall j=1,....n
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Questions about the General Greedy Principle

Optimality Questions:
> is ¢ an optimum solution to max{wy : y € P}?

» is the corresponding primal solution 2 integer?

Algorithmic Questions:

» can the optimization subroblem (1) be solved efficiently (i.e.,
in polynomial time)?

» if 2 is integer, can the corresponding optimal partition be
recovered efficiently?

We have seen that when f is submodular and normalized (as in
f(0) = 0), the answer to all 4 questions is YES!
e in particular, subproblem (1) is solved as

yg = min{f(A—i—ej) —y%(A): AC ef} = 63’11 - ef

(i.e., optimum subset A = ¢')
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Uncrossing Lemma

Consider the “general submodular case”, where f is submodular
and f(0) is arbitrary

Let A; be an optimum subset in subproblem (1) and B; = A; +e¢;
o s0 y%(B;)) = f(B))

Uncrossing Lemma: If B, N B; # () for i < j then

y“(BiU Bj) = f(Bi U B))

Proof.
Since y© € P we have:

f(B;jUB;) < [f(Bj)+ f(Bi)— f(BiNBj)
< y%(B)) +y“(B;) —y“(B; N B))
= y“(BjUB)
< f(BjUB)

hence all these inequalities must hold as equalities O
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General Submodular Case: Optimality

By the Uncrossing Lemma, at each step of the Greedy Algorithm,
we may replace the current set B; with its union with all earlier
sets that it intersects, and delete all these earlier intersected sets
At the end, the surviving sets, say, P, ..., P, form a partition

of B and y¢(E) = Y, (P)

This implies that the primal solution 2 defined by

xG(S) =

1 if § = P, for some i;
0 otherwise

is feasible for (P) and the primal and dual objective values
n
> F(S)zg =D of
S j=1

Hence both y“ and 2 are optimal, answering both Optimality
Questions, and giving an efficient construction of an optimum
partition P = (P, ..., Py)
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Algorithmic Questions; Submodularity of Dilworth

Truncation

The optimization subproblem (1) is SFMin

Therefore, for any subset S C E, the value 7 (S) of the Dilworth
truncation can be obtained in polynomial time, by solving |S| — 1
submodular minimization problems

Submodularity of the Dilworth Truncation

Proposition (Lovasz 1983) The Dilworth truncation of a
submodular function is submodular

Proof: Let f be submodular. Recall that f”()) =0
It suffices to prove: for all S C E, u,v € E\ S

PSS +u+v)— fP(S+u) < fP(S+0v) - fP(S)?

o If S =0 then fP(u+v) < fP(u) + fP(v) (Why?)
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Else, i.e., S # (), number the elements in E so S = eij_l, €it] = U
and e; o2 = v and apply the Greedy Algorithm: we have

ye(T) = fP (1) for T =S5, S+u, and S +u+wv
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Submodularity of the Dilworth Truncation (continued)

Else, i.e., S # (), number the elements in E so S = eij_l, €it] = U
and e; o2 = v and apply the Greedy Algorithm: we have

ye(T) = fP (1) for T =S5, S+u, and S +u+wv

The Greedy Algorithm applied to S + v just after S produces 7
satisfying QJG = yJG forall j €S and forsome AC S

FPS +0) = fP(S) =37 = f(A+v) = §9(A)

Then:
fP(S+u+v)— fP(S +u)

-
= min{f(B+v)—y%B): BC S +u}
F(A+v)—y%(A

IN
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Else, i.e., S # (), number the elements in E so S = eij_l, €it] = U
and e; o2 = v and apply the Greedy Algorithm: we have

ye(T) = fP (1) for T =S5, S+u, and S +u+wv

The Greedy Algorithm applied to S + v just after S produces 7
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Else, i.e., S # (), number the elements in E so S = eij_l, €it] = U
and e; o2 = v and apply the Greedy Algorithm: we have

ye(T) = fP (1) for T =S5, S+u, and S +u+wv

The Greedy Algorithm applied to S + v just after S produces 7
satisfying QJG = yJG forall j €S and forsome AC S

FP(S+v) = fP(8) =35 = F(A+v) —§°(4)
Then:
fP(S+u+v)— fP(S +u)
v
min{f(B 4+ v) —y“(B): BC § + u}
f(A+v) —y%(4)
FP(S +v) = fP(9)

