Short Course on Submodular Functions
 Part 2: Extensions and Related Problems

 Session 2.A: PartitionsS. Thomas McCormick Maurice Queyranne

Sauder School of Business, UBC
JPOC Summer School, June 2013

Partitions

Partitions

A partition $\mathbf{P}=\left\{P_{1}, \ldots, P_{k}\right\}$ of E satisfies

- $\emptyset \neq P_{i} \subseteq E$ for all i,
- $P_{i} \cap P_{j}=\emptyset$ for all $i \neq j$, and
- $\cup_{i=1}^{n} P_{i}=E$
for some $k \in\{1, \ldots,|E|\} \quad(\mathbf{P}$ is a k-way partition)

Partitions

A partition $\mathbf{P}=\left\{P_{1}, \ldots, P_{k}\right\}$ of E satisfies

- $\emptyset \neq P_{i} \subseteq E$ for all i,
- $P_{i} \cap P_{j}=\emptyset$ for all $i \neq j$, and
- $\cup_{i=1}^{n} P_{i}=E$
for some $k \in\{1, \ldots,|E|\} \quad$ (\mathbf{P} is a k-way partition)
Given a part cost function $f: 2^{E} \mapsto \mathbb{R}$, the cost of a partition \mathbf{P} is

$$
f(\mathbf{P})=\sum_{i=1}^{|\mathbf{P}|} f\left(P_{i}\right)
$$

Partitions

A partition $\mathbf{P}=\left\{P_{1}, \ldots, P_{k}\right\}$ of E satisfies

- $\emptyset \neq P_{i} \subseteq E$ for all i,
- $P_{i} \cap P_{j}=\emptyset$ for all $i \neq j$, and
- $\cup_{i=1}^{n} P_{i}=E$
for some $k \in\{1, \ldots,|E|\} \quad(\mathbf{P}$ is a k-way partition)
Given a part cost function $f: 2^{E} \mapsto \mathbb{R}$, the cost of a partition \mathbf{P} is

$$
f(\mathbf{P})=\sum_{i=1}^{|\mathbf{P}|} f\left(P_{i}\right)
$$

Optimum Partition Problems:

- given E and f
- find a partition \mathbf{P} with minimum cost $f(\mathbf{P})$
(subject to possible restrictions on the number $k=|\mathbf{P}|$ of parts)

Applications

Applications

Set Partitioning

- not all subsets are feasible
\Rightarrow let $f(S)=+\infty$ whenever S is not feasible
- many applications, e.g., airline crew scheduling, vehicle routing, etc.

Applications

Set Partitioning

- not all subsets are feasible
\Rightarrow let $f(S)=+\infty$ whenever S is not feasible
- many applications, e.g., airline crew scheduling, vehicle routing, etc.

Facility Location/Allocation

- E is a set of clients to be served
- $f(S)$ is the minimum cost to serve subset S (choosing a best location for serving S)

Applications

Set Partitioning

- not all subsets are feasible
\Rightarrow let $f(S)=+\infty$ whenever S is not feasible
- many applications, e.g., airline crew scheduling, vehicle routing, etc.

Facility Location/Allocation

- E is a set of clients to be served
- $f(S)$ is the minimum cost to serve subset S (choosing a best location for serving S)

Clustering

- E is a set of items to be classified
- $f(S)$ is the (negative of) the value of cluster S, reflecting
- the similarities within S, and
- the dissimilarities with $N \backslash S$

Applications (2)

Multi-layer VLSI Circuit Design (Netlist Partitioning)

- E is a set of modules to be located on a k-layer chip \Rightarrow find a k-way partition of E
- $f(S)$ is the cost of splitting netlist S

Applications (2)

Multi-layer VLSI Circuit Design (Netlist Partitioning)

- E is a set of modules to be located on a k-layer chip
\Rightarrow find a k-way partition of E
- $f(S)$ is the cost of splitting netlist S

In most applications, there are additional constraints:

- on the parts P_{i}
- e.g., VLSI: each part must fit on one layer
- other "complicating" constraints
- e.g., Set Partitioning: aircraft types, home bases

Applications (2)

Multi-layer VLSI Circuit Design (Netlist Partitioning)

- E is a set of modules to be located on a k-layer chip \Rightarrow find a k-way partition of E
- $f(S)$ is the cost of splitting netlist S

In most applications, there are additional constraints:

- on the parts P_{i}
- e.g., VLSI: each part must fit on one layer
- other "complicating" constraints
- e.g., Set Partitioning: aircraft types, home bases

Most of these problems are NP-hard

- many are hard to approximate
- just finding feasible solutions can be NP-hard

Applications (2)

Multi-layer VLSI Circuit Design (Netlist Partitioning)

- E is a set of modules to be located on a k-layer chip \Rightarrow find a k-way partition of E
- $f(S)$ is the cost of splitting netlist S

In most applications, there are additional constraints:

- on the parts P_{i}
- e.g., VLSI: each part must fit on one layer
- other "complicating" constraints
- e.g., Set Partitioning: aircraft types, home bases

Most of these problems are NP-hard

- many are hard to approximate
- just finding feasible solutions can be NP-hard

Yet, some important and useful special cases can be solved efficiently when the cost function f is submodular

Examples with Submodular Part Costs

Some important and useful special cases can be solved efficiently when the cost function f is submodular:

Examples with Submodular Part Costs

Some important and useful special cases can be solved efficiently when the cost function f is submodular:

Clustering
The negative of total (pairwise) similarity

$$
f(S)=-\sum_{j, k \in S} s(j, k)
$$

is submodular when $s \geq 0$ (Why?)

Examples with Submodular Part Costs

Some important and useful special cases can be solved efficiently when the cost function f is submodular:

Clustering

The negative of total (pairwise) similarity

$$
f(S)=-\sum_{j, k \in S} s(j, k)
$$

is submodular when $s \geq 0$ (Why?)

VLSI Circuit Design

Given hypergraph (E, H) with edge weights $w_{h}(h \in H)$, the hypergraph cut function

$$
f(S)=\sum\left\{w_{h}: h \cap S \neq \emptyset \text { and } h \backslash S \neq \emptyset\right\}
$$

is submodular when $w \geq 0$ (Why?)

Optimum Unconstrained Partitions

Optimum Unconstrained Partitions

The Dilworth truncation f^{D} of a set function $f: 2^{E} \mapsto \mathbb{R}^{N}$ is the set function $f^{D}: 2^{E} \mapsto \mathbb{R}^{N}$ defined by

$$
f^{D}(A)= \begin{cases}\min _{\mathbf{P} \in \Pi(A)} f(\mathbf{P}) & \text { if } A \neq \emptyset \\ 0 & \text { if } A=\emptyset\end{cases}
$$

where $\Pi(A)$ is the set of all partitions of set A

Optimum Unconstrained Partitions

The Dilworth truncation f^{D} of a set function $f: 2^{E} \mapsto \mathbb{R}^{N}$ is the set function $f^{D}: 2^{E} \mapsto \mathbb{R}^{N}$ defined by

$$
f^{D}(A)= \begin{cases}\min _{\mathbf{P} \in \Pi(A)} f(\mathbf{P}) & \text { if } A \neq \emptyset \\ 0 & \text { if } A=\emptyset\end{cases}
$$

where $\Pi(A)$ is the set of all partitions of set A
Set partitioning formulation: w.l.o.g., assume $A=E$
Let $x_{S}= \begin{cases}1 & \text { if } S \in \mathbf{P} ; \\ 0 & \text { otherwise }\end{cases}$

$$
\begin{array}{rlr}
f^{D}(E)=\mathrm{min} & \sum_{S \subseteq E: S \neq \emptyset} & f(S) x_{S} \\
\text { s.t. } & \sum_{S \subseteq E: j \in S} \quad x_{S} \quad=1 \quad \forall j \in E \\
& x \geq 0 \\
& x \text { integer }
\end{array}
$$

LPs and Dilworth Truncation

LP relaxation:

$$
\begin{array}{rll}
(P) \min & \sum_{S \subseteq E: S \neq \emptyset} & f(S) x_{S} \\
\text { s.t. } & \sum_{S \subseteq E: j \in S} & x_{S}=1 \quad \forall j \in E \\
& x \geq 0
\end{array}
$$

LPs and Dilworth Truncation

LP relaxation:

$$
\begin{array}{rll}
(P) \quad \min & \sum_{S \subseteq E: S \neq \emptyset} & f(S) x_{S} \\
\text { s.t. } & \sum_{S \subseteq E: j \in S} & x_{S}=1 \quad \forall j \in E \\
& x \geq 0
\end{array}
$$

Its dual:
(D) $\max \sum_{j \in E} y_{j}$

$$
\text { s.t. } \quad y(S) \leq f(S) \quad \forall S \subseteq E, S \neq \emptyset
$$

LPs and Dilworth Truncation

LP relaxation:

$$
\begin{array}{rll}
(P) \quad \min & \sum_{S \subseteq E: S \neq \emptyset} & f(S) x_{S} \\
\text { s.t. } & \sum_{S \subseteq E: j \in S} & x_{S}=1 \quad \forall j \in E \\
& x \geq 0
\end{array}
$$

Its dual:

$$
\begin{aligned}
(D) \quad \max & \sum_{j \in E} y_{j} \\
& \text { s.t. } \\
& y(S) \leq f(S) \quad \forall S \subseteq E, S \neq \emptyset
\end{aligned}
$$

This dual is almost linear optimization on a submodular polyhedron (solvable by the Greedy Algorithm seen yesterday)

LPs and Dilworth Truncation

LP relaxation:

$$
\begin{array}{rll}
(P) \quad \min & \sum_{S \subseteq E: S \neq \emptyset} & f(S) x_{S} \\
\text { s.t. } & \sum_{S \subseteq E: j \in S} & x_{S}=1 \quad \forall j \in E \\
& x \geq 0
\end{array}
$$

Its dual:

$$
\begin{array}{rll}
(D) \quad \max & \sum_{j \in E} y_{j} \\
& \text { s.t. } & y(S) \leq f(S) \quad \forall S \subseteq E, S \neq \emptyset
\end{array}
$$

This dual is almost linear optimization on a submodular polyhedron (solvable by the Greedy Algorithm seen yesterday)

- except that here we may have $f(\emptyset)<0$

What if $f(\emptyset) \geq 0$?

What if $f(\emptyset) \geq 0$?

If f is submodular and $f(\emptyset) \geq 0$ then: $A \cap B=\emptyset$ implies

$$
f(A \cup B) \leq f(A)+f(B)
$$

that is, f is subadditive

What if $f(\emptyset) \geq 0$?

If f is submodular and $f(\emptyset) \geq 0$ then: $A \cap B=\emptyset$ implies

$$
f(A \cup B) \leq f(A)+f(B)
$$

that is, f is subadditive
If f is subadditive, then $f^{D}=f$

- except perhaps that $f^{D}(\emptyset)=0$
and we are done.

What if $f(\emptyset) \geq 0$?

If f is submodular and $f(\emptyset) \geq 0$ then: $A \cap B=\emptyset$ implies

$$
f(A \cup B) \leq f(A)+f(B)
$$

that is, f is subadditive
If f is subadditive, then $f^{D}=f$

- except perhaps that $f^{D}(\emptyset)=0$
and we are done.
Hence we now consider the general case where we make no sign restriction on $f(\emptyset)$

A General Greedy Principle

(Edmonds, 1970; Frank \& Tardos, 1988)

A General Greedy Principle

(Edmonds, 1970; Frank \& Tardos, 1988)
Given polyhedron $P \subseteq \mathbb{R}^{E}$ and $w \in \mathbb{R}^{E}$, assume w.l.o.g. that $E=\left\{e_{1}, \ldots, e_{n}\right\}$ with $w_{e_{1}} \geq w_{e_{2}} \geq \cdots \geq w_{e_{n}} \geq 0$

- i.e., E is totally ordered by \prec as: $\quad e_{1} \prec e_{2} \prec \cdots \prec e_{n}$

A General Greedy Principle

(Edmonds, 1970; Frank \& Tardos, 1988)
Given polyhedron $P \subseteq \mathbb{R}^{E}$ and $w \in \mathbb{R}^{E}$, assume w.l.o.g. that $E=\left\{e_{1}, \ldots, e_{n}\right\}$ with $w_{e_{1}} \geq w_{e_{2}} \geq \cdots \geq w_{e_{n}} \geq 0$

- i.e., E is totally ordered by \prec as: $\quad e_{1} \prec e_{2} \prec \cdots \prec e_{n}$

Recursively define $y^{G} \in \mathbb{R}^{E}$ as follows

- for $j=1, \ldots, n$ let

$$
y_{e_{j}}^{G}=\max \left\{y_{e_{j}}: \exists y \in P \quad \forall i<j \quad y_{e_{i}}=y_{e_{i}}^{G}\right\}
$$

A General Greedy Principle

(Edmonds, 1970; Frank \& Tardos, 1988)
Given polyhedron $P \subseteq \mathbb{R}^{E}$ and $w \in \mathbb{R}^{E}$, assume w.l.o.g. that $E=\left\{e_{1}, \ldots, e_{n}\right\}$ with $w_{e_{1}} \geq w_{e_{2}} \geq \cdots \geq w_{e_{n}} \geq 0$

- i.e., E is totally ordered by \prec as: $\quad e_{1} \prec e_{2} \prec \cdots \prec e_{n}$

Recursively define $y^{G} \in \mathbb{R}^{E}$ as follows

- for $j=1, \ldots, n$ let
$y_{e_{j}}^{G}=\max \left\{y_{e_{j}}: \exists y \in P \quad \forall i<j \quad y_{e_{i}}=y_{e_{i}}^{G}\right\}$
This ensures that the resulting greedy solution $y^{G} \in P$
- at the expense of solving n optimization problems

A General Greedy Principle

(Edmonds, 1970; Frank \& Tardos, 1988)
Given polyhedron $P \subseteq \mathbb{R}^{E}$ and $w \in \mathbb{R}^{E}$, assume w.l.o.g. that $E=\left\{e_{1}, \ldots, e_{n}\right\}$ with $w_{e_{1}} \geq w_{e_{2}} \geq \cdots \geq w_{e_{n}} \geq 0$

- i.e., E is totally ordered by \prec as: $\quad e_{1} \prec e_{2} \prec \cdots \prec e_{n}$

Recursively define $y^{G} \in \mathbb{R}^{E}$ as follows

- for $j=1, \ldots, n$ let

$$
y_{e_{j}}^{G}=\max \left\{y_{e_{j}}: \exists y \in P \quad \forall i<j \quad y_{e_{i}}=y_{e_{i}}^{G}\right\}
$$

This ensures that the resulting greedy solution $y^{G} \in P$

- at the expense of solving n optimization problems

If $P=\tilde{P}(f)=\left\{y \in \mathbb{R}^{E}: y(S) \leq f(S) \forall S \subseteq E, S \neq \emptyset\right\}$ for some set function f, then

A General Greedy Principle

(Edmonds, 1970; Frank \& Tardos, 1988)
Given polyhedron $P \subseteq \mathbb{R}^{E}$ and $w \in \mathbb{R}^{E}$, assume w.l.o.g. that $E=\left\{e_{1}, \ldots, e_{n}\right\}$ with $w_{e_{1}} \geq w_{e_{2}} \geq \cdots \geq w_{e_{n}} \geq 0$

- i.e., E is totally ordered by \prec as: $\quad e_{1} \prec e_{2} \prec \cdots \prec e_{n}$

Recursively define $y^{G} \in \mathbb{R}^{E}$ as follows

- for $j=1, \ldots, n$ let

$$
y_{e_{j}}^{G}=\max \left\{y_{e_{j}}: \exists y \in P \quad \forall i<j \quad y_{e_{i}}=y_{e_{i}}^{G}\right\}
$$

This ensures that the resulting greedy solution $y^{G} \in P$

- at the expense of solving n optimization problems

If $P=\tilde{P}(f)=\left\{y \in \mathbb{R}^{E}: y(S) \leq f(S) \forall S \subseteq E, S \neq \emptyset\right\}$ for some set function f, then the Greedy Principle simplifies to:

- let $y^{G}\left(e_{1}\right)=f\left(\left\{e_{1}\right\}\right)$ and for $j=2, \ldots, n$ let

$$
\begin{equation*}
y_{e_{j}}^{G}=\min \left\{f\left(A+e_{j}\right)-y^{G}(A): A \subseteq e_{j}^{\prec}\right\} \tag{1}
\end{equation*}
$$

where $e_{j}^{\prec}=\left\{g \in A: g \prec e_{j}\right\}=\left\{e_{1}, \ldots, e_{j-1}\right\}$ for all $j=1, \ldots, n$

Questions about the General Greedy Principle

Questions about the General Greedy Principle

Optimality Questions:

- is y^{G} an optimum solution to $\max \{w y: y \in P\}$?
- is the corresponding primal solution x^{G} integer?

Questions about the General Greedy Principle

Optimality Questions:

- is y^{G} an optimum solution to $\max \{w y: y \in P\}$?
- is the corresponding primal solution x^{G} integer?

Algorithmic Questions:

- can the optimization subroblem (1) be solved efficiently (i.e., in polynomial time)?
- if x^{G} is integer, can the corresponding optimal partition be recovered efficiently?

Questions about the General Greedy Principle

Optimality Questions:

- is y^{G} an optimum solution to $\max \{w y: y \in P\}$?
- is the corresponding primal solution x^{G} integer?

Algorithmic Questions:

- can the optimization subroblem (1) be solved efficiently (i.e., in polynomial time)?
- if x^{G} is integer, can the corresponding optimal partition be recovered efficiently?

We have seen that when f is submodular and normalized (as in $f(\emptyset)=0$), the answer to all 4 questions is YES!

Questions about the General Greedy Principle

Optimality Questions:

- is y^{G} an optimum solution to $\max \{w y: y \in P\}$?
- is the corresponding primal solution x^{G} integer?

Algorithmic Questions:

- can the optimization subroblem (1) be solved efficiently (i.e., in polynomial time)?
- if x^{G} is integer, can the corresponding optimal partition be recovered efficiently?

We have seen that when f is submodular and normalized (as in $f(\emptyset)=0$), the answer to all 4 questions is YES!

- in particular, subproblem (1) is solved as

$$
y_{e_{j}}^{G}=\min \left\{f\left(A+e_{j}\right)-y^{G}(A): A \subseteq e_{j}^{\prec}\right\}
$$

Questions about the General Greedy Principle

Optimality Questions:

- is y^{G} an optimum solution to $\max \{w y: y \in P\}$?
- is the corresponding primal solution x^{G} integer?

Algorithmic Questions:

- can the optimization subroblem (1) be solved efficiently (i.e., in polynomial time)?
- if x^{G} is integer, can the corresponding optimal partition be recovered efficiently?

We have seen that when f is submodular and normalized (as in $f(\emptyset)=0$), the answer to all 4 questions is YES!

- in particular, subproblem (1) is solved as

$$
y_{e_{j}}^{G}=\min \left\{f\left(A+e_{j}\right)-y^{G}(A): A \subseteq e_{j}^{\prec}\right\}=e_{j+1}^{\prec}-e_{j}^{\prec}
$$

(i.e., optimum subset $A=e_{j}^{\prec}$)

Uncrossing Lemma

Consider the "general submodular case", where f is submodular and $f(\emptyset)$ is arbitrary

Uncrossing Lemma

Consider the "general submodular case", where f is submodular and $f(\emptyset)$ is arbitrary
Let A_{j} be an optimum subset in subproblem (1) and $B_{j}=A_{j}+e_{j}$

- so $y^{G}\left(B_{j}\right)=f\left(B_{j}\right)$

Uncrossing Lemma

Consider the "general submodular case", where f is submodular and $f(\emptyset)$ is arbitrary
Let A_{j} be an optimum subset in subproblem (1) and $B_{j}=A_{j}+e_{j}$

- so $y^{G}\left(B_{j}\right)=f\left(B_{j}\right)$

Uncrossing Lemma: If $B_{i} \cap B_{j} \neq \emptyset$ for $i<j$ then $y^{G}\left(B_{i} \cup B_{j}\right)=f\left(B_{i} \cup B_{j}\right)$

Uncrossing Lemma

Consider the "general submodular case", where f is submodular and $f(\emptyset)$ is arbitrary
Let A_{j} be an optimum subset in subproblem (1) and $B_{j}=A_{j}+e_{j}$

- so $y^{G}\left(B_{j}\right)=f\left(B_{j}\right)$

Uncrossing Lemma: If $B_{i} \cap B_{j} \neq \emptyset$ for $i<j$ then $y^{G}\left(B_{i} \cup B_{j}\right)=f\left(B_{i} \cup B_{j}\right)$

Proof.
Since $y^{G} \in P$ we have:

$$
f\left(B_{j} \cup B_{i}\right) \leq f\left(B_{j}\right)+f\left(B_{i}\right)-f\left(B_{i} \cap B_{j}\right)
$$

Uncrossing Lemma

Consider the "general submodular case", where f is submodular and $f(\emptyset)$ is arbitrary
Let A_{j} be an optimum subset in subproblem (1) and $B_{j}=A_{j}+e_{j}$

- so $y^{G}\left(B_{j}\right)=f\left(B_{j}\right)$

Uncrossing Lemma: If $B_{i} \cap B_{j} \neq \emptyset$ for $i<j$ then $y^{G}\left(B_{i} \cup B_{j}\right)=f\left(B_{i} \cup B_{j}\right)$

Proof.
Since $y^{G} \in P$ we have:

$$
\begin{aligned}
f\left(B_{j} \cup B_{i}\right) & \leq f\left(B_{j}\right)+f\left(B_{i}\right)-f\left(B_{i} \cap B_{j}\right) \\
& \leq y^{G}\left(B_{j}\right)+y^{G}\left(B_{i}\right)-y^{G}\left(B_{i} \cap B_{j}\right)
\end{aligned}
$$

Uncrossing Lemma

Consider the "general submodular case", where f is submodular and $f(\emptyset)$ is arbitrary
Let A_{j} be an optimum subset in subproblem (1) and $B_{j}=A_{j}+e_{j}$

- so $y^{G}\left(B_{j}\right)=f\left(B_{j}\right)$

Uncrossing Lemma: If $B_{i} \cap B_{j} \neq \emptyset$ for $i<j$ then $y^{G}\left(B_{i} \cup B_{j}\right)=f\left(B_{i} \cup B_{j}\right)$

Proof.