IAN I

QED
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An Application in Statistical Mechanics

Asymptotics of Potts Partition Functions
(Anglés d'Auriac & al., 2002)

Statistical Mechanics ‘ Graph Theory
Lattice (V, E) Graph G = (V, E)

Sitei e V Node
Bond ij € Edge
Coupling K;; Edge weight
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Statistical Mechanics ‘ Graph Theory
Lattice (V, E) Graph G = (V, E)

Sitei e V Node
Bond ij € Edge
Coupling K;; Edge weight

Given are: the lattice, the couplings K > 0, and integer ¢ > 2
(number of spin values)

A variable o; € {0,1,...,qg — 1}, called a spin, is associated with
eachsite i € V

Energy of configuration o = (01,...,0,): E(0) = ZijeE Kijdo,0;
1 ifa=05b

where the Kronecker symbol 64, = ]
0 otherwise
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Z(K) = exp(E(0))
Letting v;; = exp(K;;) —1 > 0, we have
exp(E(0)) =[] exp(Kijdo,o;)
ij€EE

— H (14 (exp(Kyj) — 1) b5,0,)
ij€EE

= Z H Vij 601'0']'

Fe2F ijeF
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Potts Partition Function (2)

Z(K) = > Y. ] vibow,

o Fe2F ijeF

- ¥ % Mwie

Fe2E o ijeF

= 3 O ] vy

Fe2E ijeF

where nc(F) is the number of connected components of
e Recall that nc is a supermodular function

Let a;; = log, vy so Z(K) = peor ")
where h(F) = ne(F) + 325 p @i
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Asymptotics of Potts Partition Function

When ¢ goes to infinity, Z(K) — Nq"" where N is the number of
optimum sets F' and

h* = h(F) = F)+ i
s AP = g | () + 3

Since h is supermodular, finding the asymptotic exponent h* is
SFMin (where the ground set is the edge set E)

e Can we do better than general SFMin?
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Two Simple Observations

1. All ij € E with o;; < 0 may be eliminated
(they cannot belong to any optimum subset)
= assume o > 0
2. Let F* be an optimum subset and P, ..., P, the connected
components of G* = (V, F™*),
then we may add to F™* all edges in E within each P;

Therefore WEF*) = a(E) = S8 f(P)
where f: 2V — R, defined by f(S) = 3 (ZjeS,kg_iS ajk> -1,
is the cut function of the graph G = (V, E) with edge “capacities”

« > 0, minus the constant 1
eso, f(0)=-1<0
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A Faster Algorithm

Thus, finding h# is equivalent to finding the value fP (V) of the
Dilworth truncation of f
e Note: the ground set is now V/, the node set

The minimizations at each step of the Greedy Algorithm can be
performed efficiently by network flow techniques (minimum
s,t-cuts in an associated network)

The running time is O(|V |2 |E|)
e much faster than general SFMin on the old ground set |E|
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Optimum Bipartition

Find a bipartition P = { Py, P} of E with least total cost f(P)?

Equivalently, find a proper subset S (i.e., ) # S C E) which
minimizes f(S) + f(E\ S).

A set function g : 2% — R is symmetric iff
g(S)=g(E\Y) forall SCE
The function g defined by g(S) = f(S) + f(E\ S) is:

e symmetric; and
e submodular if f is submodular
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Sym-SFMin

If g is symmetric and submodular then, for all S C FE

9(8) = 1/2(9(5) +9(E\9))
> 1/2 (9(E) +9(0))
9@) = 9(E)

hence (), and also E, minimize g.

The Optimum Bipartition problem with submodular part costs, is
equivalent to the Symmetric Submodular Minimization
problem (Sym-SFMin):

» given a symmetric submodular function ¢ : 2¥ — R

» find a proper subset S of E which minimizes g(S)
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Proposition Assume that f is normalized and submodular, and
that there exists a proper subset A C E such that

f(A) = F(A) + f(A) — f(E) satisfies f(A) = 0= f(0) = f(E).
where A= E \ A. Then f is decomposable as
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Sym-SFMin and Decomposition

Proposition Assume that f is normalized and submodular, and
tuhat there exists a proper subset A C Evsuch that y y
F(A) = F(A) + f(A) — f(E) satisfies f(4) = 0= f(0) = f(E).
where A= E \ A. Then f is decomposable as
f(B)=f(BNA)+ f(BNA) foral BCE
Proof: Since f is normalized and submodular
J(B)=f((BAA)U(BAA) < [(BNA)+ [(BNA)

and

f(B) = f(BNA) - f(BNA)
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Sym-SFMin and Decomposition

Proposition Assume that f is normalized and submodular, and
that there exists a proper subset A C E such that

f(A) = F(A) + f(A) — f(E) satisfies f(A) = 0= f(0) = f(E).
where A= E \ A. Then f is decomposable as

f(B)=f(BNA)+ f(BNA) foral BCE
Proof: Since f is normalized and submodular
f(B)=f((BNAYUBNA) < f(BNA) + [(BNA)

and

f(B) = f(BNA) - f(BNA) f(BUA) - f(A) - f(BNA)

v v
g
C
-
N
C
2
|



A proper subset A of E such that
f(B)=f(BNA)+ f(BNA) foral BCE

is called a separator of f.



A proper subset A of E such that
f(B)=f(BNA)+ f(BNA) foral BCE
is called a separator of f.

Example: Let X be a random vector indexed by F



A proper subset A of E such that
f(B)=f(BNA)+ f(BNA) foral BCE
is called a separator of f.

Example: Let X be a random vector indexed by F
and let X denote the subvector indexed by any subset B C E



A proper subset A of E such that
f(B)=f(BNA)+ f(BNA) foral BCE
is called a separator of f.

Example: Let X be a random vector indexed by F
and let X denote the subvector indexed by any subset B C E
If X4 and X4 are independent,



A proper subset A of E such that
f(B)=f(BNA)+ f(BNA) foral BCE
is called a separator of f.

Example: Let X be a random vector indexed by F
and let X denote the subvector indexed by any subset B C E
If X4 and X are independent, then

» for every BC A and C C A, Xp and X¢ are independent



A proper subset A of E such that
f(B)=f(BNA)+ f(BNA) foral BCE
is called a separator of f.

Example: Let X be a random vector indexed by F
and let X denote the subvector indexed by any subset B C E
If X4 and X are independent, then

» for every BC A and C C A, Xp and X¢ are independent

» Such a subset A is a separator of the entropy function for X



A proper subset A of E such that
f(B)=f(BNA)+ f(BNA) foral BCE
is called a separator of f.

Example: Let X be a random vector indexed by F
and let X denote the subvector indexed by any subset B C E
If X4 and X4 are independent, then

» for every BC A and C C A, Xp and X¢ are independent

» Such a subset A is a separator of the entropy function for X

The set of all separators of f is closed under intersection, union,
and complementation



A proper subset A of E such that
f(B)=f(BNA)+ f(BNA) foral BCE
is called a separator of f.

Example: Let X be a random vector indexed by F
and let X denote the subvector indexed by any subset B C E
If X4 and X are independent, then

» for every BC A and C C A, Xp and X¢ are independent

» Such a subset A is a separator of the entropy function for X

The set of all separators of f is closed under intersection, union,
and complementation

» Hence, the separators partition F
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A pair (u,v) € E x E (u # v) is a pendent pair for (symmetric)
set function g if

g({u}) =min{g(S): VS C Ewithu e Sandv ¢S}

A set U C E separates u and v if
»ucUandv ¢S, or
»udUandoves

e equivalently, if |[S N {u,v}| =1

If (u,v) is a pendent pair for symmetric function g
and S* is a proper subset minimizing g then:

> either S* separates u and v, and we may choose S* = {u}

> or else u and v are on the same side of S* and we may
contract w and v into a single element
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A Contraction Algorithm

(Q 1995, 1998; generalizing Nagamochi & Ibaraki, 1992)

Assume we can efficiently find a pendent pair for any symmetric
function in a class closed under contraction, then we can find a
proper subset S* minimizing ¢ after finding and contracting n — 1

pendent pairs (ug,v1), (u2,v2), ..., (Up—1,Vn—1):
Indeed, letting U; be the original subset of E corresponding to u;
(for every iteration i = 1,...,n — 1), then

e choose S* as an U; with least value g(Uy;)
Contracting u and v amounts to replacing
> the ground set E with £, , = (E —u —v) + w
» the function g with g, : 2P4 —+ R defined by
g(S—w)+u+v) fuwels
Guw(S) = .
g(9) otherwise

e If g is symmetric submodular then it remains so after contraction
e ... hence it remains to prove the existence of a pendent pair,
and to efficiently find one. ..
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Finding a Pendent Pair