Since $y^{G} \in P$ we have:

$$
\begin{aligned}
f\left(B_{j} \cup B_{i}\right) & \leq f\left(B_{j}\right)+f\left(B_{i}\right)-f\left(B_{i} \cap B_{j}\right) \\
& \leq y^{G}\left(B_{j}\right)+y^{G}\left(B_{i}\right)-y^{G}\left(B_{i} \cap B_{j}\right) \\
& =y^{G}\left(B_{j} \cup B_{i}\right)
\end{aligned}
$$

Uncrossing Lemma

Consider the "general submodular case", where f is submodular and $f(\emptyset)$ is arbitrary
Let A_{j} be an optimum subset in subproblem (1) and $B_{j}=A_{j}+e_{j}$

- so $y^{G}\left(B_{j}\right)=f\left(B_{j}\right)$

Uncrossing Lemma: If $B_{i} \cap B_{j} \neq \emptyset$ for $i<j$ then $y^{G}\left(B_{i} \cup B_{j}\right)=f\left(B_{i} \cup B_{j}\right)$

Proof.

Since $y^{G} \in P$ we have:

$$
\begin{aligned}
f\left(B_{j} \cup B_{i}\right) & \leq f\left(B_{j}\right)+f\left(B_{i}\right)-f\left(B_{i} \cap B_{j}\right) \\
& \leq y^{G}\left(B_{j}\right)+y^{G}\left(B_{i}\right)-y^{G}\left(B_{i} \cap B_{j}\right) \\
& =y^{G}\left(B_{j} \cup B_{i}\right) \\
& \leq f\left(B_{j} \cup B_{i}\right)
\end{aligned}
$$

Uncrossing Lemma

Consider the "general submodular case", where f is submodular and $f(\emptyset)$ is arbitrary
Let A_{j} be an optimum subset in subproblem (1) and $B_{j}=A_{j}+e_{j}$

- so $y^{G}\left(B_{j}\right)=f\left(B_{j}\right)$

Uncrossing Lemma: If $B_{i} \cap B_{j} \neq \emptyset$ for $i<j$ then $y^{G}\left(B_{i} \cup B_{j}\right)=f\left(B_{i} \cup B_{j}\right)$

Proof.

Since $y^{G} \in P$ we have:

$$
\begin{aligned}
f\left(B_{j} \cup B_{i}\right) & \leq f\left(B_{j}\right)+f\left(B_{i}\right)-f\left(B_{i} \cap B_{j}\right) \\
& \leq y^{G}\left(B_{j}\right)+y^{G}\left(B_{i}\right)-y^{G}\left(B_{i} \cap B_{j}\right) \\
& =y^{G}\left(B_{j} \cup B_{i}\right) \\
& \leq f\left(B_{j} \cup B_{i}\right)
\end{aligned}
$$

hence all these inequalities must hold as equalities

General Submodular Case: Optimality

General Submodular Case: Optimality

By the Uncrossing Lemma, at each step of the Greedy Algorithm, we may replace the current set B_{j} with its union with all earlier sets that it intersects, and delete all these earlier intersected sets

General Submodular Case: Optimality

By the Uncrossing Lemma, at each step of the Greedy Algorithm, we may replace the current set B_{j} with its union with all earlier sets that it intersects, and delete all these earlier intersected sets At the end, the surviving sets, say, P_{1}, \ldots, P_{k} form a partition of E and $y^{G}(E)=\sum_{i} f\left(P_{i}\right)$

General Submodular Case: Optimality

By the Uncrossing Lemma, at each step of the Greedy Algorithm, we may replace the current set B_{j} with its union with all earlier sets that it intersects, and delete all these earlier intersected sets At the end, the surviving sets, say, P_{1}, \ldots, P_{k} form a partition of E and $y^{G}(E)=\sum_{i} f\left(P_{i}\right)$
This implies that the primal solution x^{G} defined by

$$
x^{G}(S)= \begin{cases}1 & \text { if } S=P_{i} \text { for some } i \\ 0 & \text { otherwise }\end{cases}
$$

General Submodular Case: Optimality

By the Uncrossing Lemma, at each step of the Greedy Algorithm, we may replace the current set B_{j} with its union with all earlier sets that it intersects, and delete all these earlier intersected sets At the end, the surviving sets, say, P_{1}, \ldots, P_{k} form a partition of E and $y^{G}(E)=\sum_{i} f\left(P_{i}\right)$
This implies that the primal solution x^{G} defined by

$$
x^{G}(S)= \begin{cases}1 & \text { if } S=P_{i} \text { for some } i \\ 0 & \text { otherwise }\end{cases}
$$

is feasible for (P) and the primal and dual objective values

$$
\sum_{S} f(S) x_{S}^{G}=\sum_{j=1}^{n} y_{j}^{G}
$$

General Submodular Case: Optimality

By the Uncrossing Lemma, at each step of the Greedy Algorithm, we may replace the current set B_{j} with its union with all earlier sets that it intersects, and delete all these earlier intersected sets At the end, the surviving sets, say, P_{1}, \ldots, P_{k} form a partition of E and $y^{G}(E)=\sum_{i} f\left(P_{i}\right)$
This implies that the primal solution x^{G} defined by

$$
x^{G}(S)= \begin{cases}1 & \text { if } S=P_{i} \text { for some } i \\ 0 & \text { otherwise }\end{cases}
$$

is feasible for (P) and the primal and dual objective values

$$
\sum_{S} f(S) x_{S}^{G}=\sum_{j=1}^{n} y_{j}^{G}
$$

Hence both y^{G} and x^{G} are optimal, answering both Optimality Questions, and giving an efficient construction of an optimum partition $\mathbf{P}=\left(P_{1}, \ldots, P_{k}\right)$

Algorithmic Questions; Submodularity of Dilworth Truncation

The optimization subproblem (1) is SFMin

Algorithmic Questions; Submodularity of Dilworth Truncation

The optimization subproblem (1) is SFMin Therefore, for any subset $S \subseteq E$, the value $f^{D}(S)$ of the Dilworth truncation can be obtained in polynomial time, by solving $|S|-1$ submodular minimization problems

Algorithmic Questions; Submodularity of Dilworth Truncation

The optimization subproblem (1) is SFMin
Therefore, for any subset $S \subseteq E$, the value $f^{D}(S)$ of the Dilworth truncation can be obtained in polynomial time, by solving $|S|-1$ submodular minimization problems

Submodularity of the Dilworth Truncation

Algorithmic Questions; Submodularity of Dilworth Truncation

The optimization subproblem (1) is SFMin
Therefore, for any subset $S \subseteq E$, the value $f^{D}(S)$ of the Dilworth truncation can be obtained in polynomial time, by solving $|S|-1$ submodular minimization problems

Submodularity of the Dilworth Truncation

Proposition (Lovász 1983) The Dilworth truncation of a submodular function is submodular
Proof: Let f be submodular.

Algorithmic Questions; Submodularity of Dilworth Truncation

The optimization subproblem (1) is SFMin
Therefore, for any subset $S \subseteq E$, the value $f^{D}(S)$ of the Dilworth truncation can be obtained in polynomial time, by solving $|S|-1$ submodular minimization problems

Submodularity of the Dilworth Truncation

Proposition (Lovász 1983) The Dilworth truncation of a submodular function is submodular
Proof: Let f be submodular. Recall that $f^{D}(\emptyset)=0$

Algorithmic Questions; Submodularity of Dilworth Truncation

The optimization subproblem (1) is SFMin
Therefore, for any subset $S \subseteq E$, the value $f^{D}(S)$ of the Dilworth truncation can be obtained in polynomial time, by solving $|S|-1$ submodular minimization problems

Submodularity of the Dilworth Truncation

Proposition (Lovász 1983) The Dilworth truncation of a submodular function is submodular
Proof: Let f be submodular. Recall that $f^{D}(\emptyset)=0$
It suffices to prove: for all $S \subset E, u, v \in E \backslash S$

$$
f^{D}(S+u+v)-f^{D}(S+u) \leq f^{D}(S+v)-f^{D}(S) ?
$$

Algorithmic Questions; Submodularity of Dilworth Truncation

The optimization subproblem (1) is SFMin
Therefore, for any subset $S \subseteq E$, the value $f^{D}(S)$ of the Dilworth truncation can be obtained in polynomial time, by solving $|S|-1$ submodular minimization problems

Submodularity of the Dilworth Truncation

Proposition (Lovász 1983) The Dilworth truncation of a submodular function is submodular
Proof: Let f be submodular. Recall that $f^{D}(\emptyset)=0$ It suffices to prove: for all $S \subset E, u, v \in E \backslash S$

$$
f^{D}(S+u+v)-f^{D}(S+u) \leq f^{D}(S+v)-f^{D}(S) ?
$$

- If $S=\emptyset$ then $f^{D}(u+v) \leq f^{D}(u)+f^{D}(v) \quad$ (Why?)

Submodularity of the Dilworth Truncation (continued)

Else, i.e., $S \neq \emptyset$, number the elements in E so $S=e_{i+1}^{\prec}, e_{i+1}=u$ and $e_{i+2}=v$

Submodularity of the Dilworth Truncation (continued)

Else, i.e., $S \neq \emptyset$, number the elements in E so $S=e_{i+1}^{\prec}, e_{i+1}=u$ and $e_{i+2}=v$ and apply the Greedy Algorithm: we have

$$
y^{G}(T)=f^{D}(T) \quad \text { for } T=S, S+u, \text { and } S+u+v
$$

Submodularity of the Dilworth Truncation (continued)

Else, i.e., $S \neq \emptyset$, number the elements in E so $S=e_{i+1}^{\prec}, e_{i+1}=u$ and $e_{i+2}=v$ and apply the Greedy Algorithm: we have

$$
y^{G}(T)=f^{D}(T) \quad \text { for } T=S, S+u, \text { and } S+u+v
$$

The Greedy Algorithm applied to $S+v$ just after S produces \tilde{y}^{G} satisfying $\quad \tilde{y}_{j}^{G}=y_{j}^{G}$ for all $j \in S$

Submodularity of the Dilworth Truncation (continued)

Else, i.e., $S \neq \emptyset$, number the elements in E so $S=e_{i+1}^{\prec}, e_{i+1}=u$ and $e_{i+2}=v$ and apply the Greedy Algorithm: we have

$$
y^{G}(T)=f^{D}(T) \quad \text { for } T=S, S+u, \text { and } S+u+v
$$

The Greedy Algorithm applied to $S+v$ just after S produces \tilde{y}^{G} satisfying $\quad \tilde{y}_{j}^{G}=y_{j}^{G}$ for all $j \in S \quad$ and for some $A \subseteq S$

$$
f^{D}(S+v)-f^{D}(S)=\tilde{y}_{v}^{G}=f(A+v)-\tilde{y}^{G}(A)
$$

Submodularity of the Dilworth Truncation (continued)

Else, i.e., $S \neq \emptyset$, number the elements in E so $S=e_{i+1}^{\prec}, e_{i+1}=u$ and $e_{i+2}=v$ and apply the Greedy Algorithm: we have

$$
y^{G}(T)=f^{D}(T) \quad \text { for } T=S, S+u, \text { and } S+u+v
$$

The Greedy Algorithm applied to $S+v$ just after S produces \tilde{y}^{G} satisfying $\quad \tilde{y}_{j}^{G}=y_{j}^{G}$ for all $j \in S \quad$ and for some $A \subseteq S$

$$
f^{D}(S+v)-f^{D}(S)=\tilde{y}_{v}^{G}=f(A+v)-\tilde{y}^{G}(A)
$$

Then:

$$
\begin{gathered}
f^{D}(S+u+v)-f^{D}(S+u) \\
=y_{v}^{G}
\end{gathered}
$$

Submodularity of the Dilworth Truncation (continued)

Else, i.e., $S \neq \emptyset$, number the elements in E so $S=e_{i+1}^{\prec}, e_{i+1}=u$ and $e_{i+2}=v$ and apply the Greedy Algorithm: we have

$$
y^{G}(T)=f^{D}(T) \quad \text { for } T=S, S+u, \text { and } S+u+v
$$

The Greedy Algorithm applied to $S+v$ just after S produces \tilde{y}^{G} satisfying $\quad \tilde{y}_{j}^{G}=y_{j}^{G}$ for all $j \in S \quad$ and for some $A \subseteq S$

$$
f^{D}(S+v)-f^{D}(S)=\tilde{y}_{v}^{G}=f(A+v)-\tilde{y}^{G}(A)
$$

Then:

$$
\begin{aligned}
f^{D}(S+u+ & v)-f^{D}(S+u) \\
& =y_{v}^{G} \\
& =\min \left\{f(B+v)-y^{G}(B): B \subseteq S+u\right\}
\end{aligned}
$$

Submodularity of the Dilworth Truncation (continued)

Else, i.e., $S \neq \emptyset$, number the elements in E so $S=e_{i+1}^{\prec}, e_{i+1}=u$ and $e_{i+2}=v$ and apply the Greedy Algorithm: we have

$$
y^{G}(T)=f^{D}(T) \quad \text { for } T=S, S+u, \text { and } S+u+v
$$

The Greedy Algorithm applied to $S+v$ just after S produces \tilde{y}^{G} satisfying $\quad \tilde{y}_{j}^{G}=y_{j}^{G}$ for all $j \in S \quad$ and for some $A \subseteq S$

$$
f^{D}(S+v)-f^{D}(S)=\tilde{y}_{v}^{G}=f(A+v)-\tilde{y}^{G}(A)
$$

Then:

$$
\begin{aligned}
f^{D}(S+u+ & v)-f^{D}(S+u) \\
& =y_{v}^{G} \\
& =\min \left\{f(B+v)-y^{G}(B): B \subseteq S+u\right\} \\
& \leq f(A+v)-y^{G}(A)
\end{aligned}
$$

Submodularity of the Dilworth Truncation (continued)

Else, i.e., $S \neq \emptyset$, number the elements in E so $S=e_{i+1}^{\prec}, e_{i+1}=u$ and $e_{i+2}=v$ and apply the Greedy Algorithm: we have

$$
y^{G}(T)=f^{D}(T) \quad \text { for } T=S, S+u, \text { and } S+u+v
$$

The Greedy Algorithm applied to $S+v$ just after S produces \tilde{y}^{G} satisfying $\quad \tilde{y}_{j}^{G}=y_{j}^{G}$ for all $j \in S \quad$ and for some $A \subseteq S$

$$
f^{D}(S+v)-f^{D}(S)=\tilde{y}_{v}^{G}=f(A+v)-\tilde{y}^{G}(A)
$$

Then:

$$
\begin{aligned}
& f^{D}(S+u+v)-f^{D}(S+u) \\
&=y_{v}^{G} \\
&=\min \left\{f(B+v)-y^{G}(B): B \subseteq S+u\right\} \\
& \leq f(A+v)-y^{G}(A) \\
&=f^{D}(S+v)-f^{D}(S)
\end{aligned}
$$

Submodularity of the Dilworth Truncation (continued)

Else, i.e., $S \neq \emptyset$, number the elements in E so $S=e_{i+1}^{\prec}, e_{i+1}=u$ and $e_{i+2}=v$ and apply the Greedy Algorithm: we have

$$
y^{G}(T)=f^{D}(T) \quad \text { for } T=S, S+u, \text { and } S+u+v
$$

The Greedy Algorithm applied to $S+v$ just after S produces \tilde{y}^{G} satisfying $\quad \tilde{y}_{j}^{G}=y_{j}^{G}$ for all $j \in S \quad$ and for some $A \subseteq S$

$$
f^{D}(S+v)-f^{D}(S)=\tilde{y}_{v}^{G}=f(A+v)-\tilde{y}^{G}(A)
$$

Then:

$$
\begin{aligned}
f^{D}(S+u+ & v)-f^{D}(S+u) \\
& =y_{v}^{G} \\
& =\min \left\{f(B+v)-y^{G}(B): B \subseteq S+u\right\} \\
& \leq f(A+v)-y^{G}(A) \\
& =f^{D}(S+v)-f^{D}(S)
\end{aligned}
$$

QED

An Application in Statistical Mechanics

Asymptotics of Potts Partition Functions

(Anglès d'Auriac \& al., 2002)

Statistical Mechanics	Graph Theory
Lattice (V, E)	Graph $G=(V, E)$
Site $i \in V$	Node
Bond $i j \in E$	Edge
Coupling $K_{i j}$	Edge weight

An Application in Statistical Mechanics

Asymptotics of Potts Partition Functions

(Anglès d'Auriac \& al., 2002)

Statistical Mechanics	Graph Theory
Lattice (V, E)	Graph $G=(V, E)$
Site $i \in V$	Node
Bond $i j \in E$	Edge
Coupling $K_{i j}$	Edge weight

Given are: the lattice, the couplings $K \geq 0$, and integer $q \geq 2$ (number of spin values)

An Application in Statistical Mechanics

Asymptotics of Potts Partition Functions

(Anglès d'Auriac \& al., 2002)

Statistical Mechanics	Graph Theory
Lattice (V, E)	Graph $G=(V, E)$
Site $i \in V$	Node
Bond $i j \in E$	Edge
Coupling $K_{i j}$	Edge weight

Given are: the lattice, the couplings $K \geq 0$, and integer $q \geq 2$ (number of spin values)
A variable $\sigma_{i} \in\{0,1, \ldots, q-1\}$, called a spin, is associated with each site $i \in V$

An Application in Statistical Mechanics

Asymptotics of Potts Partition Functions

(Anglès d'Auriac \& al., 2002)

Statistical Mechanics	Graph Theory
Lattice (V, E)	Graph $G=(V, E)$
Site $i \in V$	Node
Bond $i j \in E$	Edge
Coupling $K_{i j}$	Edge weight

Given are: the lattice, the couplings $K \geq 0$, and integer $q \geq 2$ (number of spin values)
A variable $\sigma_{i} \in\{0,1, \ldots, q-1\}$, called a spin, is associated with each site $i \in V$
Energy of configuration $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right): \mathbf{E}(\sigma)=\sum_{i j \in E} K_{i j} \delta_{\sigma_{i} \sigma_{j}}$
where the Kronecker symbol $\delta_{a b}= \begin{cases}1 & \text { if } a=b \\ 0 & \text { otherwise }\end{cases}$

Potts Partition Function

$$
Z(K)=\sum_{\sigma} \exp (\mathbf{E}(\sigma))
$$

Potts Partition Function

$$
Z(K)=\sum_{\sigma} \exp (\mathbf{E}(\sigma))
$$

Letting $\nu_{i j}=\exp \left(K_{i j}\right)-1 \geq 0$, we have

$$
\exp (\mathbf{E}(\sigma))=\prod_{i j \in E} \exp \left(K_{i j} \delta_{\sigma_{i} \sigma_{j}}\right)
$$

Potts Partition Function

$$
Z(K)=\sum_{\sigma} \exp (\mathbf{E}(\sigma))
$$

Letting $\nu_{i j}=\exp \left(K_{i j}\right)-1 \geq 0$, we have

$$
\begin{aligned}
\exp (\mathbf{E}(\sigma)) & =\prod_{i j \in E} \exp \left(K_{i j} \delta_{\sigma_{i} \sigma_{j}}\right) \\
& =\prod_{i j \in E}\left(1+\left(\exp \left(K_{i j}\right)-1\right) \delta_{\sigma_{i} \sigma_{j}}\right)
\end{aligned}
$$

Potts Partition Function

$$
Z(K)=\sum_{\sigma} \exp (\mathbf{E}(\sigma))
$$

Letting $\nu_{i j}=\exp \left(K_{i j}\right)-1 \geq 0$, we have

$$
\begin{aligned}
\exp (\mathbf{E}(\sigma)) & =\prod_{i j \in E} \exp \left(K_{i j} \delta_{\sigma_{i} \sigma_{j}}\right) \\
& =\prod_{i j \in E}\left(1+\left(\exp \left(K_{i j}\right)-1\right) \delta_{\sigma_{i} \sigma_{j}}\right) \\
& =\sum_{F \in 2^{E}} \prod_{i j \in F} \nu_{i j} \delta_{\sigma_{i} \sigma_{j}}
\end{aligned}
$$

Potts Partition Function (2)