E = (a1, az,...,a,) is in Maximum Adjacency (MA) order if, for

alli=1,...,n—1, a;41 satisfies
f(Ai+aiz1) — f({ais1}) = min {f(A4; +b) — f({b}) : b € E\ A}
where A; = {a1,...,a;}

> a is arbitrary, and then ao, ..., a, are sequentially

determined by this condition

Lemma: If f is submodular, then for all i € {1,...,n — 1},
be E\A;and SC A1,  f(A)+fb) < f(AN\S)+ f(S+Db)
> i.e., for every b not in A;, {b} is an optimum subset
separating b from a; for the symmetric function derived from
the restriction of f to A; +b

Corollary: If f is submodular, then (a,,a,—1) is a pendent pair
for its symmetric function g;
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Pendent Pair Lemma

Proof of: F(A) + f(b) < f(A\S)+ f(S+Db)
forallie{l,...,n—1}, be E\ A;and SC A;_
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» Else j <k —1, thusaj_1 € S and none of vj,...,v; isin S
Since {vj,..., v} = Ax \ A;—1, we have,

FARNS) + f(S+u) = F((A4j-1\S) U (Ap \ Aj1)) + f(S +u)

> f((Aji—1 \ S) U (A \ Aj-1))
+ f(A45) — f(A4;\ 9) + f(u)
> f(Ar) + f(u) QED

The overall Sym-SFMin algorithm requires
» n —1i EO calls to find a;+1 (if we precompute all f({u}))
» O(n?) EO calls to find a MA order ay,as,...,a,

» O(n®) EO calls to find a proper subset minimizing g
and O(n?) other operations

e Purely combinatorial, and faster than (current) general SFMin
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Sym-SFMin: Examples and Extensions

Examples:

» Global MinCut in a Graph (Nagamochi & Ibaraki, 1992),
where f is a graph cut function
» O(|V|?1og |V|) operations
» 2-Layer VLSI Circuit Design (Klimmek & Wagner, 1996),
where f is a hypergraph cut function
» O(|V|?1log |V| + |V||H|) operations

Extensions: Minimizing
» posimodular functions (Nagamochi & Ibaraki, 1998), i.e.,
functions satisfying
A+ f(B) = f(A\ B) + f(B\ A) forall A,BCV
» symmetric submodular function subject to hereditary family
constraints (Goemans & Soto, 2013): min{f(S): S € 7}
where Z C 2V satisfies, for all A BCYV,
0AAcCcBel = AcT



Optimum Proper Partition

(Baiou, Barahona & Mahjoub, 2000), motivated by a separation
problem for certain connectivity constraints



Optimum Proper Partition

(Baiou, Barahona & Mahjoub, 2000), motivated by a separation
problem for certain connectivity constraints

Find a proper partition P of E i.e., of size |P| > 2, with minimum
total cost f(P)?



Optimum Proper Partition

(Baiou, Barahona & Mahjoub, 2000), motivated by a separation
problem for certain connectivity constraints

Find a proper partition P of E i.e., of size |P| > 2, with minimum
total cost f(P)?

For any set function f, if P = {Py, P5,..., P} is optimum then:



Optimum Proper Partition

(Baiou, Barahona & Mahjoub, 2000), motivated by a separation
problem for certain connectivity constraints

Find a proper partition P of E i.e., of size |P| > 2, with minimum
total cost f(P)?

For any set function f, if P = {Py, P5,..., P} is optimum then:
e { P} itself is an optimum partition of P;



Optimum Proper Partition

(Baiou, Barahona & Mahjoub, 2000), motivated by a separation
problem for certain connectivity constraints

Find a proper partition P of E i.e., of size |P| > 2, with minimum
total cost f(P)?

For any set function f, if P = {Py, P5,..., P} is optimum then:
e { P} itself is an optimum partition of P, and thus
f(P1) = fP(P1), and



Optimum Proper Partition

(Baiou, Barahona & Mahjoub, 2000), motivated by a separation
problem for certain connectivity constraints

Find a proper partition P of E i.e., of size |P| > 2, with minimum
total cost f(P)?