Potts Partition Function (2)

$$
\begin{aligned}
Z(K) & =\sum_{\sigma} \sum_{F \in 2^{E}} \prod_{i j \in F} \nu_{i j} \delta_{\sigma_{i} \sigma_{j}} \\
& =\sum_{F \in 2^{E}} \sum_{\sigma} \prod_{i j \in F} \nu_{i j} \delta_{\sigma_{i} \sigma_{j}}
\end{aligned}
$$

Potts Partition Function (2)

$$
\begin{aligned}
Z(K) & =\sum_{\sigma} \sum_{F \in 2^{E}} \prod_{i j \in F} \nu_{i j} \delta_{\sigma_{i} \sigma_{j}} \\
& =\sum_{F \in 2^{E}} \sum_{\sigma} \prod_{i j \in F} \nu_{i j} \delta_{\sigma_{i} \sigma_{j}} \\
& =\sum_{F \in 2^{E}} q^{n c(F) \prod_{i j \in F} \nu_{i j}}
\end{aligned}
$$

where $n c(F)$ is the number of connected components of $G_{F}=(V, F)$

Potts Partition Function (2)

$$
\begin{aligned}
& =\sum_{r \in e^{s}} \sum_{o} \prod_{v \in F^{2}} v_{v_{0}} \sigma_{a p} \\
& =\sum_{F \in 2^{E}} q^{n c(F)} \prod_{i j \in F} \nu_{i j}
\end{aligned}
$$

where $n c(F)$ is the number of connected components of $G_{F}=(V, F)$

- Recall that $n c$ is a supermodular function

Potts Partition Function (2)

$$
\begin{aligned}
Z(K) & =\sum_{\sigma} \sum_{F \in 2^{E}} \prod_{i j \in F} \nu_{i j} \delta_{\sigma_{i} \sigma_{j}} \\
& =\sum_{F \in 2^{E}} \sum_{\sigma} \prod_{i j \in F} \nu_{i j} \delta_{\sigma_{i} \sigma_{j}} \\
& =\sum_{F \in 2^{E}} q^{n c(F) \prod_{i j \in F} \nu_{i j}}
\end{aligned}
$$

where $n c(F)$ is the number of connected components of $G_{F}=(V, F)$

- Recall that $n c$ is a supermodular function

Let $\alpha_{i j}=\log _{q} \nu_{i j} \quad$ so $\quad Z(K)=\sum_{F \in 2^{E}} q^{h(F)}$
where $h(F)=n c(F)+\sum_{i j \in F} \alpha_{i j}$

Asymptotics of Potts Partition Function

Asymptotics of Potts Partition Function

When q goes to infinity, $Z(K) \rightarrow N q^{h^{*}}$ where N is the number of optimum sets F and

$$
h^{*}=\max _{F \in 2^{E}} h(F)=\max _{F \in 2^{E}}\left(n c(F)+\sum_{i j \in F} \alpha_{i j}\right)
$$

Asymptotics of Potts Partition Function

When q goes to infinity, $Z(K) \rightarrow N q^{h^{*}}$ where N is the number of optimum sets F and

$$
h^{*}=\max _{F \in 2^{E}} h(F)=\max _{F \in 2^{E}}\left(n c(F)+\sum_{i j \in F} \alpha_{i j}\right)
$$

Since h is supermodular, finding the asymptotic exponent h^{*} is SFMin (where the ground set is the edge set E)

Asymptotics of Potts Partition Function

When q goes to infinity, $Z(K) \rightarrow N q^{h^{*}}$ where N is the number of optimum sets F and

$$
h^{*}=\max _{F \in 2^{E}} h(F)=\max _{F \in 2^{E}}\left(n c(F)+\sum_{i j \in F} \alpha_{i j}\right)
$$

Since h is supermodular, finding the asymptotic exponent h^{*} is SFMin (where the ground set is the edge set E)

- Can we do better than general SFMin?

Two Simple Observations

Two Simple Observations

1. All $i j \in E$ with $\alpha_{i j}<0$ may be eliminated (they cannot belong to any optimum subset) \Rightarrow assume $\alpha \geq 0$

Two Simple Observations

1. All $i j \in E$ with $\alpha_{i j}<0$ may be eliminated (they cannot belong to any optimum subset)
\Rightarrow assume $\alpha \geq 0$
2. Let F^{*} be an optimum subset and P_{1}, \ldots, P_{k} the connected components of $G^{*}=\left(V, F^{*}\right)$,

Two Simple Observations

1. All $i j \in E$ with $\alpha_{i j}<0$ may be eliminated (they cannot belong to any optimum subset)
\Rightarrow assume $\alpha \geq 0$
2. Let F^{*} be an optimum subset and P_{1}, \ldots, P_{k} the connected components of $G^{*}=\left(V, F^{*}\right)$,

Two Simple Observations

1. All $i j \in E$ with $\alpha_{i j}<0$ may be eliminated (they cannot belong to any optimum subset) \Rightarrow assume $\alpha \geq 0$
2. Let F^{*} be an optimum subset and P_{1}, \ldots, P_{k} the connected components of $G^{*}=\left(V, F^{*}\right)$, then we may add to F^{*} all edges in E within each P_{i}

Two Simple Observations

1. All $i j \in E$ with $\alpha_{i j}<0$ may be eliminated (they cannot belong to any optimum subset)
\Rightarrow assume $\alpha \geq 0$
2. Let F^{*} be an optimum subset and P_{1}, \ldots, P_{k} the connected components of $G^{*}=\left(V, F^{*}\right)$, then we may add to F^{*} all edges in E within each P_{i}

Therefore

$$
h\left(F^{*}\right)=\alpha(E)-\sum_{i=1}^{k} f\left(P_{i}\right)
$$

where $f: 2^{V} \mapsto \mathbb{R}$, defined by $f(S)=\frac{1}{2}\left(\sum_{j \in S, k \notin S} \alpha_{j k}\right)-1$,
is the cut function of the graph $G=(V, E)$ with edge "capacities"
$\alpha \geq 0$, minus the constant 1

- so, $f(\emptyset)=-1<0$

A Faster Algorithm

A Faster Algorithm

Thus, finding $h *$ is equivalent to finding the value $f^{D}(V)$ of the Dilworth truncation of f

- Note: the ground set is now V, the node set

A Faster Algorithm

Thus, finding $h *$ is equivalent to finding the value $f^{D}(V)$ of the Dilworth truncation of f

- Note: the ground set is now V, the node set

The minimizations at each step of the Greedy Algorithm can be performed efficiently by network flow techniques (minimum s, t-cuts in an associated network)

A Faster Algorithm

Thus, finding $h *$ is equivalent to finding the value $f^{D}(V)$ of the Dilworth truncation of f

- Note: the ground set is now V, the node set

The minimizations at each step of the Greedy Algorithm can be performed efficiently by network flow techniques (minimum s, t-cuts in an associated network)
The running time is $\mathrm{O}\left(|V|^{2}|E|\right)$

- much faster than general SFMin on the old ground set $|E|$

Optimum Bipartition

Find a bipartition $\mathbf{P}=\left\{P_{1}, P_{2}\right\}$ of E with least total cost $f(\mathbf{P})$?

Optimum Bipartition

Find a bipartition $\mathbf{P}=\left\{P_{1}, P_{2}\right\}$ of E with least total cost $f(\mathbf{P})$?
Equivalently, find a proper subset S (i.e., $\emptyset \neq S \subset E$) which minimizes $f(S)+f(E \backslash S)$.

Optimum Bipartition

Find a bipartition $\mathbf{P}=\left\{P_{1}, P_{2}\right\}$ of E with least total cost $f(\mathbf{P})$?
Equivalently, find a proper subset S (i.e., $\emptyset \neq S \subset E$) which minimizes $f(S)+f(E \backslash S)$.
A set function $g: 2^{E} \mapsto \mathbb{R}$ is symmetric iff

$$
g(S)=g(E \backslash S) \quad \text { for all } S \subseteq E
$$

Optimum Bipartition

Find a bipartition $\mathbf{P}=\left\{P_{1}, P_{2}\right\}$ of E with least total cost $f(\mathbf{P})$?
Equivalently, find a proper subset S (i.e., $\emptyset \neq S \subset E$) which minimizes $f(S)+f(E \backslash S)$.
A set function $g: 2^{E} \mapsto \mathbb{R}$ is symmetric iff

$$
g(S)=g(E \backslash S) \quad \text { for all } S \subseteq E
$$

The function g_{f} defined by $g_{f}(S)=f(S)+f(E \backslash S)$ is:

- symmetric; and
- submodular if f is submodular

Sym-SFMin

If g is symmetric and submodular then, for all $S \subseteq E$

$$
g(S)=1 / 2(g(S)+g(E \backslash S))
$$

Sym-SFMin

If g is symmetric and submodular then, for all $S \subseteq E$

$$
\begin{aligned}
g(S) & =1 / 2(g(S)+g(E \backslash S)) \\
& \geq 1 / 2(g(E)+g(\emptyset))
\end{aligned}
$$

Sym-SFMin

If g is symmetric and submodular then, for all $S \subseteq E$

$$
\begin{aligned}
g(S) & =1 / 2(g(S)+g(E \backslash S)) \\
& \geq 1 / 2(g(E)+g(\emptyset)) \\
& =g(\emptyset)
\end{aligned}
$$

Sym-SFMin

If g is symmetric and submodular then, for all $S \subseteq E$

$$
\begin{aligned}
g(S) & =1 / 2(g(S)+g(E \backslash S)) \\
& \geq 1 / 2(g(E)+g(\emptyset)) \\
& =g(\emptyset)=g(E)
\end{aligned}
$$

Sym-SFMin

If g is symmetric and submodular then, for all $S \subseteq E$

$$
\begin{aligned}
g(S) & =1 / 2(g(S)+g(E \backslash S)) \\
& \geq 1 / 2(g(E)+g(\emptyset)) \\
& =g(\emptyset)=g(E)
\end{aligned}
$$

hence \emptyset, and also E, minimize g.

Sym-SFMin

If g is symmetric and submodular then, for all $S \subseteq E$

$$
\begin{aligned}
g(S) & =1 / 2(g(S)+g(E \backslash S)) \\
& \geq 1 / 2(g(E)+g(\emptyset)) \\
& =g(\emptyset)=g(E)
\end{aligned}
$$

hence \emptyset, and also E, minimize g.
The Optimum Bipartition problem with submodular part costs, is equivalent to the Symmetric Submodular Minimization problem (Sym-SFMin):

- given a symmetric submodular function $g: 2^{E} \mapsto \mathbb{R}$
- find a proper subset S of E which minimizes $g(S)$

Sym-SFMin and Decomposition

Sym-SFMin and Decomposition

Proposition Assume that f is normalized and submodular,

Sym-SFMin and Decomposition

Proposition Assume that f is normalized and submodular, and that there exists a proper subset $A \subset E$ such that $\breve{f}(A)=f(A)+f(\bar{A})-f(E)$ satisfies $\breve{f}(A)=0=\breve{f}(\emptyset)=\breve{f}(E)$. where $\bar{A}=E \backslash A$.

Sym-SFMin and Decomposition

Proposition Assume that f is normalized and submodular, and that there exists a proper subset $A \subset E$ such that $\breve{f}(A)=f(A)+f(\bar{A})-f(E)$ satisfies $\breve{f}(A)=0=\breve{f}(\emptyset)=\breve{f}(E)$. where $\bar{A}=E \backslash A$. Then f is decomposable as

$$
f(B)=f(B \cap A)+f(B \cap \bar{A}) \quad \text { for all } B \subseteq E
$$

Sym-SFMin and Decomposition

Proposition Assume that f is normalized and submodular, and that there exists a proper subset $A \subset E$ such that $\breve{f}(A)=f(A)+f(\bar{A})-f(E)$ satisfies $\breve{f}(A)=0=\breve{f}(\emptyset)=\breve{f}(E)$. where $\bar{A}=E \backslash A$. Then f is decomposable as

$$
f(B)=f(B \cap A)+f(B \cap \bar{A}) \quad \text { for all } B \subseteq E
$$

Proof: Since f is normalized and submodular

$$
f(B)=f((B \cap A) \cup(B \cap \bar{A}))
$$

Sym-SFMin and Decomposition

Proposition Assume that f is normalized and submodular, and that there exists a proper subset $A \subset E$ such that $\breve{f}(A)=f(A)+f(\bar{A})-f(E)$ satisfies $\breve{f}(A)=0=\breve{f}(\emptyset)=\breve{f}(E)$. where $\bar{A}=E \backslash A$. Then f is decomposable as

$$
f(B)=f(B \cap A)+f(B \cap \bar{A}) \quad \text { for all } B \subseteq E
$$

Proof: Since f is normalized and submodular

$$
f(B)=f((B \cap A) \cup(B \cap \bar{A})) \leq f(B \cap A)+f(B \cap \bar{A})
$$

Sym-SFMin and Decomposition

Proposition Assume that f is normalized and submodular, and that there exists a proper subset $A \subset E$ such that $\breve{f}(A)=f(A)+f(\bar{A})-f(E)$ satisfies $\breve{f}(A)=0=\breve{f}(\emptyset)=\breve{f}(E)$. where $\bar{A}=E \backslash A$. Then f is decomposable as

$$
f(B)=f(B \cap A)+f(B \cap \bar{A}) \quad \text { for all } B \subseteq E
$$

Proof: Since f is normalized and submodular

$$
f(B)=f((B \cap A) \cup(B \cap \bar{A})) \leq f(B \cap A)+f(B \cap \bar{A})
$$

and

$$
f(B)-f(B \cap A)-f(B \cap \bar{A}) \geq f(B \cup A)-f(A)-f(B \cap \bar{A})
$$

Sym-SFMin and Decomposition

Proposition Assume that f is normalized and submodular, and that there exists a proper subset $A \subset E$ such that $\breve{f}(A)=f(A)+f(\bar{A})-f(E)$ satisfies $\breve{f}(A)=0=\breve{f}(\emptyset)=\breve{f}(E)$. where $\bar{A}=E \backslash A$. Then f is decomposable as

$$
f(B)=f(B \cap A)+f(B \cap \bar{A}) \quad \text { for all } B \subseteq E
$$

Proof: Since f is normalized and submodular

$$
f(B)=f((B \cap A) \cup(B \cap \bar{A})) \leq f(B \cap A)+f(B \cap \bar{A})
$$

and

$$
\begin{aligned}
f(B)-f(B \cap A)-f(B \cap \bar{A}) & \geq f(B \cup A)-f(A)-f(B \cap \bar{A}) \\
& \geq f((B \cup A) \cup \bar{A})-f(A)-f(\bar{A})
\end{aligned}
$$

Sym-SFMin and Decomposition

Proposition Assume that f is normalized and submodular, and that there exists a proper subset $A \subset E$ such that $\breve{f}(A)=f(A)+f(\bar{A})-f(E)$ satisfies $\breve{f}(A)=0=\breve{f}(\emptyset)=\breve{f}(E)$. where $\bar{A}=E \backslash A$. Then f is decomposable as

$$
f(B)=f(B \cap A)+f(B \cap \bar{A}) \quad \text { for all } B \subseteq E
$$

Proof: Since f is normalized and submodular

$$
f(B)=f((B \cap A) \cup(B \cap \bar{A})) \leq f(B \cap A)+f(B \cap \bar{A})
$$

and

$$
\begin{aligned}
f(B)-f(B \cap A)-f(B \cap \bar{A}) & \geq f(B \cup A)-f(A)-f(B \cap \bar{A}) \\
& \geq f((B \cup A) \cup \bar{A})-f(A)-f(\bar{A}) \\
& =f(E)-f(A)-f(\bar{A})=0 \quad Q E D
\end{aligned}
$$

Separators

A proper subset A of E such that

$$
f(B)=f(B \cap A)+f(B \cap \bar{A}) \quad \text { for all } B \subseteq E
$$

is called a separator of f.

Separators

A proper subset A of E such that

$$
f(B)=f(B \cap A)+f(B \cap \bar{A}) \quad \text { for all } B \subseteq E
$$

is called a separator of f.
Example: Let X be a random vector indexed by E

Separators

A proper subset A of E such that

$$
f(B)=f(B \cap A)+f(B \cap \bar{A}) \quad \text { for all } B \subseteq E
$$

is called a separator of f.
Example: Let X be a random vector indexed by E and let X_{B} denote the subvector indexed by any subset $B \subseteq E$

Separators

A proper subset A of E such that

$$
f(B)=f(B \cap A)+f(B \cap \bar{A}) \quad \text { for all } B \subseteq E
$$

is called a separator of f.
Example: Let X be a random vector indexed by E and let X_{B} denote the subvector indexed by any subset $B \subseteq E$ If X_{A} and $X_{\bar{A}}$ are independent,

Separators

A proper subset A of E such that

$$
f(B)=f(B \cap A)+f(B \cap \bar{A}) \quad \text { for all } B \subseteq E
$$

is called a separator of f.
Example: Let X be a random vector indexed by E and let X_{B} denote the subvector indexed by any subset $B \subseteq E$ If X_{A} and $X_{\bar{A}}$ are independent, then

- for every $B \subseteq A$ and $C \subseteq \bar{A}, X_{B}$ and X_{C} are independent

Separators

A proper subset A of E such that

$$
f(B)=f(B \cap A)+f(B \cap \bar{A}) \quad \text { for all } B \subseteq E
$$

is called a separator of f.
Example: Let X be a random vector indexed by E and let X_{B} denote the subvector indexed by any subset $B \subseteq E$ If X_{A} and $X_{\bar{A}}$ are independent, then

- for every $B \subseteq A$ and $C \subseteq \bar{A}, X_{B}$ and X_{C} are independent
- Such a subset A is a separator of the entropy function for X

Separators

A proper subset A of E such that

$$
f(B)=f(B \cap A)+f(B \cap \bar{A}) \quad \text { for all } B \subseteq E
$$

is called a separator of f.
Example: Let X be a random vector indexed by E and let X_{B} denote the subvector indexed by any subset $B \subseteq E$ If X_{A} and $X_{\bar{A}}$ are independent, then

- for every $B \subseteq A$ and $C \subseteq \bar{A}, X_{B}$ and X_{C} are independent
- Such a subset A is a separator of the entropy function for X

The set of all separators of f is closed under intersection, union, and complementation

Separators

A proper subset A of E such that

$$
f(B)=f(B \cap A)+f(B \cap \bar{A}) \quad \text { for all } B \subseteq E
$$

is called a separator of f.
Example: Let X be a random vector indexed by E and let X_{B} denote the subvector indexed by any subset $B \subseteq E$ If X_{A} and $X_{\bar{A}}$ are independent, then

- for every $B \subseteq A$ and $C \subseteq \bar{A}, X_{B}$ and X_{C} are independent
- Such a subset A is a separator of the entropy function for X

The set of all separators of f is closed under intersection, union, and complementation

- Hence, the separators partition E

Pendent Pairs

Pendent Pairs

A pair $(u, v) \in E \times E(u \neq v)$ is a pendent pair for (symmetric) set function g if

$$
g(\{u\})=\min \{g(S): \forall S \subset E \text { with } u \in S \text { and } v \notin S\}
$$

Pendent Pairs

A pair $(u, v) \in E \times E(u \neq v)$ is a pendent pair for (symmetric) set function g if

$$
g(\{u\})=\min \{g(S): \forall S \subset E \text { with } u \in S \text { and } v \notin S\}
$$

A set $U \subset E$ separates u and v if

- $u \in U$ and $v \notin S$, or
- $u \notin U$ and $v \in S$

Pendent Pairs

A pair $(u, v) \in E \times E(u \neq v)$ is a pendent pair for (symmetric) set function g if

$$
g(\{u\})=\min \{g(S): \forall S \subset E \text { with } u \in S \text { and } v \notin S\}
$$

A set $U \subset E$ separates u and v if

- $u \in U$ and $v \notin S$, or
- $u \notin U$ and $v \in S$
- equivalently, if $|S \cap\{u, v\}|=1$

Pendent Pairs

A pair $(u, v) \in E \times E(u \neq v)$ is a pendent pair for (symmetric) set function g if

$$
g(\{u\})=\min \{g(S): \forall S \subset E \text { with } u \in S \text { and } v \notin S\}
$$

A set $U \subset E$ separates u and v if

- $u \in U$ and $v \notin S$, or
- $u \notin U$ and $v \in S$
- equivalently, if $|S \cap\{u, v\}|=1$

If (u, v) is a pendent pair for symmetric function g and S^{*} is a proper subset minimizing g then:

Pendent Pairs

A pair $(u, v) \in E \times E(u \neq v)$ is a pendent pair for (symmetric) set function g if

$$
g(\{u\})=\min \{g(S): \forall S \subset E \text { with } u \in S \text { and } v \notin S\}
$$

A set $U \subset E$ separates u and v if

- $u \in U$ and $v \notin S$, or
- $u \notin U$ and $v \in S$
- equivalently, if $|S \cap\{u, v\}|=1$

If (u, v) is a pendent pair for symmetric function g and S^{*} is a proper subset minimizing g then:

- either S^{*} separates u and v, and we may choose $S^{*}=\{u\}$

Pendent Pairs

A pair $(u, v) \in E \times E(u \neq v)$ is a pendent pair for (symmetric) set function g if

$$
g(\{u\})=\min \{g(S): \forall S \subset E \text { with } u \in S \text { and } v \notin S\}
$$

A set $U \subset E$ separates u and v if

- $u \in U$ and $v \notin S$, or
- $u \notin U$ and $v \in S$
- equivalently, if $|S \cap\{u, v\}|=1$

If (u, v) is a pendent pair for symmetric function g and S^{*} is a proper subset minimizing g then:

- either S^{*} separates u and v, and we may choose $S^{*}=\{u\}$
- or else u and v are on the same side of S^{*} and we may contract u and v into a single element

A Contraction Algorithm

(Q 1995, 1998; generalizing Nagamochi \& Ibaraki, 1992)

A Contraction Algorithm

(Q 1995, 1998; generalizing Nagamochi \& Ibaraki, 1992)
Assume we can efficiently find a pendent pair for any symmetric function in a class closed under contraction,

A Contraction Algorithm

(Q 1995, 1998; generalizing Nagamochi \& Ibaraki, 1992)
Assume we can efficiently find a pendent pair for any symmetric function in a class closed under contraction, then we can find a proper subset S^{*} minimizing g after finding and contracting $n-1$ pendent pairs $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right), \ldots,\left(u_{n-1}, v_{n-1}\right)$:

A Contraction Algorithm

(Q 1995, 1998; generalizing Nagamochi \& Ibaraki, 1992)
Assume we can efficiently find a pendent pair for any symmetric function in a class closed under contraction, then we can find a proper subset S^{*} minimizing g after finding and contracting $n-1$ pendent pairs $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right), \ldots,\left(u_{n-1}, v_{n-1}\right)$:
Indeed, letting U_{i} be the original subset of E corresponding to u_{i} (for every iteration $i=1, \ldots, n-1$), then

- choose S^{*} as an U_{i} with least value $g\left(U_{i}\right)$

A Contraction Algorithm

(Q 1995, 1998; generalizing Nagamochi \& Ibaraki, 1992) Assume we can efficiently find a pendent pair for any symmetric function in a class closed under contraction, then we can find a proper subset S^{*} minimizing g after finding and contracting $n-1$ pendent pairs $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right), \ldots,\left(u_{n-1}, v_{n-1}\right)$:
Indeed, letting U_{i} be the original subset of E corresponding to u_{i} (for every iteration $i=1, \ldots, n-1$), then

- choose S^{*} as an U_{i} with least value $g\left(U_{i}\right)$

Contracting u and v amounts to replacing

- the ground set E with $E_{u, v}=(E-u-v)+u v$
- the function g with $g_{u, v}: 2^{E_{u, v}} \mapsto \mathbb{R}$ defined by

$$
g_{u, v}(S)= \begin{cases}g((S-u v)+u+v) & \text { if } u v \in S \\ g(S) & \text { otherwise }\end{cases}
$$

A Contraction Algorithm

(Q 1995, 1998; generalizing Nagamochi \& Ibaraki, 1992) Assume we can efficiently find a pendent pair for any symmetric function in a class closed under contraction, then we can find a proper subset S^{*} minimizing g after finding and contracting $n-1$ pendent pairs $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right), \ldots,\left(u_{n-1}, v_{n-1}\right)$:
Indeed, letting U_{i} be the original subset of E corresponding to u_{i} (for every iteration $i=1, \ldots, n-1$), then

- choose S^{*} as an U_{i} with least value $g\left(U_{i}\right)$

Contracting u and v amounts to replacing

- the ground set E with $E_{u, v}=(E-u-v)+u v$
- the function g with $g_{u, v}: 2^{E_{u, v}} \mapsto \mathbb{R}$ defined by

$$
g_{u, v}(S)= \begin{cases}g((S-u v)+u+v) & \text { if } u v \in S \\ g(S) & \text { otherwise }\end{cases}
$$

- If g is symmetric submodular then it remains so after contraction

A Contraction Algorithm

(Q 1995, 1998; generalizing Nagamochi \& Ibaraki, 1992) Assume we can efficiently find a pendent pair for any symmetric function in a class closed under contraction, then we can find a proper subset S^{*} minimizing g after finding and contracting $n-1$ pendent pairs $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right), \ldots,\left(u_{n-1}, v_{n-1}\right)$:
Indeed, letting U_{i} be the original subset of E corresponding to u_{i} (for every iteration $i=1, \ldots, n-1$), then

- choose S^{*} as an U_{i} with least value $g\left(U_{i}\right)$

Contracting u and v amounts to replacing

- the ground set E with $E_{u, v}=(E-u-v)+u v$
- the function g with $g_{u, v}: 2^{E_{u, v}} \mapsto \mathbb{R}$ defined by

$$
g_{u, v}(S)= \begin{cases}g((S-u v)+u+v) & \text { if } u v \in S \\ g(S) & \text { otherwise }\end{cases}
$$

- If g is symmetric submodular then it remains so after contraction
- ... hence it remains to prove the existence of a pendent pair,

A Contraction Algorithm

(Q 1995, 1998; generalizing Nagamochi \& Ibaraki, 1992) Assume we can efficiently find a pendent pair for any symmetric function in a class closed under contraction, then we can find a proper subset S^{*} minimizing g after finding and contracting $n-1$ pendent pairs $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right), \ldots,\left(u_{n-1}, v_{n-1}\right)$:
Indeed, letting U_{i} be the original subset of E corresponding to u_{i} (for every iteration $i=1, \ldots, n-1$), then

- choose S^{*} as an U_{i} with least value $g\left(U_{i}\right)$

Contracting u and v amounts to replacing

- the ground set E with $E_{u, v}=(E-u-v)+u v$
- the function g with $g_{u, v}: 2^{E_{u, v}} \mapsto \mathbb{R}$ defined by

$$
g_{u, v}(S)= \begin{cases}g((S-u v)+u+v) & \text { if } u v \in S \\ g(S) & \text { otherwise }\end{cases}
$$

- If g is symmetric submodular then it remains so after contraction
- ... hence it remains to prove the existence of a pendent pair, and to efficiently find one...

Finding a Pendent Pair

Finding a Pendent Pair

$E=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is in Maximum Adjacency (MA) order if, for all $i=1, \ldots, n-1, a_{i+1}$ satisfies $f\left(A_{i}+a_{i+1}\right)-f\left(\left\{a_{i+1}\right\}\right)=\min \left\{f\left(A_{i}+b\right)-f(\{b\}): b \in E \backslash A_{i}\right\}$ where $A_{i}=\left\{a_{1}, \ldots, a_{i}\right\}$

Finding a Pendent Pair

$E=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is in Maximum Adjacency (MA) order if, for all $i=1, \ldots, n-1, a_{i+1}$ satisfies $f\left(A_{i}+a_{i+1}\right)-f\left(\left\{a_{i+1}\right\}\right)=\min \left\{f\left(A_{i}+b\right)-f(\{b\}): b \in E \backslash A_{i}\right\}$ where $A_{i}=\left\{a_{1}, \ldots, a_{i}\right\}$

- a_{1} is arbitrary, and then a_{2}, \ldots, a_{n} are sequentially determined by this condition

Finding a Pendent Pair

$E=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is in Maximum Adjacency (MA) order if, for all $i=1, \ldots, n-1, a_{i+1}$ satisfies
$f\left(A_{i}+a_{i+1}\right)-f\left(\left\{a_{i+1}\right\}\right)=\min \left\{f\left(A_{i}+b\right)-f(\{b\}): b \in E \backslash A_{i}\right\}$ where $A_{i}=\left\{a_{1}, \ldots, a_{i}\right\}$

- a_{1} is arbitrary, and then a_{2}, \ldots, a_{n} are sequentially determined by this condition

Lemma: If f is submodular, then for all $i \in\{1, \ldots, n-1\}$, $b \in E \backslash A_{i}$ and $S \subseteq A_{i-1}, \quad f\left(A_{i}\right)+f(b) \leq f\left(A_{i} \backslash S\right)+f(S+b)$

Finding a Pendent Pair

$E=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is in Maximum Adjacency (MA) order if, for all $i=1, \ldots, n-1, a_{i+1}$ satisfies
$f\left(A_{i}+a_{i+1}\right)-f\left(\left\{a_{i+1}\right\}\right)=\min \left\{f\left(A_{i}+b\right)-f(\{b\}): b \in E \backslash A_{i}\right\}$ where $A_{i}=\left\{a_{1}, \ldots, a_{i}\right\}$

- a_{1} is arbitrary, and then a_{2}, \ldots, a_{n} are sequentially determined by this condition

Lemma: If f is submodular, then for all $i \in\{1, \ldots, n-1\}$, $b \in E \backslash A_{i}$ and $S \subseteq A_{i-1}, \quad f\left(A_{i}\right)+f(b) \leq f\left(A_{i} \backslash S\right)+f(S+b)$

- i.e., for every b not in $A_{i},\{b\}$ is an optimum subset separating b from a_{i} for the symmetric function derived from the restriction of f to $A_{i}+b$

Finding a Pendent Pair

$E=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is in Maximum Adjacency (MA) order if, for all $i=1, \ldots, n-1, a_{i+1}$ satisfies
$f\left(A_{i}+a_{i+1}\right)-f\left(\left\{a_{i+1}\right\}\right)=\min \left\{f\left(A_{i}+b\right)-f(\{b\}): b \in E \backslash A_{i}\right\}$ where $A_{i}=\left\{a_{1}, \ldots, a_{i}\right\}$

- a_{1} is arbitrary, and then a_{2}, \ldots, a_{n} are sequentially determined by this condition

Lemma: If f is submodular, then for all $i \in\{1, \ldots, n-1\}$, $b \in E \backslash A_{i}$ and $S \subseteq A_{i-1}, \quad f\left(A_{i}\right)+f(b) \leq f\left(A_{i} \backslash S\right)+f(S+b)$

- i.e., for every b not in $A_{i},\{b\}$ is an optimum subset separating b from a_{i} for the symmetric function derived from the restriction of f to $A_{i}+b$

Corollary: If f is submodular, then $\left(a_{n}, a_{n-1}\right)$ is a pendent pair for its symmetric function g_{f}

Pendent Pair Lemma

Proof of: $\quad f\left(A_{i}\right)+f(b) \leq f\left(A_{i} \backslash S\right)+f(S+b)$ for all $i \in\{1, \ldots, n-1\}, b \in E \backslash A_{i}$ and $S \subseteq A_{i-1}$

Pendent Pair Lemma

Proof of: $\quad f\left(A_{i}\right)+f(b) \leq f\left(A_{i} \backslash S\right)+f(S+b)$ for all $i \in\{1, \ldots, n-1\}, b \in E \backslash A_{i}$ and $S \subseteq A_{i-1}$
The inequality trivially holds for $i=1$ (Why?)

Pendent Pair Lemma

Proof of: $\quad f\left(A_{i}\right)+f(b) \leq f\left(A_{i} \backslash S\right)+f(S+b)$ for all $i \in\{1, \ldots, n-1\}, b \in E \backslash A_{i}$ and $S \subseteq A_{i-1}$
The inequality trivially holds for $i=1$ (Why?)
By induction, assume that it holds for all $i=1, \ldots, k-1$

Pendent Pair Lemma

Proof of: $\quad f\left(A_{i}\right)+f(b) \leq f\left(A_{i} \backslash S\right)+f(S+b)$ for all $i \in\{1, \ldots, n-1\}, b \in E \backslash A_{i}$ and $S \subseteq A_{i-1}$
The inequality trivially holds for $i=1$ (Why?)
By induction, assume that it holds for all $i=1, \ldots, k-1$
Consider any $u \in E \backslash A_{k}$, and $S \subseteq A_{k-1}$

Pendent Pair Lemma

Proof of: $\quad f\left(A_{i}\right)+f(b) \leq f\left(A_{i} \backslash S\right)+f(S+b)$ for all $i \in\{1, \ldots, n-1\}, b \in E \backslash A_{i}$ and $S \subseteq A_{i-1}$
The inequality trivially holds for $i=1$ (Why?)
By induction, assume that it holds for all $i=1, \ldots, k-1$
Consider any $u \in E \backslash A_{k}$, and $S \subseteq A_{k-1}$
The choice of a_{k} implies $f\left(A_{k}\right)+f(u) \leq f\left(A_{k-1}+u\right)+f\left(a_{k}\right)$

Pendent Pair Lemma

Proof of: $\quad f\left(A_{i}\right)+f(b) \leq f\left(A_{i} \backslash S\right)+f(S+b)$ for all $i \in\{1, \ldots, n-1\}, b \in E \backslash A_{i}$ and $S \subseteq A_{i-1}$
The inequality trivially holds for $i=1$ (Why?)
By induction, assume that it holds for all $i=1, \ldots, k-1$
Consider any $u \in E \backslash A_{k}$, and $S \subseteq A_{k-1}$
The choice of a_{k} implies $f\left(A_{k}\right)+f(u) \leq f\left(A_{k-1}+u\right)+f\left(a_{k}\right)$
Let j be the smallest integer such that $S \subseteq A_{j-1}$

Pendent Pair Lemma

Proof of: $\quad f\left(A_{i}\right)+f(b) \leq f\left(A_{i} \backslash S\right)+f(S+b)$ for all $i \in\{1, \ldots, n-1\}, b \in E \backslash A_{i}$ and $S \subseteq A_{i-1}$
The inequality trivially holds for $i=1$ (Why?)
By induction, assume that it holds for all $i=1, \ldots, k-1$
Consider any $u \in E \backslash A_{k}$, and $S \subseteq A_{k-1}$
The choice of a_{k} implies $f\left(A_{k}\right)+f(u) \leq f\left(A_{k-1}+u\right)+f\left(a_{k}\right)$
Let j be the smallest integer such that $S \subseteq A_{j-1}$

- If $j=k$ then $a_{k-1} \in S$ and $A_{k-1} \backslash S \subseteq A_{k-2}$.

Pendent Pair Lemma

Proof of: $\quad f\left(A_{i}\right)+f(b) \leq f\left(A_{i} \backslash S\right)+f(S+b)$
for all $i \in\{1, \ldots, n-1\}, b \in E \backslash A_{i}$ and $S \subseteq A_{i-1}$
The inequality trivially holds for $i=1$ (Why?)
By induction, assume that it holds for all $i=1, \ldots, k-1$
Consider any $u \in E \backslash A_{k}$, and $S \subseteq A_{k-1}$
The choice of a_{k} implies $f\left(A_{k}\right)+f(u) \leq f\left(A_{k-1}+u\right)+f\left(a_{k}\right)$
Let j be the smallest integer such that $S \subseteq A_{j-1}$

- If $j=k$ then $a_{k-1} \in S$ and $A_{k-1} \backslash S \subseteq A_{k-2}$.

Therefore,

$$
f\left(A_{k} \backslash S\right)+f(S+u)=f\left(\left(A_{k-1} \backslash S\right)+a_{k}\right)+f(S+u)
$$

Pendent Pair Lemma

Proof of: $\quad f\left(A_{i}\right)+f(b) \leq f\left(A_{i} \backslash S\right)+f(S+b)$ for all $i \in\{1, \ldots, n-1\}, b \in E \backslash A_{i}$ and $S \subseteq A_{i-1}$
The inequality trivially holds for $i=1$ (Why?)
By induction, assume that it holds for all $i=1, \ldots, k-1$
Consider any $u \in E \backslash A_{k}$, and $S \subseteq A_{k-1}$
The choice of a_{k} implies $f\left(A_{k}\right)+f(u) \leq f\left(A_{k-1}+u\right)+f\left(a_{k}\right)$
Let j be the smallest integer such that $S \subseteq A_{j-1}$

- If $j=k$ then $a_{k-1} \in S$ and $A_{k-1} \backslash S \subseteq A_{k-2}$.

Therefore,

$$
\begin{aligned}
f\left(A_{k} \backslash S\right)+f(S+u) & =f\left(\left(A_{k-1} \backslash S\right)+a_{k}\right)+f(S+u) \\
& \geq f\left(\left(A_{k-1}\right)+f\left(a_{k}\right)-f(S)+f(S+u)\right.
\end{aligned}
$$

Pendent Pair Lemma

Proof of: $\quad f\left(A_{i}\right)+f(b) \leq f\left(A_{i} \backslash S\right)+f(S+b)$ for all $i \in\{1, \ldots, n-1\}, b \in E \backslash A_{i}$ and $S \subseteq A_{i-1}$
The inequality trivially holds for $i=1$ (Why?)
By induction, assume that it holds for all $i=1, \ldots, k-1$
Consider any $u \in E \backslash A_{k}$, and $S \subseteq A_{k-1}$
The choice of a_{k} implies $f\left(A_{k}\right)+f(u) \leq f\left(A_{k-1}+u\right)+f\left(a_{k}\right)$
Let j be the smallest integer such that $S \subseteq A_{j-1}$

- If $j=k$ then $a_{k-1} \in S$ and $A_{k-1} \backslash S \subseteq A_{k-2}$.

Therefore,

$$
\begin{aligned}
f\left(A_{k} \backslash S\right)+f(S+u) & =f\left(\left(A_{k-1} \backslash S\right)+a_{k}\right)+f(S+u) \\
& \geq f\left(\left(A_{k-1}\right)+f\left(a_{k}\right)-f(S)+f(S+u)\right. \\
& \geq f\left(\left(A_{k-1}+u\right)+f\left(a_{k}\right)\right.
\end{aligned}
$$

Pendent Pair Lemma

Proof of: $\quad f\left(A_{i}\right)+f(b) \leq f\left(A_{i} \backslash S\right)+f(S+b)$ for all $i \in\{1, \ldots, n-1\}, b \in E \backslash A_{i}$ and $S \subseteq A_{i-1}$
The inequality trivially holds for $i=1$ (Why?)
By induction, assume that it holds for all $i=1, \ldots, k-1$
Consider any $u \in E \backslash A_{k}$, and $S \subseteq A_{k-1}$
The choice of a_{k} implies $f\left(A_{k}\right)+f(u) \leq f\left(A_{k-1}+u\right)+f\left(a_{k}\right)$
Let j be the smallest integer such that $S \subseteq A_{j-1}$

- If $j=k$ then $a_{k-1} \in S$ and $A_{k-1} \backslash S \subseteq A_{k-2}$.