For any set function f, if P = {Py, P5,..., P} is optimum then:
e { P} itself is an optimum partition of P, and thus

f(Py) = fP(P1), and
o {P5,..., P} is an optimum partition of £\ P;



Optimum Proper Partition

(Baiou, Barahona & Mahjoub, 2000), motivated by a separation
problem for certain connectivity constraints

Find a proper partition P of E i.e., of size |P| > 2, with minimum
total cost f(P)?

For any set function f, if P = {Py, P5,..., P} is optimum then:
e { P} itself is an optimum partition of P, and thus
f(Py) = fP(P1), and
o {P5,..., P} is an optimum partition of E'\ P; and thus
f(P2) + -+ f(Py) = fP(E\ 1)



Optimum Proper Partition

(Baiou, Barahona & Mahjoub, 2000), motivated by a separation
problem for certain connectivity constraints

Find a proper partition P of E i.e., of size |P| > 2, with minimum
total cost f(P)?

For any set function f, if P = {Py, P5,..., P} is optimum then:
e { P} itself is an optimum partition of P, and thus
f(Py) = fP(P1), and
o {P5,..., P} is an optimum partition of E'\ P; and thus
f(P2) + -+ f(Py) = fP(E\ 1)

Hence it suffices to find an optimum bipartition of the Dilworth
truncation fP



Optimum Proper Partition

(Baiou, Barahona & Mahjoub, 2000), motivated by a separation
problem for certain connectivity constraints

Find a proper partition P of E i.e., of size |P| > 2, with minimum
total cost f(P)?

For any set function f, if P = {Py, P5,..., P} is optimum then:
e { P} itself is an optimum partition of P, and thus

f(Py) = fP(P1), and
o {P5,..., P} is an optimum partition of E'\ P; and thus

f(P2)+ -+ f(Pe) = fP(E\ P)

Hence it suffices to find an optimum bipartition of the Dilworth
truncation fP

= When f is submodular, O(n*) EO’s suffice
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What is the computational complexity of finding an optimum
k-way partition with submodular part cost function f (given by a
value oracle)?
» NP-hard when k is part of the input, even for graph cut
functions (Goldschmidt & Hochbaum, 1994)
» When f is submodular (and normalized) an optimum 3-way
partition can be found in polytime (Okumoto & al., 2012)
» When f is symmetric and submodular an optimum 4-way
partition can be found in polytime
» e.g., based on (Nagamochi & Ibaraki 2000) and using
optimum submodular-costs 3-way cuts
> ...see Thursday afternoon talk for related complexity results
and open questions
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Optimum k-Way Partitions: An Approximation Algorithm

Assume that g is symmetric, submodular and nonnegative
(9(S) > 0 for all S C E)

Greedy Splitting Algorithm:
1. Let P={A;} where A; = FE
2. Forj=2,...,k
» Let A; (i € {1,...,5 — 1}) be a subset whose optimum

bipartition {By, By} least increases the total cost
» Replace A; in P with By and add B; to P

This requires 2k — 3 Sym-SFMin,
= O(kn3) EQ’s, and O(kn?) other operations

Theorem: [Q 1999; Zhao, Nagamochi & Ibaraki 2005]

If g is symmetric, submodular and nonnegative, then (for every

k > 2) the Greedy Splitting Algorithm produces a k-way partition
with total cost at most 2 — % times the optimum
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Maximizing an oracle-given submodular function f
» easy if f is a polymatroid function, i.e., also monotone
(nondecreasing)

> take the whole set I
» (works for any monotone set function)

» NP-hard for (non-monotone) submodular f
» example: MaxCut
We shall be interested in approximation algorithms
and two special cases:
1. Maximizing a polymatroid function subject to a cardinality
constraint

2. Maximizing a (non-monotone, nonnegative) submodular
function
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Given m (feasible) subsets E1, ..., E,, of ground set E,
define the cover function f: 2" — R as f(5) = |U,cq Eil
forany SCV ={1,...,m}
> the total number of elements of E covered by the subsets in
(indexed by) S

» fis a polymatroid function (Why?)
Given integer k € V, Max k-Cover is max{f(S) : S CV, |S| <k}

» maximize the total number of elements covered by at most k
subsets

» equivalently: max{f(S):S C E, |S| =k} (Why?)
» NP-hard

» cannot be approximated within a ratio better (larger) than
1—1/e=0.632, unless P = NP (Feige 1998)
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Given a normalized polymatroid function f on E
> hence f is nonnegative
and integer k, let OPT, = max{f(S): S C E, |S| <k}