Therefore,

$$
\begin{aligned}
f\left(A_{k} \backslash S\right)+f(S+u) & =f\left(\left(A_{k-1} \backslash S\right)+a_{k}\right)+f(S+u) \\
& \geq f\left(\left(A_{k-1}\right)+f\left(a_{k}\right)-f(S)+f(S+u)\right. \\
& \geq f\left(\left(A_{k-1}+u\right)+f\left(a_{k}\right)\right. \\
& \geq f\left(A_{k}\right)+f(u)
\end{aligned}
$$

Pendent Pair Lemma Proof (2)

- Else $j \leq k-1$, thus $a_{j-1} \in S$ and none of v_{j}, \ldots, v_{k} is in S

Pendent Pair Lemma Proof (2)

- Else $j \leq k-1$, thus $a_{j-1} \in S$ and none of v_{j}, \ldots, v_{k} is in S Since $\left\{v_{j}, \ldots, v_{k}\right\}=A_{k} \backslash A_{j-1}$, we have,

$$
f\left(A_{k} \backslash S\right)+f(S+u)=f\left(\left(A_{j-1} \backslash S\right) \cup\left(A_{k} \backslash A_{j-1}\right)\right)+f(S+u)
$$

Pendent Pair Lemma Proof (2)

- Else $j \leq k-1$, thus $a_{j-1} \in S$ and none of v_{j}, \ldots, v_{k} is in S Since $\left\{v_{j}, \ldots, v_{k}\right\}=A_{k} \backslash A_{j-1}$, we have,

$$
\begin{aligned}
f\left(A_{k} \backslash S\right)+f(S+u)= & f\left(\left(A_{j-1} \backslash S\right) \cup\left(A_{k} \backslash A_{j-1}\right)\right)+f(S+u) \\
\geq & f\left(\left(A_{j-1} \backslash S\right) \cup\left(A_{k} \backslash A_{j-1}\right)\right) \\
& +f\left(A_{j}\right)-f\left(A_{j} \backslash S\right)+f(u)
\end{aligned}
$$

Pendent Pair Lemma Proof (2)

- Else $j \leq k-1$, thus $a_{j-1} \in S$ and none of v_{j}, \ldots, v_{k} is in S Since $\left\{v_{j}, \ldots, v_{k}\right\}=A_{k} \backslash A_{j-1}$, we have,

$$
\begin{aligned}
f\left(A_{k} \backslash S\right)+f(S+u) & =f\left(\left(A_{j-1} \backslash S\right) \cup\left(A_{k} \backslash A_{j-1}\right)\right)+f(S+u) \\
& \geq f\left(\left(A_{j-1} \backslash S\right) \cup\left(A_{k} \backslash A_{j-1}\right)\right) \\
& \quad+f\left(A_{j}\right)-f\left(A_{j} \backslash S\right)+f(u) \\
& \geq f\left(A_{k}\right)+f(u)
\end{aligned}
$$

Pendent Pair Lemma Proof (2)

- Else $j \leq k-1$, thus $a_{j-1} \in S$ and none of v_{j}, \ldots, v_{k} is in S Since $\left\{v_{j}, \ldots, v_{k}\right\}=A_{k} \backslash A_{j-1}$, we have,

$$
\begin{align*}
f\left(A_{k} \backslash S\right)+f(S+u) & =f\left(\left(A_{j-1} \backslash S\right) \cup\left(A_{k} \backslash A_{j-1}\right)\right)+f(S+u) \\
& \geq f\left(\left(A_{j-1} \backslash S\right) \cup\left(A_{k} \backslash A_{j-1}\right)\right) \\
& +f\left(A_{j}\right)-f\left(A_{j} \backslash S\right)+f(u) \\
\geq & f\left(A_{k}\right)+f(u) \tag{QED}
\end{align*}
$$

The overall Sym-SFMin algorithm requires

- $n-i$ EO calls to find a_{i+1} (if we precompute all $f(\{u\})$)

Pendent Pair Lemma Proof (2)

- Else $j \leq k-1$, thus $a_{j-1} \in S$ and none of v_{j}, \ldots, v_{k} is in S Since $\left\{v_{j}, \ldots, v_{k}\right\}=A_{k} \backslash A_{j-1}$, we have,

$$
\begin{align*}
f\left(A_{k} \backslash S\right)+f(S+u) & =f\left(\left(A_{j-1} \backslash S\right) \cup\left(A_{k} \backslash A_{j-1}\right)\right)+f(S+u) \\
& \geq f\left(\left(A_{j-1} \backslash S\right) \cup\left(A_{k} \backslash A_{j-1}\right)\right) \\
& +f\left(A_{j}\right)-f\left(A_{j} \backslash S\right)+f(u) \\
& \geq f\left(A_{k}\right)+f(u) \tag{QED}
\end{align*}
$$

The overall Sym-SFMin algorithm requires

- $n-i$ EO calls to find a_{i+1} (if we precompute all $f(\{u\})$)
- $\mathrm{O}\left(n^{2}\right)$ EO calls to find a MA order $a_{1}, a_{2}, \ldots, a_{n}$

Pendent Pair Lemma Proof (2)

- Else $j \leq k-1$, thus $a_{j-1} \in S$ and none of v_{j}, \ldots, v_{k} is in S Since $\left\{v_{j}, \ldots, v_{k}\right\}=A_{k} \backslash A_{j-1}$, we have,

$$
\begin{align*}
f\left(A_{k} \backslash S\right)+f(S+u) & =f\left(\left(A_{j-1} \backslash S\right) \cup\left(A_{k} \backslash A_{j-1}\right)\right)+f(S+u) \\
& \geq f\left(\left(A_{j-1} \backslash S\right) \cup\left(A_{k} \backslash A_{j-1}\right)\right) \\
& +f\left(A_{j}\right)-f\left(A_{j} \backslash S\right)+f(u) \\
& \geq f\left(A_{k}\right)+f(u) \tag{QED}
\end{align*}
$$

The overall Sym-SFMin algorithm requires

- $n-i$ EO calls to find a_{i+1} (if we precompute all $f(\{u\})$)
- $\mathrm{O}\left(n^{2}\right)$ EO calls to find a MA order $a_{1}, a_{2}, \ldots, a_{n}$
- $\mathrm{O}\left(n^{3}\right)$ EO calls to find a proper subset minimizing g_{f} and $\mathrm{O}\left(n^{3}\right)$ other operations

Pendent Pair Lemma Proof (2)

- Else $j \leq k-1$, thus $a_{j-1} \in S$ and none of v_{j}, \ldots, v_{k} is in S Since $\left\{v_{j}, \ldots, v_{k}\right\}=A_{k} \backslash A_{j-1}$, we have,

$$
\begin{align*}
f\left(A_{k} \backslash S\right)+f(S+u) & =f\left(\left(A_{j-1} \backslash S\right) \cup\left(A_{k} \backslash A_{j-1}\right)\right)+f(S+u) \\
& \geq f\left(\left(A_{j-1} \backslash S\right) \cup\left(A_{k} \backslash A_{j-1}\right)\right) \\
& +f\left(A_{j}\right)-f\left(A_{j} \backslash S\right)+f(u) \\
& \geq f\left(A_{k}\right)+f(u) \tag{QED}
\end{align*}
$$

The overall Sym-SFMin algorithm requires

- $n-i$ EO calls to find a_{i+1} (if we precompute all $f(\{u\})$)
- $\mathrm{O}\left(n^{2}\right)$ EO calls to find a MA order $a_{1}, a_{2}, \ldots, a_{n}$
- $\mathrm{O}\left(n^{3}\right)$ EO calls to find a proper subset minimizing g_{f} and $\mathrm{O}\left(n^{3}\right)$ other operations

Pendent Pair Lemma Proof (2)

- Else $j \leq k-1$, thus $a_{j-1} \in S$ and none of v_{j}, \ldots, v_{k} is in S Since $\left\{v_{j}, \ldots, v_{k}\right\}=A_{k} \backslash A_{j-1}$, we have,

$$
\begin{align*}
f\left(A_{k} \backslash S\right)+f(S+u) & =f\left(\left(A_{j-1} \backslash S\right) \cup\left(A_{k} \backslash A_{j-1}\right)\right)+f(S+u) \\
& \geq f\left(\left(A_{j-1} \backslash S\right) \cup\left(A_{k} \backslash A_{j-1}\right)\right) \\
& +f\left(A_{j}\right)-f\left(A_{j} \backslash S\right)+f(u) \\
& \geq f\left(A_{k}\right)+f(u) \tag{QED}
\end{align*}
$$

The overall Sym-SFMin algorithm requires

- $n-i$ EO calls to find a_{i+1} (if we precompute all $f(\{u\})$)
- $\mathrm{O}\left(n^{2}\right)$ EO calls to find a MA order $a_{1}, a_{2}, \ldots, a_{n}$
- $\mathrm{O}\left(n^{3}\right)$ EO calls to find a proper subset minimizing g_{f} and $\mathrm{O}\left(n^{3}\right)$ other operations
- Purely combinatorial, and faster than (current) general SFMin

Sym-SFMin: Examples and Extensions

Sym-SFMin: Examples and Extensions

Examples:

- Global MinCut in a Graph (Nagamochi \& Ibaraki, 1992), where f is a graph cut function
- $\mathrm{O}\left(|V|^{2} \log |V|\right)$ operations

Sym-SFMin: Examples and Extensions

Examples:

- Global MinCut in a Graph (Nagamochi \& Ibaraki, 1992), where f is a graph cut function
- $\mathrm{O}\left(|V|^{2} \log |V|\right)$ operations
- 2-Layer VLSI Circuit Design (Klimmek \& Wagner, 1996), where f is a hypergraph cut function
- $\mathrm{O}\left(|V|^{2} \log |V|+|V||H|\right)$ operations

Sym-SFMin: Examples and Extensions

Examples:

- Global MinCut in a Graph (Nagamochi \& Ibaraki, 1992), where f is a graph cut function
- $\mathrm{O}\left(|V|^{2} \log |V|\right)$ operations
- 2-Layer VLSI Circuit Design (Klimmek \& Wagner, 1996), where f is a hypergraph cut function
- $\mathrm{O}\left(|V|^{2} \log |V|+|V||H|\right)$ operations

Extensions: Minimizing

- posimodular functions (Nagamochi \& Ibaraki, 1998), i.e., functions satisfying

$$
f(A)+f(B) \geq f(A \backslash B)+f(B \backslash A) \text { for all } A, B \subseteq V
$$

Sym-SFMin: Examples and Extensions

Examples:

- Global MinCut in a Graph (Nagamochi \& Ibaraki, 1992), where f is a graph cut function
- $\mathrm{O}\left(|V|^{2} \log |V|\right)$ operations
- 2-Layer VLSI Circuit Design (Klimmek \& Wagner, 1996), where f is a hypergraph cut function
- $\mathrm{O}\left(|V|^{2} \log |V|+|V||H|\right)$ operations

Extensions: Minimizing

- posimodular functions (Nagamochi \& Ibaraki, 1998), i.e., functions satisfying

$$
f(A)+f(B) \geq f(A \backslash B)+f(B \backslash A) \text { for all } A, B \subseteq V
$$

- symmetric submodular function subject to hereditary family constraints (Goemans \& Soto, 2013): $\min \{f(S): S \in \mathcal{I}\}$ where $\mathcal{I} \subseteq 2^{V}$ satisfies, for all $A, B \subseteq V$,
$\emptyset \neq A \subset B \in \mathcal{I} \quad \Rightarrow \quad A \in \mathcal{I}$

Optimum Proper Partition

(Baïou, Barahona \& Mahjoub, 2000), motivated by a separation problem for certain connectivity constraints

Optimum Proper Partition

(Baïou, Barahona \& Mahjoub, 2000), motivated by a separation problem for certain connectivity constraints

Find a proper partition \mathbf{P} of E i.e., of size $|\mathbf{P}| \geq 2$, with minimum total cost $f(\mathbf{P})$?

Optimum Proper Partition

(Baïou, Barahona \& Mahjoub, 2000), motivated by a separation problem for certain connectivity constraints

Find a proper partition \mathbf{P} of E i.e., of size $|\mathbf{P}| \geq 2$, with minimum total cost $f(\mathbf{P})$?

For any set function f, if $\mathbf{P}=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ is optimum then:

Optimum Proper Partition

(Baïou, Barahona \& Mahjoub, 2000), motivated by a separation problem for certain connectivity constraints

Find a proper partition \mathbf{P} of E i.e., of size $|\mathbf{P}| \geq 2$, with minimum total cost $f(\mathbf{P})$?

For any set function f, if $\mathbf{P}=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ is optimum then:

- $\left\{P_{1}\right\}$ itself is an optimum partition of P_{1}

Optimum Proper Partition

(Baïou, Barahona \& Mahjoub, 2000), motivated by a separation problem for certain connectivity constraints

Find a proper partition \mathbf{P} of E i.e., of size $|\mathbf{P}| \geq 2$, with minimum total cost $f(\mathbf{P})$?

For any set function f, if $\mathbf{P}=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ is optimum then:

- $\left\{P_{1}\right\}$ itself is an optimum partition of P_{1} and thus

$$
f\left(P_{1}\right)=f^{D}\left(P_{1}\right), \text { and }
$$

Optimum Proper Partition

(Baïou, Barahona \& Mahjoub, 2000), motivated by a separation problem for certain connectivity constraints

Find a proper partition \mathbf{P} of E i.e., of size $|\mathbf{P}| \geq 2$, with minimum total cost $f(\mathbf{P})$?

For any set function f, if $\mathbf{P}=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ is optimum then:

- $\left\{P_{1}\right\}$ itself is an optimum partition of P_{1} and thus

$$
f\left(P_{1}\right)=f^{D}\left(P_{1}\right), \text { and }
$$

- $\left\{P_{2}, \ldots, P_{k}\right\}$ is an optimum partition of $E \backslash P_{1}$

Optimum Proper Partition

(Baïou, Barahona \& Mahjoub, 2000), motivated by a separation problem for certain connectivity constraints

Find a proper partition \mathbf{P} of E i.e., of size $|\mathbf{P}| \geq 2$, with minimum total cost $f(\mathbf{P})$?

For any set function f, if $\mathbf{P}=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ is optimum then:

- $\left\{P_{1}\right\}$ itself is an optimum partition of P_{1} and thus

$$
f\left(P_{1}\right)=f^{D}\left(P_{1}\right), \text { and }
$$

- $\left\{P_{2}, \ldots, P_{k}\right\}$ is an optimum partition of $E \backslash P_{1}$ and thus

$$
f\left(P_{2}\right)+\cdots+f\left(P_{k}\right)=f^{D}\left(E \backslash P_{1}\right)
$$

Optimum Proper Partition

(Baïou, Barahona \& Mahjoub, 2000), motivated by a separation problem for certain connectivity constraints

Find a proper partition \mathbf{P} of E i.e., of size $|\mathbf{P}| \geq 2$, with minimum total cost $f(\mathbf{P})$?

For any set function f, if $\mathbf{P}=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ is optimum then:

- $\left\{P_{1}\right\}$ itself is an optimum partition of P_{1} and thus

$$
f\left(P_{1}\right)=f^{D}\left(P_{1}\right), \text { and }
$$

- $\left\{P_{2}, \ldots, P_{k}\right\}$ is an optimum partition of $E \backslash P_{1}$ and thus

$$
f\left(P_{2}\right)+\cdots+f\left(P_{k}\right)=f^{D}\left(E \backslash P_{1}\right)
$$

Hence it suffices to find an optimum bipartition of the Dilworth truncation f^{D}

Optimum Proper Partition

(Baïou, Barahona \& Mahjoub, 2000), motivated by a separation problem for certain connectivity constraints

Find a proper partition \mathbf{P} of E i.e., of size $|\mathbf{P}| \geq 2$, with minimum total cost $f(\mathbf{P})$?

For any set function f, if $\mathbf{P}=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ is optimum then:

- $\left\{P_{1}\right\}$ itself is an optimum partition of P_{1} and thus

$$
f\left(P_{1}\right)=f^{D}\left(P_{1}\right), \text { and }
$$

- $\left\{P_{2}, \ldots, P_{k}\right\}$ is an optimum partition of $E \backslash P_{1}$ and thus

$$
f\left(P_{2}\right)+\cdots+f\left(P_{k}\right)=f^{D}\left(E \backslash P_{1}\right)
$$

Hence it suffices to find an optimum bipartition of the Dilworth truncation f^{D}
\Rightarrow When f is submodular, $\mathrm{O}\left(n^{4}\right)$ EO's suffice

More Parts?

What is the computational complexity of finding an optimum k-way partition with submodular part cost function f (given by a value oracle)?

More Parts?

What is the computational complexity of finding an optimum k-way partition with submodular part cost function f (given by a value oracle)?

- NP-hard when k is part of the input, even for graph cut functions (Goldschmidt \& Hochbaum, 1994)

More Parts?

What is the computational complexity of finding an optimum k-way partition with submodular part cost function f (given by a value oracle)?

- NP-hard when k is part of the input, even for graph cut functions (Goldschmidt \& Hochbaum, 1994)
- When f is submodular (and normalized) an optimum 3-way partition can be found in polytime (Okumoto \& al., 2012)

More Parts?

What is the computational complexity of finding an optimum k-way partition with submodular part cost function f (given by a value oracle)?

- NP-hard when k is part of the input, even for graph cut functions (Goldschmidt \& Hochbaum, 1994)
- When f is submodular (and normalized) an optimum 3-way partition can be found in polytime (Okumoto \& al., 2012)
- When f is symmetric and submodular an optimum 4-way partition can be found in polytime

More Parts?

What is the computational complexity of finding an optimum k-way partition with submodular part cost function f (given by a value oracle)?

- NP-hard when k is part of the input, even for graph cut functions (Goldschmidt \& Hochbaum, 1994)
- When f is submodular (and normalized) an optimum 3-way partition can be found in polytime (Okumoto \& al., 2012)
- When f is symmetric and submodular an optimum 4-way partition can be found in polytime
- e.g., based on (Nagamochi \& Ibaraki 2000) and using optimum submodular-costs 3-way cuts

More Parts?

What is the computational complexity of finding an optimum k-way partition with submodular part cost function f (given by a value oracle)?

- NP-hard when k is part of the input, even for graph cut functions (Goldschmidt \& Hochbaum, 1994)
- When f is submodular (and normalized) an optimum 3-way partition can be found in polytime (Okumoto \& al., 2012)
- When f is symmetric and submodular an optimum 4-way partition can be found in polytime
- e.g., based on (Nagamochi \& Ibaraki 2000) and using optimum submodular-costs 3-way cuts
- ... see Thursday afternoon talk for related complexity results and open questions

Optimum k-Way Partitions: An Approximation Algorithm

Optimum k-Way Partitions: An Approximation Algorithm

Assume that g is symmetric, submodular and nonnegative ($g(S) \geq 0$ for all $S \subseteq E$)

Optimum k-Way Partitions: An Approximation Algorithm

Assume that g is symmetric, submodular and nonnegative ($g(S) \geq 0$ for all $S \subseteq E$)

Greedy Splitting Algorithm:

1. Let $\mathbf{P}=\left\{A_{1}\right\}$ where $A_{1}=E$

Optimum k-Way Partitions: An Approximation Algorithm

Assume that g is symmetric, submodular and nonnegative ($g(S) \geq 0$ for all $S \subseteq E$)

Greedy Splitting Algorithm:

1. Let $\mathbf{P}=\left\{A_{1}\right\}$ where $A_{1}=E$
2. For $j=2, \ldots, k$

- Let $A_{i}(i \in\{1, \ldots, j-1\})$ be a subset whose optimum bipartition $\left\{B_{1}, B_{2}\right\}$ least increases the total cost

Optimum k-Way Partitions: An Approximation Algorithm

Assume that g is symmetric, submodular and nonnegative ($g(S) \geq 0$ for all $S \subseteq E$)

Greedy Splitting Algorithm:

1. Let $\mathbf{P}=\left\{A_{1}\right\}$ where $A_{1}=E$
2. For $j=2, \ldots, k$

- Let $A_{i}(i \in\{1, \ldots, j-1\})$ be a subset whose optimum bipartition $\left\{B_{1}, B_{2}\right\}$ least increases the total cost
- Replace A_{i} in \mathbf{P} with B_{1} and add B_{2} to \mathbf{P}

Optimum k-Way Partitions: An Approximation Algorithm

Assume that g is symmetric, submodular and nonnegative ($g(S) \geq 0$ for all $S \subseteq E$)

Greedy Splitting Algorithm:

1. Let $\mathbf{P}=\left\{A_{1}\right\}$ where $A_{1}=E$
2. For $j=2, \ldots, k$

- Let $A_{i}(i \in\{1, \ldots, j-1\})$ be a subset whose optimum bipartition $\left\{B_{1}, B_{2}\right\}$ least increases the total cost
- Replace A_{i} in \mathbf{P} with B_{1} and add B_{2} to \mathbf{P}

This requires $2 k-3$ Sym-SFMin, $\Rightarrow \mathrm{O}\left(k n^{3}\right) \mathrm{EO}$'s, and $\mathrm{O}\left(k n^{3}\right)$ other operations

Optimum k-Way Partitions: An Approximation Algorithm

Assume that g is symmetric, submodular and nonnegative ($g(S) \geq 0$ for all $S \subseteq E$)

Greedy Splitting Algorithm:

1. Let $\mathbf{P}=\left\{A_{1}\right\}$ where $A_{1}=E$
2. For $j=2, \ldots, k$

- Let $A_{i}(i \in\{1, \ldots, j-1\})$ be a subset whose optimum bipartition $\left\{B_{1}, B_{2}\right\}$ least increases the total cost
- Replace A_{i} in \mathbf{P} with B_{1} and add B_{2} to \mathbf{P}

This requires $2 k-3$ Sym-SFMin, $\Rightarrow \mathrm{O}\left(k n^{3}\right) \mathrm{EO}$'s, and $\mathrm{O}\left(k n^{3}\right)$ other operations
Theorem: [Q 1999; Zhao, Nagamochi \& Ibaraki 2005] If g is symmetric, submodular and nonnegative, then (for every $k \geq 2$) the Greedy Splitting Algorithm produces a k-way partition with total cost at most $2-\frac{2}{k}$ times the optimum

Notes

Short Course on Submodular Functions
 Part 2: Extensions and Related Problems Session 2.B: SFmax

S. Thomas McCormick Maurice Queyranne

Sauder School of Business, UBC JPOC Summer School, June 2013

SFMax

Maximizing an oracle-given submodular function f

SFMax

Maximizing an oracle-given submodular function f

- easy if f is a polymatroid function, i.e., also monotone (nondecreasing)

SFMax

Maximizing an oracle-given submodular function f

- easy if f is a polymatroid function, i.e., also monotone (nondecreasing)
- take the whole set E

SFMax

Maximizing an oracle-given submodular function f

- easy if f is a polymatroid function, i.e., also monotone (nondecreasing)
- take the whole set E
- (works for any monotone set function)

SFMax

Maximizing an oracle-given submodular function f

- easy if f is a polymatroid function, i.e., also monotone (nondecreasing)
- take the whole set E
- (works for any monotone set function)
- NP-hard for (non-monotone) submodular f

SFMax

Maximizing an oracle-given submodular function f

- easy if f is a polymatroid function, i.e., also monotone (nondecreasing)
- take the whole set E
- (works for any monotone set function)
- NP-hard for (non-monotone) submodular f
- example: MaxCut

SFMax

Maximizing an oracle-given submodular function f

- easy if f is a polymatroid function, i.e., also monotone (nondecreasing)
- take the whole set E
- (works for any monotone set function)
- NP-hard for (non-monotone) submodular f
- example: MaxCut

SFMax

Maximizing an oracle-given submodular function f

- easy if f is a polymatroid function, i.e., also monotone (nondecreasing)
- take the whole set E
- (works for any monotone set function)
- NP-hard for (non-monotone) submodular f
- example: MaxCut

We shall be interested in approximation algorithms

SFMax

Maximizing an oracle-given submodular function f

- easy if f is a polymatroid function, i.e., also monotone (nondecreasing)
- take the whole set E
- (works for any monotone set function)
- NP-hard for (non-monotone) submodular f
- example: MaxCut

We shall be interested in approximation algorithms and two special cases:

1. Maximizing a polymatroid function subject to a cardinality constraint

SFMax

Maximizing an oracle-given submodular function f

- easy if f is a polymatroid function, i.e., also monotone (nondecreasing)
- take the whole set E
- (works for any monotone set function)
- NP-hard for (non-monotone) submodular f
- example: MaxCut

We shall be interested in approximation algorithms and two special cases:

1. Maximizing a polymatroid function subject to a cardinality constraint
2. Maximizing a (non-monotone, nonnegative) submodular function

Max k-Cover

Max k-Cover

Given m (feasible) subsets E_{1}, \ldots, E_{m} of ground set E,

Max k-Cover

Given m (feasible) subsets E_{1}, \ldots, E_{m} of ground set E, define the cover function $f: 2^{V} \mapsto \mathbb{R}$ as $f(S)=\left|\bigcup_{i \in S} E_{i}\right|$ for any $S \subseteq V=\{1, \ldots, m\}$

Max k-Cover

Given m (feasible) subsets E_{1}, \ldots, E_{m} of ground set E, define the cover function $f: 2^{V} \mapsto \mathbb{R}$ as $f(S)=\left|\bigcup_{i \in S} E_{i}\right|$ for any $S \subseteq V=\{1, \ldots, m\}$

- the total number of elements of E covered by the subsets in (indexed by) S

Max k-Cover

Given m (feasible) subsets E_{1}, \ldots, E_{m} of ground set E, define the cover function $f: 2^{V} \mapsto \mathbb{R}$ as $f(S)=\left|\bigcup_{i \in S} E_{i}\right|$ for any $S \subseteq V=\{1, \ldots, m\}$

- the total number of elements of E covered by the subsets in (indexed by) S
- f is a polymatroid function (Why?)