Greedy Algorithm
Starting with Sy = (), repeat the following greedy step:
fori=0,...,(k—1) let
Siy1 = S; +v; where v; € argmax,cp\g, f(S; + u)
» equivalently, v; yields the largest increment
f(ulS;) = f(Si +u) — f(Si)
Theorem (Nemhauser, Wolsey & Fisher, 1978)
If fis a normalized polymatroid function then the Greedy
Algorithm returns sets S; with values
f(SZ) > (1 - 1/€)OPT1 for all i = 0, e ,k‘
> since Max k-cover is a special case, by Feige's result this is
the best possible approximation guarantee (unless P = NP)
» this guarantee holds at every step i (relative to OPT;)
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We shall prove a more general result, but here is where the
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The increment at greedy step ¢ is at least that large, hence
f(Siv1) — £(Si) = £ (OPT, — £(Si))

Equivalently, OPT; — f(SZH) (1— 1) (OPT, — f(5)))

i.e., the gap decreases by a factor > (1 — 1/k) at each step

Since the initial gap OPTy, — f(SO) < OPTk, the final gap
OPT, — 5, < (1 — *) OPTy, < OPTk

and therefore f(S;) > (1 —1) OPT; > 0. 632 OPTy
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Theorem (Nemhauser, Wolsey & Fisher, 1978)
If f is a normalized polymatroid function then the Greedy

Algorithm returns sets S; (i = 1,...,n) with values
f(S;) > (1 —e "*)OPT; foralli=0,...,n

v

the approximation guarantee improves with the iteration
(obviously — why?)

v

values ¢ > k may be interpreted as resource augmentation

v

what if we want to guarantee at least 0.95 OPT;?
» 0.95=1—¢€'/* gives i = [~kIn(1 — 0.95] < 4k
» (and for 0.999, [—kIn(1 —0.999] = 7)

typical practical performance is much better

v
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» Fix S* € argmax{f(S): S CE, |S| <k}, so f(S*) =OPTy
» Assume w.l.o.g., that |S*| =k and let S* = {v},...,v}}

> Let (v1,...,v) be the greedy order chosen by the algorithm
» Then, for all 7 < ¢, the gap

0 = f(S)—f(S) < f(STUS) — f(S:)

k k
= D fISioi 4 vy <Y f51S)
j=1 j=1
< kf(uilS) = k(f(Siv1) = f(Si) = k(0 —dit1)
implying 0iv1 < (1 — %)51 and thus
6 < (1—4)%8 < (1-4)*OPT, < e “*OPTy QED
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Greedy Algorithm: Running Time

» Greedy computes a new maximum n = |V/| times

» each maximum computation requires O(n) comparisons

hence O(n?) time overall

This is not good enough for very large practical instances
> large water networks with many contamination scenarios;
social networks; selecting blogs of greatest influence;
document summarization; etc.
and can be made (much) faster by a simple trick, also based on
submodularity:

Minoux’s Accelerated Greedy (aka, Lazy Selection)

Idea: to reduce the number of function evaluations and of
comparisons, store upper bounds «,, on the increments f(v|S;) in
a priority queue, and only update «, when element v is examined
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Minoux's Accelerated Greedy

» Store the initial increments «,, = f(v|Sp) in a priority queue,
and the iteration index 3, = 0 at which it was least updated
» At iteration %, repeat
» “pop” the top element (largest ), and let u be the new top
» if 8, < i then compute the exact increment a,, := f(v|S;) and
update 8, =i
> if a,, < oy then return v to the queue

until a, > ;v is now selected by Greedy

Validity follows from submodularity, i.e., nonincreasing increments:
as 7 increases, the current \S; also increases, the increments f(v|]S;)
decrease, and thus each «, remains an upper bound on f(v|S;)

In practice, Minoux's trick often yields enormous speedups (over
700-fold) over standard implementation of Greedy, for very large
data sets
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Nonmonotone SFMax

» If f is an arbitrary submodular function (neither
polymatroidal, nor necessarily positive or negative), then
verifying whether its maximum is positive or negative is
already NP-hard

» Therefore, submodular function max in such case is
inapproximable (unless P=NP)