Max k-Cover

Given m (feasible) subsets E_{1}, \ldots, E_{m} of ground set E, define the cover function $f: 2^{V} \mapsto \mathbb{R}$ as $f(S)=\left|\bigcup_{i \in S} E_{i}\right|$ for any $S \subseteq V=\{1, \ldots, m\}$

- the total number of elements of E covered by the subsets in (indexed by) S
- f is a polymatroid function (Why?)

Max k-Cover

Given m (feasible) subsets E_{1}, \ldots, E_{m} of ground set E, define the cover function $f: 2^{V} \mapsto \mathbb{R}$ as $f(S)=\left|\bigcup_{i \in S} E_{i}\right|$ for any $S \subseteq V=\{1, \ldots, m\}$

- the total number of elements of E covered by the subsets in (indexed by) S
- f is a polymatroid function (Why?)

Given integer $k \in V$, Max k-Cover is $\max \{f(S): S \subseteq V,|S| \leq k\}$

Max k-Cover

Given m (feasible) subsets E_{1}, \ldots, E_{m} of ground set E, define the cover function $f: 2^{V} \mapsto \mathbb{R}$ as $f(S)=\left|\bigcup_{i \in S} E_{i}\right|$ for any $S \subseteq V=\{1, \ldots, m\}$

- the total number of elements of E covered by the subsets in (indexed by) S
- f is a polymatroid function (Why?)

Given integer $k \in V$, Max k-Cover is $\max \{f(S): S \subseteq V,|S| \leq k\}$

- maximize the total number of elements covered by at most k subsets

Max k-Cover

Given m (feasible) subsets E_{1}, \ldots, E_{m} of ground set E, define the cover function $f: 2^{V} \mapsto \mathbb{R}$ as $f(S)=\left|\bigcup_{i \in S} E_{i}\right|$ for any $S \subseteq V=\{1, \ldots, m\}$

- the total number of elements of E covered by the subsets in (indexed by) S
- f is a polymatroid function (Why?)

Given integer $k \in V$, Max k-Cover is $\max \{f(S): S \subseteq V,|S| \leq k\}$

- maximize the total number of elements covered by at most k subsets
- equivalently: $\max \{f(S): S \subseteq E,|S|=k\}$ (Why?)

Max k-Cover

Given m (feasible) subsets E_{1}, \ldots, E_{m} of ground set E, define the cover function $f: 2^{V} \mapsto \mathbb{R}$ as $f(S)=\left|\bigcup_{i \in S} E_{i}\right|$ for any $S \subseteq V=\{1, \ldots, m\}$

- the total number of elements of E covered by the subsets in (indexed by) S
- f is a polymatroid function (Why?)

Given integer $k \in V$, Max k-Cover is $\max \{f(S): S \subseteq V,|S| \leq k\}$

- maximize the total number of elements covered by at most k subsets
- equivalently: $\max \{f(S): S \subseteq E,|S|=k\}$ (Why?)
- NP-hard

Max k-Cover

Given m (feasible) subsets E_{1}, \ldots, E_{m} of ground set E, define the cover function $f: 2^{V} \mapsto \mathbb{R}$ as $f(S)=\left|\bigcup_{i \in S} E_{i}\right|$ for any $S \subseteq V=\{1, \ldots, m\}$

- the total number of elements of E covered by the subsets in (indexed by) S
- f is a polymatroid function (Why?)

Given integer $k \in V$, Max k-Cover is $\max \{f(S): S \subseteq V,|S| \leq k\}$

- maximize the total number of elements covered by at most k subsets
- equivalently: $\max \{f(S): S \subseteq E,|S|=k\}$ (Why?)
- NP-hard
- cannot be approximated within a ratio better (larger) than $1-1 / e \approx 0.632$, unless $P=$ NP (Feige 1998)

Cardinality-Constrained Polymatroid Maximization

Cardinality-Constrained Polymatroid Maximization

Given a normalized polymatroid function f on E

- hence f is nonnegative

Cardinality-Constrained Polymatroid Maximization

Given a normalized polymatroid function f on E

- hence f is nonnegative

Cardinality-Constrained Polymatroid Maximization

Given a normalized polymatroid function f on E

- hence f is nonnegative and integer k, let $\mathrm{OPT}_{k}=\max \{f(S): S \subseteq E,|S| \leq k\}$

Cardinality-Constrained Polymatroid Maximization

Given a normalized polymatroid function f on E

- hence f is nonnegative and integer k, let $\mathrm{OPT}_{k}=\max \{f(S): S \subseteq E,|S| \leq k\}$

Greedy Algorithm

Cardinality-Constrained Polymatroid Maximization

Given a normalized polymatroid function f on E

- hence f is nonnegative and integer k, let $\mathrm{OPT}_{k}=\max \{f(S): S \subseteq E,|S| \leq k\}$

Greedy Algorithm

Starting with $S_{0}=\emptyset$, repeat the following greedy step: for $i=0, \ldots,(k-1)$ let

$$
S_{i+1}=S_{i}+v_{i} \text { where } v_{i} \in \arg \max _{u \in E \backslash S_{i}} f\left(S_{i}+u\right)
$$

Cardinality-Constrained Polymatroid Maximization

Given a normalized polymatroid function f on E

- hence f is nonnegative and integer k, let $\mathrm{OPT}_{k}=\max \{f(S): S \subseteq E,|S| \leq k\}$

Greedy Algorithm

Starting with $S_{0}=\emptyset$, repeat the following greedy step: for $i=0, \ldots,(k-1)$ let

$$
S_{i+1}=S_{i}+v_{i} \text { where } v_{i} \in \arg \max _{u \in E \backslash S_{i}} f\left(S_{i}+u\right)
$$

- equivalently, v_{i} yields the largest increment

$$
f\left(u \mid S_{i}\right)=f\left(S_{i}+u\right)-f\left(S_{i}\right)
$$

Cardinality-Constrained Polymatroid Maximization

Given a normalized polymatroid function f on E

- hence f is nonnegative and integer k, let $\mathrm{OPT}_{k}=\max \{f(S): S \subseteq E,|S| \leq k\}$

Greedy Algorithm

Starting with $S_{0}=\emptyset$, repeat the following greedy step: for $i=0, \ldots,(k-1)$ let

$$
S_{i+1}=S_{i}+v_{i} \text { where } v_{i} \in \arg \max _{u \in E \backslash S_{i}} f\left(S_{i}+u\right)
$$

- equivalently, v_{i} yields the largest increment

$$
f\left(u \mid S_{i}\right)=f\left(S_{i}+u\right)-f\left(S_{i}\right)
$$

Cardinality-Constrained Polymatroid Maximization

Given a normalized polymatroid function f on E

- hence f is nonnegative and integer k, let $\mathrm{OPT}_{k}=\max \{f(S): S \subseteq E,|S| \leq k\}$

Greedy Algorithm

Starting with $S_{0}=\emptyset$, repeat the following greedy step: for $i=0, \ldots,(k-1)$ let

$$
S_{i+1}=S_{i}+v_{i} \text { where } v_{i} \in \arg \max _{u \in E \backslash S_{i}} f\left(S_{i}+u\right)
$$

- equivalently, v_{i} yields the largest increment

$$
f\left(u \mid S_{i}\right)=f\left(S_{i}+u\right)-f\left(S_{i}\right)
$$

Theorem (Nemhauser, Wolsey \& Fisher, 1978)

Cardinality-Constrained Polymatroid Maximization

Given a normalized polymatroid function f on E

- hence f is nonnegative and integer k, let $\mathrm{OPT}_{k}=\max \{f(S): S \subseteq E,|S| \leq k\}$

Greedy Algorithm

Starting with $S_{0}=\emptyset$, repeat the following greedy step: for $i=0, \ldots,(k-1)$ let

$$
S_{i+1}=S_{i}+v_{i} \text { where } v_{i} \in \arg \max _{u \in E \backslash S_{i}} f\left(S_{i}+u\right)
$$

- equivalently, v_{i} yields the largest increment

$$
f\left(u \mid S_{i}\right)=f\left(S_{i}+u\right)-f\left(S_{i}\right)
$$

Theorem (Nemhauser, Wolsey \& Fisher, 1978)
If f is a normalized polymatroid function then the Greedy Algorithm returns sets S_{i} with values

$$
f\left(S_{i}\right) \geq(1-1 / e) \mathrm{OPT}_{i} \text { for all } i=0, \ldots, k
$$

Cardinality-Constrained Polymatroid Maximization

Given a normalized polymatroid function f on E

- hence f is nonnegative and integer k, let $\mathrm{OPT}_{k}=\max \{f(S): S \subseteq E,|S| \leq k\}$

Greedy Algorithm

Starting with $S_{0}=\emptyset$, repeat the following greedy step: for $i=0, \ldots,(k-1)$ let

$$
S_{i+1}=S_{i}+v_{i} \text { where } v_{i} \in \arg \max _{u \in E \backslash S_{i}} f\left(S_{i}+u\right)
$$

- equivalently, v_{i} yields the largest increment

$$
f\left(u \mid S_{i}\right)=f\left(S_{i}+u\right)-f\left(S_{i}\right)
$$

Theorem (Nemhauser, Wolsey \& Fisher, 1978)
If f is a normalized polymatroid function then the Greedy
Algorithm returns sets S_{i} with values

$$
f\left(S_{i}\right) \geq(1-1 / e) \mathrm{OPT}_{i} \text { for all } i=0, \ldots, k
$$

- since Max k-cover is a special case, by Feige's result this is the best possible approximation guarantee (unless $P=N P$)

Cardinality-Constrained Polymatroid Maximization

Given a normalized polymatroid function f on E

- hence f is nonnegative and integer k, let $\mathrm{OPT}_{k}=\max \{f(S): S \subseteq E,|S| \leq k\}$

Greedy Algorithm

Starting with $S_{0}=\emptyset$, repeat the following greedy step: for $i=0, \ldots,(k-1)$ let

$$
S_{i+1}=S_{i}+v_{i} \text { where } v_{i} \in \arg \max _{u \in E \backslash S_{i}} f\left(S_{i}+u\right)
$$

- equivalently, v_{i} yields the largest increment

$$
f\left(u \mid S_{i}\right)=f\left(S_{i}+u\right)-f\left(S_{i}\right)
$$

Theorem (Nemhauser, Wolsey \& Fisher, 1978)
If f is a normalized polymatroid function then the Greedy
Algorithm returns sets S_{i} with values

$$
f\left(S_{i}\right) \geq(1-1 / e) \mathrm{OPT}_{i} \text { for all } i=0, \ldots, k
$$

- since Max k-cover is a special case, by Feige's result this is the best possible approximation guarantee (unless $\mathrm{P}=\mathrm{NP}$)
- this guarantee holds at every step i (relative to OPT_{i})

(1-1/e)-Approximation: Proof Idea

We shall prove a more general result, but here is where the ($1-1 / e$) factor comes from:

(1-1/e)-Approximation: Proof Idea

We shall prove a more general result, but here is where the ($1-1 / e$) factor comes from:

- Let $S^{*} \in \arg \max \{f(S): S \subseteq E,|S| \leq k\}$, so $f\left(S^{*}\right)=$ OPT $_{k}$

(1-1/e)-Approximation: Proof Idea

We shall prove a more general result, but here is where the ($1-1 / e$) factor comes from:

- Let $S^{*} \in \arg \max \{f(S): S \subseteq E,|S| \leq k\}$, so $f\left(S^{*}\right)=$ OPT $_{k}$
- By submodularity and the greedy step, we will prove that there exist $u \in S^{*} \backslash S_{i}$ such that the increment

$$
f\left(u \mid S_{i}\right) \geq \frac{1}{k}\left(\mathrm{OPT}_{k}-f\left(S_{i}\right)\right)
$$

(1-1/e)-Approximation: Proof Idea

We shall prove a more general result, but here is where the ($1-1 / e$) factor comes from:

- Let $S^{*} \in \arg \max \{f(S): S \subseteq E,|S| \leq k\}$, so $f\left(S^{*}\right)=$ OPT $_{k}$
- By submodularity and the greedy step, we will prove that there exist $u \in S^{*} \backslash S_{i}$ such that the increment

$$
f\left(u \mid S_{i}\right) \geq \frac{1}{k}\left(\mathrm{OPT}_{k}-f\left(S_{i}\right)\right)
$$

- $\left(\mathrm{OPT}_{k}-f\left(S_{i}\right)\right)$ is the current (absolute) gap at iteration S_{i} (relative to the size- k optimum)

(1-1/e)-Approximation: Proof Idea

We shall prove a more general result, but here is where the ($1-1 / e$) factor comes from:

- Let $S^{*} \in \arg \max \{f(S): S \subseteq E,|S| \leq k\}$, so $f\left(S^{*}\right)=$ OPT $_{k}$
- By submodularity and the greedy step, we will prove that there exist $u \in S^{*} \backslash S_{i}$ such that the increment

$$
f\left(u \mid S_{i}\right) \geq \frac{1}{k}\left(\mathrm{OPT}_{k}-f\left(S_{i}\right)\right)
$$

- $\left(\mathrm{OPT}_{k}-f\left(S_{i}\right)\right)$ is the current (absolute) gap at iteration S_{i} (relative to the size- k optimum)
- The increment at greedy step i is at least that large, hence

$$
f\left(S_{i+1}\right)-f\left(S_{i}\right) \geq \frac{1}{k}\left(\mathrm{OPT}_{k}-f\left(S_{i}\right)\right)
$$

(1-1/e)-Approximation: Proof Idea

We shall prove a more general result, but here is where the ($1-1 / e$) factor comes from:

- Let $S^{*} \in \arg \max \{f(S): S \subseteq E,|S| \leq k\}$, so $f\left(S^{*}\right)=$ OPT $_{k}$
- By submodularity and the greedy step, we will prove that there exist $u \in S^{*} \backslash S_{i}$ such that the increment

$$
f\left(u \mid S_{i}\right) \geq \frac{1}{k}\left(\mathrm{OPT}_{k}-f\left(S_{i}\right)\right)
$$

- $\left(\mathrm{OPT}_{k}-f\left(S_{i}\right)\right)$ is the current (absolute) gap at iteration S_{i} (relative to the size- k optimum)
- The increment at greedy step i is at least that large, hence

$$
f\left(S_{i+1}\right)-f\left(S_{i}\right) \geq \frac{1}{k}\left(\mathrm{OPT}_{k}-f\left(S_{i}\right)\right)
$$

- Equivalently, $\mathrm{OPT}_{k}-f\left(S_{i+1}\right) \leq\left(1-\frac{1}{k}\right)\left(\mathrm{OPT}_{k}-f\left(S_{i}\right)\right)$

(1-1/e)-Approximation: Proof Idea

We shall prove a more general result, but here is where the ($1-1 / e$) factor comes from:

- Let $S^{*} \in \arg \max \{f(S): S \subseteq E,|S| \leq k\}$, so $f\left(S^{*}\right)=$ OPT $_{k}$
- By submodularity and the greedy step, we will prove that there exist $u \in S^{*} \backslash S_{i}$ such that the increment

$$
f\left(u \mid S_{i}\right) \geq \frac{1}{k}\left(\mathrm{OPT}_{k}-f\left(S_{i}\right)\right)
$$

- $\left(\mathrm{OPT}_{k}-f\left(S_{i}\right)\right)$ is the current (absolute) gap at iteration S_{i} (relative to the size- k optimum)
- The increment at greedy step i is at least that large, hence

$$
f\left(S_{i+1}\right)-f\left(S_{i}\right) \geq \frac{1}{k}\left(\mathrm{OPT}_{k}-f\left(S_{i}\right)\right)
$$

- Equivalently, $\mathrm{OPT}_{k}-f\left(S_{i+1}\right) \leq\left(1-\frac{1}{k}\right)\left(\mathrm{OPT}_{k}-f\left(S_{i}\right)\right)$

(1-1/e)-Approximation: Proof Idea

We shall prove a more general result, but here is where the (1-1/e) factor comes from:

- Let $S^{*} \in \arg \max \{f(S): S \subseteq E,|S| \leq k\}$, so $f\left(S^{*}\right)=$ OPT $_{k}$
- By submodularity and the greedy step, we will prove that there exist $u \in S^{*} \backslash S_{i}$ such that the increment

$$
f\left(u \mid S_{i}\right) \geq \frac{1}{k}\left(\mathrm{OPT}_{k}-f\left(S_{i}\right)\right)
$$

- $\left(\mathrm{OPT}_{k}-f\left(S_{i}\right)\right)$ is the current (absolute) gap at iteration S_{i} (relative to the size- k optimum)
- The increment at greedy step i is at least that large, hence

$$
f\left(S_{i+1}\right)-f\left(S_{i}\right) \geq \frac{1}{k}\left(\mathrm{OPT}_{k}-f\left(S_{i}\right)\right)
$$

- Equivalently, $\mathrm{OPT}_{k}-f\left(S_{i+1}\right) \leq\left(1-\frac{1}{k}\right)\left(\mathrm{OPT}_{k}-f\left(S_{i}\right)\right)$ i.e., the gap decreases by a factor $\geq(1-1 / k)$ at each step
- Since the initial gap $\mathrm{OPT}_{k}-f\left(S_{0}\right) \leq \mathrm{OPT}_{k}$, the final gap

$$
\mathrm{OPT}_{k}-S_{k} \leq\left(1-\frac{1}{k}\right)^{k} \mathrm{OPT}_{k}
$$

(1-1/e)-Approximation: Proof Idea

We shall prove a more general result, but here is where the (1-1/e) factor comes from:

- Let $S^{*} \in \arg \max \{f(S): S \subseteq E,|S| \leq k\}$, so $f\left(S^{*}\right)=$ OPT $_{k}$
- By submodularity and the greedy step, we will prove that there exist $u \in S^{*} \backslash S_{i}$ such that the increment

$$
f\left(u \mid S_{i}\right) \geq \frac{1}{k}\left(\mathrm{OPT}_{k}-f\left(S_{i}\right)\right)
$$

- $\left(\mathrm{OPT}_{k}-f\left(S_{i}\right)\right)$ is the current (absolute) gap at iteration S_{i} (relative to the size- k optimum)
- The increment at greedy step i is at least that large, hence

$$
f\left(S_{i+1}\right)-f\left(S_{i}\right) \geq \frac{1}{k}\left(\mathrm{OPT}_{k}-f\left(S_{i}\right)\right)
$$

- Equivalently, $\mathrm{OPT}_{k}-f\left(S_{i+1}\right) \leq\left(1-\frac{1}{k}\right)\left(\mathrm{OPT}_{k}-f\left(S_{i}\right)\right)$ i.e., the gap decreases by a factor $\geq(1-1 / k)$ at each step
- Since the initial gap $\mathrm{OPT}_{k}-f\left(S_{0}\right) \leq \mathrm{OPT}_{k}$, the final gap

$$
\mathrm{OPT}_{k}-S_{k} \leq\left(1-\frac{1}{k}\right)^{k} \mathrm{OPT}_{k}
$$

(1-1/e)-Approximation: Proof Idea

We shall prove a more general result, but here is where the (1-1/e) factor comes from:

- Let $S^{*} \in \arg \max \{f(S): S \subseteq E,|S| \leq k\}$, so $f\left(S^{*}\right)=$ OPT $_{k}$
- By submodularity and the greedy step, we will prove that there exist $u \in S^{*} \backslash S_{i}$ such that the increment

$$
f\left(u \mid S_{i}\right) \geq \frac{1}{k}\left(\mathrm{OPT}_{k}-f\left(S_{i}\right)\right)
$$