» since any such procedure would give us the sign of the max

» Thus, we will assume that f is non-negative and otherwise
arbitrary submodular

» Feige, Mirrokni & Vondrak (2007, 2011) show that, in the
value oracle model, for every € > 0 a (% + €)-approximation
requires an exponential number of oracle calls

» even if f is known to be symmetric

> We will see a (3 — €)-approximation, also due to Feige & al,

> using O(1n3logn) EO's
» and based on local search (not on a greedy approach!)
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Local Search

» A sequential method that starts at a feasible solution
> e.g., any subset S of the ground set
and tries to improve it by a sequence of (usually, simple)
moves
» e.g., add, or drop, an element to/from the current set S
> |t must be possible, in polytime, to find an improving move or
decide none exists
» Local search methods differ in their search strategy
» simple hill climbing, restarts, “tabu search”, simulated
annealing,. ..
but they terminate with a local optimum, i.e., a feasible
solution that cannot be improved by the available moves
» Two main issues in evaluating a local search method:
> Running time: does it go thru a polynomially bounded
number of steps?
» Solution quality: do we have a performance guarantee?
i.e., how “bad” (in objective value) can a local optimum be?
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Generic Local Search

The neighbourhood N (.S) of a solution is the set of all solutions
that can be reached from S by an available move.

Generic Local Search (“Hill Climbing")

1. Initialization: find a (feasible) solution S

2. While there exists an improving solution ST € N(S) do
S:=8"

3. Output S
If there is a finite number of solutions (and we only accept strict

improvements) then Generic Local Search terminates in a finite
number of steps and outputs a local optimum

» at this point, we can only guarantee finiteness, but not
polynomiality

> in fact, most of these problems are PLS-complete
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A Polytime Version of Local Search

Given € > 0, ST € N(S) is e-improving if its objective value

F(ST) > (1+¢€)f(S) (for a maximization problem)

S is an e-local optimum if f(ST) < (1+4¢)f(S) for all ST € N(9)
> i.e., if it has no e-improving neighbor

Modified Local Search (MLS): given € > 0,

1. Initialization: find a (feasible) solution S

2. While there exists an e-improving solution ST € N(S) do
S:=8*

3. Output S

If f(So) > O then after k iterations the current solution S, satisfies
F(Sk) > (1+ )" £(S0)

= If log(OPT/f(So)) is polynomially bounded (in the instance
input size) then for every fixed € > 0, MLS terminates and outputs
an e-local optimum after at most log(OPT/f(Sp)) / log(1 + ¢)
iterations, i.e. in polytime
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Local Optima for SFMax

Let S C E be a local maximum for the add & drop moves

Lemma
If f: 2E 5 R is normalized and submodular, and S is such a local
optimum then

1. f(R) < f(S) forall RC S, and

2. f(T) < f(S)forall T DS

Proof by induction on d = |S'\ R| for 1.

Base case: if d =1 then R € N(S) and f(R) < f(95)

Induction: assume 1 holds for d — 1 and consider any R C S with
|S\ R| =d. Choose u € S\ R. Then

f(R) < f(R+wu)+ f(S—u)— f(S)
< f(S—w)
< f(S)

The proof of 2 is similar QED
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Theorem [Feige, Mirrokni & Vondrak, 2011]

If £:2F = R is normalized, nonnegative and submodular,

and S is a local optimum for the add & drop moves, then
S € argmax{f(T):T € {S,N\ S}},

the better of S and its complement, is a 1/3-approximation

Proof: Let S* be an optimum solution, then
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Theorem. If, in addition to the assumptions of the preceding
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Theorem [Feige, Mirrokni & Vondrak, 2011]

If £:2F = R is normalized, nonnegative and submodular,

and S is a local optimum for the add & drop moves, then
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Approximation Algorithms for SFMax

Combining with MLS (for polytime) we get

> 2 (% — €)-approximation for SFMax with a normalized

nonnegative objective, and
> a (% — €)-approximation if it is also symmetric

» matches the (5 + €) inapproximability for Sym-SFMax

Buchbinder, Feldman, Naor & Schwartz (2012): a randomized,
linear-time, greedy-like algorithm which is a %—approximation

> therefore best possible for SFMax

Other recent approximation results for monotone and
non-monotone SFMax subject to a variety of constraints

> one or several knapsacks, matroidal constraints, ...
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