- $\left(\mathrm{OPT}_{k}-f\left(S_{i}\right)\right)$ is the current (absolute) gap at iteration S_{i} (relative to the size- k optimum)
- The increment at greedy step i is at least that large, hence

$$
f\left(S_{i+1}\right)-f\left(S_{i}\right) \geq \frac{1}{k}\left(\mathrm{OPT}_{k}-f\left(S_{i}\right)\right)
$$

- Equivalently, $\mathrm{OPT}_{k}-f\left(S_{i+1}\right) \leq\left(1-\frac{1}{k}\right)\left(\mathrm{OPT}_{k}-f\left(S_{i}\right)\right)$ i.e., the gap decreases by a factor $\geq(1-1 / k)$ at each step
- Since the initial gap $\mathrm{OPT}_{k}-f\left(S_{0}\right) \leq \mathrm{OPT}_{k}$, the final gap

$$
\mathrm{OPT}_{k}-S_{k} \leq\left(1-\frac{1}{k}\right)^{k} \mathrm{OPT}_{k} \leq \frac{1}{e} \mathrm{OPT}_{k}
$$

(1-1/e)-Approximation: Proof Idea

We shall prove a more general result, but here is where the (1-1/e) factor comes from:

- Let $S^{*} \in \arg \max \{f(S): S \subseteq E,|S| \leq k\}$, so $f\left(S^{*}\right)=$ OPT $_{k}$
- By submodularity and the greedy step, we will prove that there exist $u \in S^{*} \backslash S_{i}$ such that the increment

$$
f\left(u \mid S_{i}\right) \geq \frac{1}{k}\left(\mathrm{OPT}_{k}-f\left(S_{i}\right)\right)
$$

- $\left(\mathrm{OPT}_{k}-f\left(S_{i}\right)\right)$ is the current (absolute) gap at iteration S_{i} (relative to the size- k optimum)
- The increment at greedy step i is at least that large, hence

$$
f\left(S_{i+1}\right)-f\left(S_{i}\right) \geq \frac{1}{k}\left(\mathrm{OPT}_{k}-f\left(S_{i}\right)\right)
$$

- Equivalently, $\mathrm{OPT}_{k}-f\left(S_{i+1}\right) \leq\left(1-\frac{1}{k}\right)\left(\mathrm{OPT}_{k}-f\left(S_{i}\right)\right)$ i.e., the gap decreases by a factor $\geq(1-1 / k)$ at each step
- Since the initial gap $\mathrm{OPT}_{k}-f\left(S_{0}\right) \leq \mathrm{OPT}_{k}$, the final gap

$$
\mathrm{OPT}_{k}-S_{k} \leq\left(1-\frac{1}{k}\right)^{k} \mathrm{OPT}_{k} \leq \frac{1}{e} \mathrm{OPT}_{k}
$$

- and therefore $f\left(S_{k}\right) \geq\left(1-\frac{1}{e}\right) \mathrm{OPT}_{k}>0.632 \mathrm{OPT}_{k}$

A More General Approximation Guarantee

A More General Approximation Guarantee

Theorem (Nemhauser, Wolsey \& Fisher, 1978)

A More General Approximation Guarantee

Theorem (Nemhauser, Wolsey \& Fisher, 1978)
If f is a normalized polymatroid function then the Greedy Algorithm returns sets $S_{i}(i=1, \ldots, n)$ with values

$$
f\left(S_{i}\right) \geq\left(1-e^{-i / k}\right) \mathrm{OPT}_{i} \text { for all } i=0, \ldots, n
$$

A More General Approximation Guarantee

Theorem (Nemhauser, Wolsey \& Fisher, 1978)
If f is a normalized polymatroid function then the Greedy
Algorithm returns sets $S_{i}(i=1, \ldots, n)$ with values

$$
f\left(S_{i}\right) \geq\left(1-e^{-i / k}\right) \mathrm{OPT}_{i} \text { for all } i=0, \ldots, n
$$

- the approximation guarantee improves with the iteration (obviously - why?)

A More General Approximation Guarantee

Theorem (Nemhauser, Wolsey \& Fisher, 1978)
If f is a normalized polymatroid function then the Greedy
Algorithm returns sets $S_{i}(i=1, \ldots, n)$ with values

$$
f\left(S_{i}\right) \geq\left(1-e^{-i / k}\right) \mathrm{OPT}_{i} \text { for all } i=0, \ldots, n
$$

- the approximation guarantee improves with the iteration (obviously - why?)
- values $i>k$ may be interpreted as resource augmentation

A More General Approximation Guarantee

Theorem (Nemhauser, Wolsey \& Fisher, 1978)
If f is a normalized polymatroid function then the Greedy
Algorithm returns sets $S_{i}(i=1, \ldots, n)$ with values

$$
f\left(S_{i}\right) \geq\left(1-e^{-i / k}\right) \mathrm{OPT}_{i} \text { for all } i=0, \ldots, n
$$

- the approximation guarantee improves with the iteration (obviously - why?)
- values $i>k$ may be interpreted as resource augmentation
- what if we want to guarantee at least $0.95 \mathrm{OPT}_{k}$?

A More General Approximation Guarantee

Theorem (Nemhauser, Wolsey \& Fisher, 1978)
If f is a normalized polymatroid function then the Greedy
Algorithm returns sets $S_{i}(i=1, \ldots, n)$ with values

$$
f\left(S_{i}\right) \geq\left(1-e^{-i / k}\right) \mathrm{OPT}_{i} \text { for all } i=0, \ldots, n
$$

- the approximation guarantee improves with the iteration (obviously - why?)
- values $i>k$ may be interpreted as resource augmentation
- what if we want to guarantee at least $0.95 \mathrm{OPT}_{k}$?
- $0.95=1-e^{i / k}$ gives $i=\lceil-k \ln (1-0.95\rceil \leq 4 k$

A More General Approximation Guarantee

Theorem (Nemhauser, Wolsey \& Fisher, 1978)
If f is a normalized polymatroid function then the Greedy
Algorithm returns sets $S_{i}(i=1, \ldots, n)$ with values

$$
f\left(S_{i}\right) \geq\left(1-e^{-i / k}\right) \mathrm{OPT}_{i} \text { for all } i=0, \ldots, n
$$

- the approximation guarantee improves with the iteration (obviously - why?)
- values $i>k$ may be interpreted as resource augmentation
- what if we want to guarantee at least $0.95 \mathrm{OPT}_{k}$?
- $0.95=1-e^{i / k}$ gives $i=\lceil-k \ln (1-0.95\rceil \leq 4 k$
- (and for 0.999, $\lceil-k \ln (1-0.999\rceil=7)$

A More General Approximation Guarantee

Theorem (Nemhauser, Wolsey \& Fisher, 1978)
If f is a normalized polymatroid function then the Greedy
Algorithm returns sets $S_{i}(i=1, \ldots, n)$ with values

$$
f\left(S_{i}\right) \geq\left(1-e^{-i / k}\right) \mathrm{OPT}_{i} \text { for all } i=0, \ldots, n
$$

- the approximation guarantee improves with the iteration (obviously - why?)
- values $i>k$ may be interpreted as resource augmentation
- what if we want to guarantee at least $0.95 \mathrm{OPT}_{k}$?
- $0.95=1-e^{i / k}$ gives $i=\lceil-k \ln (1-0.95\rceil \leq 4 k$
- (and for 0.999, $\lceil-k \ln (1-0.999\rceil=7)$
- typical practical performance is much better

Proof of Greedy Performance

Proof of Greedy Performance

- Fix ℓ (size of greedy solution) and k (size of optimal set)

Proof of Greedy Performance

- Fix ℓ (size of greedy solution) and k (size of optimal set)
- Fix $S^{*} \in \arg \max \{f(S): S \subseteq E,|S| \leq k\}$, so $f\left(S^{*}\right)=$ OPT $_{k}$

Proof of Greedy Performance

- Fix ℓ (size of greedy solution) and k (size of optimal set)
- Fix $S^{*} \in \arg \max \{f(S): S \subseteq E,|S| \leq k\}$, so $f\left(S^{*}\right)=$ OPT $_{k}$
- Assume w.l.o.g., that $\left|S^{*}\right|=k$ and let $S^{*}=\left\{v_{1}^{*}, \ldots, v_{k}^{*}\right\}$

Proof of Greedy Performance

- Fix ℓ (size of greedy solution) and k (size of optimal set)
- Fix $S^{*} \in \arg \max \{f(S): S \subseteq E,|S| \leq k\}$, so $f\left(S^{*}\right)=$ OPT $_{k}$
- Assume w.l.o.g., that $\left|S^{*}\right|=k$ and let $S^{*}=\left\{v_{1}^{*}, \ldots, v_{k}^{*}\right\}$
- Let $\left(v_{1}, \ldots, v_{\ell}\right)$ be the greedy order chosen by the algorithm

Proof of Greedy Performance

- Fix ℓ (size of greedy solution) and k (size of optimal set)
- Fix $S^{*} \in \arg \max \{f(S): S \subseteq E,|S| \leq k\}$, so $f\left(S^{*}\right)=$ OPT $_{k}$
- Assume w.l.o.g., that $\left|S^{*}\right|=k$ and let $S^{*}=\left\{v_{1}^{*}, \ldots, v_{k}^{*}\right\}$
- Let $\left(v_{1}, \ldots, v_{\ell}\right)$ be the greedy order chosen by the algorithm
- Then, for all $i<\ell$, the gap

Proof of Greedy Performance

- Fix ℓ (size of greedy solution) and k (size of optimal set)
- Fix $S^{*} \in \arg \max \{f(S): S \subseteq E,|S| \leq k\}$, so $f\left(S^{*}\right)=$ OPT $_{k}$
- Assume w.l.o.g., that $\left|S^{*}\right|=k$ and let $S^{*}=\left\{v_{1}^{*}, \ldots, v_{k}^{*}\right\}$
- Let $\left(v_{1}, \ldots, v_{\ell}\right)$ be the greedy order chosen by the algorithm
- Then, for all $i<\ell$, the gap

Proof of Greedy Performance

- Fix ℓ (size of greedy solution) and k (size of optimal set)
- Fix $S^{*} \in \arg \max \{f(S): S \subseteq E,|S| \leq k\}$, so $f\left(S^{*}\right)=$ OPT $_{k}$
- Assume w.l.o.g., that $\left|S^{*}\right|=k$ and let $S^{*}=\left\{v_{1}^{*}, \ldots, v_{k}^{*}\right\}$
- Let $\left(v_{1}, \ldots, v_{\ell}\right)$ be the greedy order chosen by the algorithm
- Then, for all $i<\ell$, the gap
$\delta_{i}=f\left(S^{*}\right)-f\left(S_{i}\right)$

Proof of Greedy Performance

- Fix ℓ (size of greedy solution) and k (size of optimal set)
- Fix $S^{*} \in \arg \max \{f(S): S \subseteq E,|S| \leq k\}$, so $f\left(S^{*}\right)=$ OPT $_{k}$
- Assume w.l.o.g., that $\left|S^{*}\right|=k$ and let $S^{*}=\left\{v_{1}^{*}, \ldots, v_{k}^{*}\right\}$
- Let $\left(v_{1}, \ldots, v_{\ell}\right)$ be the greedy order chosen by the algorithm
- Then, for all $i<\ell$, the gap
$\delta_{i}=f\left(S^{*}\right)-f\left(S_{i}\right) \leq f\left(S^{*} \cup S_{i}\right)-f\left(S_{i}\right)$

Proof of Greedy Performance

- Fix ℓ (size of greedy solution) and k (size of optimal set)
- Fix $S^{*} \in \arg \max \{f(S): S \subseteq E,|S| \leq k\}$, so $f\left(S^{*}\right)=$ OPT $_{k}$
- Assume w.l.o.g., that $\left|S^{*}\right|=k$ and let $S^{*}=\left\{v_{1}^{*}, \ldots, v_{k}^{*}\right\}$
- Let $\left(v_{1}, \ldots, v_{\ell}\right)$ be the greedy order chosen by the algorithm
- Then, for all $i<\ell$, the gap

$$
\begin{aligned}
\delta_{i} & =f\left(S^{*}\right)-f\left(S_{i}\right) \leq f\left(S^{*} \cup S_{i}\right)-f\left(S_{i}\right) \\
& =\sum_{j=1}^{k} f\left(v_{j}^{*} \mid S_{i}+v_{1}^{*}+\cdots+v_{j-1}^{*}\right)
\end{aligned}
$$

Proof of Greedy Performance

- Fix ℓ (size of greedy solution) and k (size of optimal set)
- Fix $S^{*} \in \arg \max \{f(S): S \subseteq E,|S| \leq k\}$, so $f\left(S^{*}\right)=$ OPT $_{k}$
- Assume w.l.o.g., that $\left|S^{*}\right|=k$ and let $S^{*}=\left\{v_{1}^{*}, \ldots, v_{k}^{*}\right\}$
- Let $\left(v_{1}, \ldots, v_{\ell}\right)$ be the greedy order chosen by the algorithm
- Then, for all $i<\ell$, the gap

$$
\begin{aligned}
\delta_{i} & =f\left(S^{*}\right)-f\left(S_{i}\right) \leq f\left(S^{*} \cup S_{i}\right)-f\left(S_{i}\right) \\
& =\sum_{j=1}^{k} f\left(v_{j}^{*} \mid S_{i}+v_{1}^{*}+\cdots+v_{j-1}^{*}\right) \leq \sum_{j=1}^{k} f\left(v_{j}^{*} \mid S_{i}\right)
\end{aligned}
$$

Proof of Greedy Performance

- Fix ℓ (size of greedy solution) and k (size of optimal set)
- Fix $S^{*} \in \arg \max \{f(S): S \subseteq E,|S| \leq k\}$, so $f\left(S^{*}\right)=$ OPT $_{k}$
- Assume w.l.o.g., that $\left|S^{*}\right|=k$ and let $S^{*}=\left\{v_{1}^{*}, \ldots, v_{k}^{*}\right\}$
- Let $\left(v_{1}, \ldots, v_{\ell}\right)$ be the greedy order chosen by the algorithm
- Then, for all $i<\ell$, the gap

$$
\begin{aligned}
\delta_{i} & =f\left(S^{*}\right)-f\left(S_{i}\right) \leq f\left(S^{*} \cup S_{i}\right)-f\left(S_{i}\right) \\
& =\sum_{j=1}^{k} f\left(v_{j}^{*} \mid S_{i}+v_{1}^{*}+\cdots+v_{j-1}^{*}\right) \leq \sum_{j=1}^{k} f\left(v_{j}^{*} \mid S_{i}\right) \\
& \leq k f\left(v_{i} \mid S_{i}\right)
\end{aligned}
$$

Proof of Greedy Performance

- Fix ℓ (size of greedy solution) and k (size of optimal set)
- Fix $S^{*} \in \arg \max \{f(S): S \subseteq E,|S| \leq k\}$, so $f\left(S^{*}\right)=$ OPT $_{k}$
- Assume w.l.o.g., that $\left|S^{*}\right|=k$ and let $S^{*}=\left\{v_{1}^{*}, \ldots, v_{k}^{*}\right\}$
- Let $\left(v_{1}, \ldots, v_{\ell}\right)$ be the greedy order chosen by the algorithm
- Then, for all $i<\ell$, the gap

$$
\begin{aligned}
\delta_{i} & =f\left(S^{*}\right)-f\left(S_{i}\right) \leq f\left(S^{*} \cup S_{i}\right)-f\left(S_{i}\right) \\
& =\sum_{j=1}^{k} f\left(v_{j}^{*} \mid S_{i}+v_{1}^{*}+\cdots+v_{j-1}^{*}\right) \leq \sum_{j=1}^{k} f\left(v_{j}^{*} \mid S_{i}\right) \\
& \leq k f\left(v_{i} \mid S_{i}\right)=k\left(f\left(S_{i+1}\right)-f\left(S_{i}\right)\right)
\end{aligned}
$$

Proof of Greedy Performance

- Fix ℓ (size of greedy solution) and k (size of optimal set)
- Fix $S^{*} \in \arg \max \{f(S): S \subseteq E,|S| \leq k\}$, so $f\left(S^{*}\right)=$ OPT $_{k}$
- Assume w.l.o.g., that $\left|S^{*}\right|=k$ and let $S^{*}=\left\{v_{1}^{*}, \ldots, v_{k}^{*}\right\}$
- Let $\left(v_{1}, \ldots, v_{\ell}\right)$ be the greedy order chosen by the algorithm
- Then, for all $i<\ell$, the gap

$$
\begin{aligned}
\delta_{i} & =f\left(S^{*}\right)-f\left(S_{i}\right) \leq f\left(S^{*} \cup S_{i}\right)-f\left(S_{i}\right) \\
& =\sum_{j=1}^{k} f\left(v_{j}^{*} \mid S_{i}+v_{1}^{*}+\cdots+v_{j-1}^{*}\right) \leq \sum_{j=1}^{k} f\left(v_{j}^{*} \mid S_{i}\right) \\
& \leq k f\left(v_{i} \mid S_{i}\right)=k\left(f\left(S_{i+1}\right)-f\left(S_{i}\right)\right)=k\left(\delta_{i}-\delta_{i+1}\right)
\end{aligned}
$$

Proof of Greedy Performance

- Fix ℓ (size of greedy solution) and k (size of optimal set)
- Fix $S^{*} \in \arg \max \{f(S): S \subseteq E,|S| \leq k\}$, so $f\left(S^{*}\right)=$ OPT $_{k}$
- Assume w.l.o.g., that $\left|S^{*}\right|=k$ and let $S^{*}=\left\{v_{1}^{*}, \ldots, v_{k}^{*}\right\}$
- Let $\left(v_{1}, \ldots, v_{\ell}\right)$ be the greedy order chosen by the algorithm
- Then, for all $i<\ell$, the gap

$$
\begin{aligned}
\delta_{i} & =f\left(S^{*}\right)-f\left(S_{i}\right) \leq f\left(S^{*} \cup S_{i}\right)-f\left(S_{i}\right) \\
& =\sum_{j=1}^{k} f\left(v_{j}^{*} \mid S_{i}+v_{1}^{*}+\cdots+v_{j-1}^{*}\right) \leq \sum_{j=1}^{k} f\left(v_{j}^{*} \mid S_{i}\right) \\
& \leq k f\left(v_{i} \mid S_{i}\right)=k\left(f\left(S_{i+1}\right)-f\left(S_{i}\right)\right)=k\left(\delta_{i}-\delta_{i+1}\right)
\end{aligned}
$$

implying $\quad \delta_{i+1} \leq\left(1-\frac{1}{k}\right) \delta_{i}$

Proof of Greedy Performance

- Fix ℓ (size of greedy solution) and k (size of optimal set)
- Fix $S^{*} \in \arg \max \{f(S): S \subseteq E,|S| \leq k\}$, so $f\left(S^{*}\right)=$ OPT $_{k}$
- Assume w.l.o.g., that $\left|S^{*}\right|=k$ and let $S^{*}=\left\{v_{1}^{*}, \ldots, v_{k}^{*}\right\}$
- Let $\left(v_{1}, \ldots, v_{\ell}\right)$ be the greedy order chosen by the algorithm
- Then, for all $i<\ell$, the gap

$$
\begin{aligned}
\delta_{i} & =f\left(S^{*}\right)-f\left(S_{i}\right) \leq f\left(S^{*} \cup S_{i}\right)-f\left(S_{i}\right) \\
& =\sum_{j=1}^{k} f\left(v_{j}^{*} \mid S_{i}+v_{1}^{*}+\cdots+v_{j-1}^{*}\right) \leq \sum_{j=1}^{k} f\left(v_{j}^{*} \mid S_{i}\right) \\
& \leq k f\left(v_{i} \mid S_{i}\right)=k\left(f\left(S_{i+1}\right)-f\left(S_{i}\right)\right)=k\left(\delta_{i}-\delta_{i+1}\right)
\end{aligned}
$$

implying $\quad \delta_{i+1} \leq\left(1-\frac{1}{k}\right) \delta_{i} \quad$ and thus
$\delta_{\ell} \leq\left(1-\frac{1}{k}\right)^{\ell} \delta_{0} \leq\left(1-\frac{1}{k}\right)^{\ell} \mathrm{OPT}_{k} \leq e^{-\ell / k} \mathrm{OPT}_{k}$

Greedy Algorithm: Running Time

Greedy Algorithm: Running Time

- Greedy computes a new maximum $n=|V|$ times

Greedy Algorithm: Running Time

- Greedy computes a new maximum $n=|V|$ times
- each maximum computation requires $\mathrm{O}(n)$ comparisons

Greedy Algorithm: Running Time

- Greedy computes a new maximum $n=|V|$ times
- each maximum computation requires $\mathrm{O}(n)$ comparisons

Greedy Algorithm: Running Time

- Greedy computes a new maximum $n=|V|$ times
- each maximum computation requires $\mathrm{O}(n)$ comparisons hence $\mathrm{O}\left(n^{2}\right)$ time overall

Greedy Algorithm: Running Time

- Greedy computes a new maximum $n=|V|$ times
- each maximum computation requires $\mathrm{O}(n)$ comparisons hence $\mathrm{O}\left(n^{2}\right)$ time overall

This is not good enough for very large practical instances

- large water networks with many contamination scenarios; social networks; selecting blogs of greatest influence; document summarization; etc.
and can be made (much) faster by a simple trick, also based on submodularity:

Greedy Algorithm: Running Time

- Greedy computes a new maximum $n=|V|$ times
- each maximum computation requires $\mathrm{O}(n)$ comparisons hence $\mathrm{O}\left(n^{2}\right)$ time overall

This is not good enough for very large practical instances

- large water networks with many contamination scenarios; social networks; selecting blogs of greatest influence; document summarization; etc.
and can be made (much) faster by a simple trick, also based on submodularity:

Greedy Algorithm: Running Time

- Greedy computes a new maximum $n=|V|$ times
- each maximum computation requires $\mathrm{O}(n)$ comparisons hence $\mathrm{O}\left(n^{2}\right)$ time overall

This is not good enough for very large practical instances

- large water networks with many contamination scenarios; social networks; selecting blogs of greatest influence; document summarization; etc.
and can be made (much) faster by a simple trick, also based on submodularity:

Minoux's Accelerated Greedy (aka, Lazy Selection)

Greedy Algorithm: Running Time

- Greedy computes a new maximum $n=|V|$ times
- each maximum computation requires $\mathrm{O}(n)$ comparisons hence $\mathrm{O}\left(n^{2}\right)$ time overall

This is not good enough for very large practical instances

- large water networks with many contamination scenarios; social networks; selecting blogs of greatest influence; document summarization; etc.
and can be made (much) faster by a simple trick, also based on submodularity:

Minoux's Accelerated Greedy (aka, Lazy Selection)

 Idea: to reduce the number of function evaluations and of comparisons, store upper bounds α_{v} on the increments $f\left(v \mid S_{i}\right)$ in a priority queue, and only update α_{v} when element v is examined
Minoux's Accelerated Greedy

- Store the initial increments $\alpha_{v}=f\left(v \mid S_{0}\right)$ in a priority queue, and the iteration index $\beta_{v}=0$ at which it was least updated

Minoux's Accelerated Greedy

- Store the initial increments $\alpha_{v}=f\left(v \mid S_{0}\right)$ in a priority queue, and the iteration index $\beta_{v}=0$ at which it was least updated
- At iteration i, repeat

Minoux's Accelerated Greedy

- Store the initial increments $\alpha_{v}=f\left(v \mid S_{0}\right)$ in a priority queue, and the iteration index $\beta_{v}=0$ at which it was least updated
- At iteration i, repeat
- "pop" the top element (largest α_{v}), and let u be the new top

Minoux's Accelerated Greedy

- Store the initial increments $\alpha_{v}=f\left(v \mid S_{0}\right)$ in a priority queue, and the iteration index $\beta_{v}=0$ at which it was least updated
- At iteration i, repeat
- "pop" the top element (largest α_{v}), and let u be the new top
- if $\beta_{v}<i$ then compute the exact increment $\alpha_{v}:=f\left(v \mid S_{i}\right)$ and update $\beta_{v}=i$

Minoux's Accelerated Greedy

- Store the initial increments $\alpha_{v}=f\left(v \mid S_{0}\right)$ in a priority queue, and the iteration index $\beta_{v}=0$ at which it was least updated
- At iteration i, repeat
- "pop" the top element (largest α_{v}), and let u be the new top
- if $\beta_{v}<i$ then compute the exact increment $\alpha_{v}:=f\left(v \mid S_{i}\right)$ and update $\beta_{v}=i$
- if $\alpha_{v}<\alpha_{u}$ then return v to the queue

Minoux's Accelerated Greedy

- Store the initial increments $\alpha_{v}=f\left(v \mid S_{0}\right)$ in a priority queue, and the iteration index $\beta_{v}=0$ at which it was least updated
- At iteration i, repeat
- "pop" the top element (largest α_{v}), and let u be the new top
- if $\beta_{v}<i$ then compute the exact increment $\alpha_{v}:=f\left(v \mid S_{i}\right)$ and update $\beta_{v}=i$
- if $\alpha_{v}<\alpha_{u}$ then return v to the queue

Minoux's Accelerated Greedy

- Store the initial increments $\alpha_{v}=f\left(v \mid S_{0}\right)$ in a priority queue, and the iteration index $\beta_{v}=0$ at which it was least updated
- At iteration i, repeat
- "pop" the top element (largest α_{v}), and let u be the new top
- if $\beta_{v}<i$ then compute the exact increment $\alpha_{v}:=f\left(v \mid S_{i}\right)$ and update $\beta_{v}=i$
- if $\alpha_{v}<\alpha_{u}$ then return v to the queue until $\alpha_{v} \geq \alpha_{u}$: v is now selected by Greedy

Minoux's Accelerated Greedy

- Store the initial increments $\alpha_{v}=f\left(v \mid S_{0}\right)$ in a priority queue, and the iteration index $\beta_{v}=0$ at which it was least updated
- At iteration i, repeat
- "pop" the top element (largest α_{v}), and let u be the new top
- if $\beta_{v}<i$ then compute the exact increment $\alpha_{v}:=f\left(v \mid S_{i}\right)$ and update $\beta_{v}=i$
- if $\alpha_{v}<\alpha_{u}$ then return v to the queue until $\alpha_{v} \geq \alpha_{u}$: v is now selected by Greedy

Validity follows from submodularity, i.e., nonincreasing increments: as i increases, the current S_{i} also increases, the increments $f\left(v \mid S_{i}\right)$ decrease, and thus each α_{v} remains an upper bound on $f\left(v \mid S_{i}\right)$

Minoux's Accelerated Greedy

- Store the initial increments $\alpha_{v}=f\left(v \mid S_{0}\right)$ in a priority queue, and the iteration index $\beta_{v}=0$ at which it was least updated
- At iteration i, repeat
- "pop" the top element (largest α_{v}), and let u be the new top
- if $\beta_{v}<i$ then compute the exact increment $\alpha_{v}:=f\left(v \mid S_{i}\right)$ and update $\beta_{v}=i$
- if $\alpha_{v}<\alpha_{u}$ then return v to the queue until $\alpha_{v} \geq \alpha_{u}$: v is now selected by Greedy

Validity follows from submodularity, i.e., nonincreasing increments: as i increases, the current S_{i} also increases, the increments $f\left(v \mid S_{i}\right)$ decrease, and thus each α_{v} remains an upper bound on $f\left(v \mid S_{i}\right)$
In practice, Minoux's trick often yields enormous speedups (over 700 -fold) over standard implementation of Greedy, for very large data sets

Nonmonotone SFMax

- If f is an arbitrary submodular function (neither polymatroidal, nor necessarily positive or negative), then verifying whether its maximum is positive or negative is already NP-hard

Nonmonotone SFMax

- If f is an arbitrary submodular function (neither polymatroidal, nor necessarily positive or negative), then verifying whether its maximum is positive or negative is already NP-hard
- Therefore, submodular function max in such case is inapproximable (unless $\mathrm{P}=\mathrm{NP}$)

Nonmonotone SFMax

- If f is an arbitrary submodular function (neither polymatroidal, nor necessarily positive or negative), then verifying whether its maximum is positive or negative is already NP-hard
- Therefore, submodular function max in such case is inapproximable (unless $\mathrm{P}=\mathrm{NP}$)
- since any such procedure would give us the sign of the max

Nonmonotone SFMax

- If f is an arbitrary submodular function (neither polymatroidal, nor necessarily positive or negative), then verifying whether its maximum is positive or negative is already NP-hard
- Therefore, submodular function max in such case is inapproximable (unless $\mathrm{P}=\mathrm{NP}$)
- since any such procedure would give us the sign of the max
- Thus, we will assume that f is non-negative and otherwise arbitrary submodular

Nonmonotone SFMax

- If f is an arbitrary submodular function (neither polymatroidal, nor necessarily positive or negative), then verifying whether its maximum is positive or negative is already NP-hard
- Therefore, submodular function max in such case is inapproximable (unless $\mathrm{P}=\mathrm{NP}$)
- since any such procedure would give us the sign of the max
- Thus, we will assume that f is non-negative and otherwise arbitrary submodular
- Feige, Mirrokni \& Vondrak $(2007,2011)$ show that, in the value oracle model, for every $\epsilon>0$ a $\left(\frac{1}{2}+\epsilon\right)$-approximation requires an exponential number of oracle calls

Nonmonotone SFMax

- If f is an arbitrary submodular function (neither polymatroidal, nor necessarily positive or negative), then verifying whether its maximum is positive or negative is already NP-hard
- Therefore, submodular function max in such case is inapproximable (unless $\mathrm{P}=\mathrm{NP}$)
- since any such procedure would give us the sign of the max
- Thus, we will assume that f is non-negative and otherwise arbitrary submodular
- Feige, Mirrokni \& Vondrak $(2007,2011)$ show that, in the value oracle model, for every $\epsilon>0$ a $\left(\frac{1}{2}+\epsilon\right)$-approximation requires an exponential number of oracle calls
- even if f is known to be symmetric

Nonmonotone SFMax

- If f is an arbitrary submodular function (neither polymatroidal, nor necessarily positive or negative), then verifying whether its maximum is positive or negative is already NP-hard
- Therefore, submodular function max in such case is inapproximable (unless $\mathrm{P}=\mathrm{NP}$)
- since any such procedure would give us the sign of the max
- Thus, we will assume that f is non-negative and otherwise arbitrary submodular
- Feige, Mirrokni \& Vondrak $(2007,2011)$ show that, in the value oracle model, for every $\epsilon>0$ a $\left(\frac{1}{2}+\epsilon\right)$-approximation requires an exponential number of oracle calls
- even if f is known to be symmetric
- We will see a $\left(\frac{1}{3}-\epsilon\right)$-approximation, also due to Feige \& al,

Nonmonotone SFMax

- If f is an arbitrary submodular function (neither polymatroidal, nor necessarily positive or negative), then verifying whether its maximum is positive or negative is already NP-hard
- Therefore, submodular function max in such case is inapproximable (unless $\mathrm{P}=\mathrm{NP}$)
- since any such procedure would give us the sign of the max
- Thus, we will assume that f is non-negative and otherwise arbitrary submodular
- Feige, Mirrokni \& Vondrak $(2007,2011)$ show that, in the value oracle model, for every $\epsilon>0$ a $\left(\frac{1}{2}+\epsilon\right)$-approximation requires an exponential number of oracle calls
- even if f is known to be symmetric
- We will see a $\left(\frac{1}{3}-\epsilon\right)$-approximation, also due to Feige \& al,
- using $\mathrm{O}\left(\frac{1}{\epsilon} n^{3} \log n\right)$ EO's

Nonmonotone SFMax

- If f is an arbitrary submodular function (neither polymatroidal, nor necessarily positive or negative), then verifying whether its maximum is positive or negative is already NP-hard
- Therefore, submodular function max in such case is inapproximable (unless $\mathrm{P}=\mathrm{NP}$)
- since any such procedure would give us the sign of the max
- Thus, we will assume that f is non-negative and otherwise arbitrary submodular
- Feige, Mirrokni \& Vondrak $(2007,2011)$ show that, in the value oracle model, for every $\epsilon>0$ a $\left(\frac{1}{2}+\epsilon\right)$-approximation requires an exponential number of oracle calls
- even if f is known to be symmetric
- We will see a $\left(\frac{1}{3}-\epsilon\right)$-approximation, also due to Feige \& al,
- using $\mathrm{O}\left(\frac{1}{\epsilon} n^{3} \log n\right)$ EO's
- and based on local search (not on a greedy approach!)

Local Search

Local Search

- A sequential method that starts at a feasible solution

Local Search

- A sequential method that starts at a feasible solution
- e.g., any subset S of the ground set E

Local Search

- A sequential method that starts at a feasible solution
- e.g., any subset S of the ground set E

Local Search

- A sequential method that starts at a feasible solution
- e.g., any subset S of the ground set E and tries to improve it by a sequence of (usually, simple) moves

Local Search

- A sequential method that starts at a feasible solution
- e.g., any subset S of the ground set E and tries to improve it by a sequence of (usually, simple) moves
- e.g., add, or drop, an element to/from the current set S

Local Search

- A sequential method that starts at a feasible solution
- e.g., any subset S of the ground set E and tries to improve it by a sequence of (usually, simple) moves
- e.g., add, or drop, an element to/from the current set S
- It must be possible, in polytime, to find an improving move or decide none exists

Local Search

- A sequential method that starts at a feasible solution
- e.g., any subset S of the ground set E and tries to improve it by a sequence of (usually, simple) moves
- e.g., add, or drop, an element to/from the current set S
- It must be possible, in polytime, to find an improving move or decide none exists
- Local search methods differ in their search strategy

Local Search

- A sequential method that starts at a feasible solution
- e.g., any subset S of the ground set E and tries to improve it by a sequence of (usually, simple) moves
- e.g., add, or drop, an element to/from the current set S
- It must be possible, in polytime, to find an improving move or decide none exists
- Local search methods differ in their search strategy
- simple hill climbing, restarts, "tabu search", simulated annealing,...

Local Search

- A sequential method that starts at a feasible solution
- e.g., any subset S of the ground set E and tries to improve it by a sequence of (usually, simple) moves
- e.g., add, or drop, an element to/from the current set S
- It must be possible, in polytime, to find an improving move or decide none exists
- Local search methods differ in their search strategy
- simple hill climbing, restarts, "tabu search", simulated annealing,...

Local Search

- A sequential method that starts at a feasible solution
- e.g., any subset S of the ground set E and tries to improve it by a sequence of (usually, simple) moves
- e.g., add, or drop, an element to/from the current set S
- It must be possible, in polytime, to find an improving move or decide none exists
- Local search methods differ in their search strategy
- simple hill climbing, restarts, "tabu search", simulated annealing,...
but they terminate with a local optimum, i.e., a feasible solution that cannot be improved by the available moves

Local Search

- A sequential method that starts at a feasible solution
- e.g., any subset S of the ground set E and tries to improve it by a sequence of (usually, simple) moves
- e.g., add, or drop, an element to/from the current set S
- It must be possible, in polytime, to find an improving move or decide none exists
- Local search methods differ in their search strategy
- simple hill climbing, restarts, "tabu search", simulated annealing,...
but they terminate with a local optimum, i.e., a feasible solution that cannot be improved by the available moves
- Two main issues in evaluating a local search method:

Local Search

- A sequential method that starts at a feasible solution
- e.g., any subset S of the ground set E and tries to improve it by a sequence of (usually, simple) moves
- e.g., add, or drop, an element to/from the current set S
- It must be possible, in polytime, to find an improving move or decide none exists
- Local search methods differ in their search strategy
- simple hill climbing, restarts, "tabu search", simulated annealing,...
but they terminate with a local optimum, i.e., a feasible solution that cannot be improved by the available moves
- Two main issues in evaluating a local search method:
- Running time: does it go thru a polynomially bounded number of steps?

Local Search

- A sequential method that starts at a feasible solution
- e.g., any subset S of the ground set E and tries to improve it by a sequence of (usually, simple) moves
- e.g., add, or drop, an element to/from the current set S
- It must be possible, in polytime, to find an improving move or decide none exists
- Local search methods differ in their search strategy
- simple hill climbing, restarts, "tabu search", simulated annealing,...
but they terminate with a local optimum, i.e., a feasible solution that cannot be improved by the available moves
- Two main issues in evaluating a local search method:
- Running time: does it go thru a polynomially bounded number of steps?
- Solution quality: do we have a performance guarantee?

Local Search

- A sequential method that starts at a feasible solution
- e.g., any subset S of the ground set E and tries to improve it by a sequence of (usually, simple) moves
- e.g., add, or drop, an element to/from the current set S
- It must be possible, in polytime, to find an improving move or decide none exists
- Local search methods differ in their search strategy
- simple hill climbing, restarts, "tabu search", simulated annealing,...
but they terminate with a local optimum, i.e., a feasible solution that cannot be improved by the available moves
- Two main issues in evaluating a local search method:
- Running time: does it go thru a polynomially bounded number of steps?
- Solution quality: do we have a performance guarantee? i.e., how "bad" (in objective value) can a local optimum be?

Generic Local Search

Generic Local Search

The neighbourhood $N(S)$ of a solution is the set of all solutions that can be reached from S by an available move.

Generic Local Search

The neighbourhood $N(S)$ of a solution is the set of all solutions that can be reached from S by an available move.

Generic Local Search ("Hill Climbing")

Generic Local Search

The neighbourhood $N(S)$ of a solution is the set of all solutions that can be reached from S by an available move.

Generic Local Search ("Hill Climbing")

1. Initialization: find a (feasible) solution S

Generic Local Search

The neighbourhood $N(S)$ of a solution is the set of all solutions that can be reached from S by an available move.

Generic Local Search ("Hill Climbing")

1. Initialization: find a (feasible) solution S
2. While there exists an improving solution $S^{+} \in N(S)$ do $S:=S^{+}$

Generic Local Search

The neighbourhood $N(S)$ of a solution is the set of all solutions that can be reached from S by an available move.

Generic Local Search ("Hill Climbing")

1. Initialization: find a (feasible) solution S
2. While there exists an improving solution $S^{+} \in N(S)$ do $S:=S^{+}$
3. Output S

Generic Local Search

The neighbourhood $N(S)$ of a solution is the set of all solutions that can be reached from S by an available move.

Generic Local Search ("Hill Climbing")

1. Initialization: find a (feasible) solution S
2. While there exists an improving solution $S^{+} \in N(S)$ do $S:=S^{+}$
3. Output S

Generic Local Search

The neighbourhood $N(S)$ of a solution is the set of all solutions that can be reached from S by an available move.

Generic Local Search ("Hill Climbing")

1. Initialization: find a (feasible) solution S
2. While there exists an improving solution $S^{+} \in N(S)$ do

$$
S:=S^{+}
$$

3. Output S

If there is a finite number of solutions (and we only accept strict improvements) then Generic Local Search terminates in a finite number of steps and outputs a local optimum

Generic Local Search

The neighbourhood $N(S)$ of a solution is the set of all solutions that can be reached from S by an available move.

Generic Local Search ("Hill Climbing")

1. Initialization: find a (feasible) solution S
2. While there exists an improving solution $S^{+} \in N(S)$ do $S:=S^{+}$
3. Output S

If there is a finite number of solutions (and we only accept strict improvements) then Generic Local Search terminates in a finite number of steps and outputs a local optimum

- at this point, we can only guarantee finiteness, but not polynomiality

Generic Local Search

The neighbourhood $N(S)$ of a solution is the set of all solutions that can be reached from S by an available move.

Generic Local Search ("Hill Climbing")

1. Initialization: find a (feasible) solution S
2. While there exists an improving solution $S^{+} \in N(S)$ do $S:=S^{+}$
3. Output S

If there is a finite number of solutions (and we only accept strict improvements) then Generic Local Search terminates in a finite number of steps and outputs a local optimum

- at this point, we can only guarantee finiteness, but not polynomiality
- in fact, most of these problems are PLS-complete

A Polytime Version of Local Search

Given $\epsilon>0, S^{+} \in N(S)$ is ϵ-improving if its objective value $f\left(S^{+}\right)>(1+\epsilon) f(S)$ (for a maximization problem)

A Polytime Version of Local Search

Given $\epsilon>0, S^{+} \in N(S)$ is ϵ-improving if its objective value $f\left(S^{+}\right)>(1+\epsilon) f(S)$ (for a maximization problem)
S is an ϵ-local optimum if $f\left(S^{+}\right) \leq(1+\epsilon) f(S)$ for all $S^{+} \in N(S)$

A Polytime Version of Local Search

Given $\epsilon>0, S^{+} \in N(S)$ is ϵ-improving if its objective value $f\left(S^{+}\right)>(1+\epsilon) f(S)$ (for a maximization problem)
S is an ϵ-local optimum if $f\left(S^{+}\right) \leq(1+\epsilon) f(S)$ for all $S^{+} \in N(S)$

- i.e., if it has no ϵ-improving neighbor

A Polytime Version of Local Search

Given $\epsilon>0, S^{+} \in N(S)$ is ϵ-improving if its objective value $f\left(S^{+}\right)>(1+\epsilon) f(S)$ (for a maximization problem)
S is an ϵ-local optimum if $f\left(S^{+}\right) \leq(1+\epsilon) f(S)$ for all $S^{+} \in N(S)$

- i.e., if it has no ϵ-improving neighbor

Modified Local Search (MLS): given $\epsilon>0$,

A Polytime Version of Local Search

Given $\epsilon>0, S^{+} \in N(S)$ is ϵ-improving if its objective value $f\left(S^{+}\right)>(1+\epsilon) f(S)$ (for a maximization problem)
S is an ϵ-local optimum if $f\left(S^{+}\right) \leq(1+\epsilon) f(S)$ for all $S^{+} \in N(S)$

- i.e., if it has no ϵ-improving neighbor

Modified Local Search (MLS): given $\epsilon>0$,

1. Initialization: find a (feasible) solution S

A Polytime Version of Local Search

Given $\epsilon>0, S^{+} \in N(S)$ is ϵ-improving if its objective value $f\left(S^{+}\right)>(1+\epsilon) f(S)$ (for a maximization problem)
S is an ϵ-local optimum if $f\left(S^{+}\right) \leq(1+\epsilon) f(S)$ for all $S^{+} \in N(S)$

- i.e., if it has no ϵ-improving neighbor

Modified Local Search (MLS): given $\epsilon>0$,

1. Initialization: find a (feasible) solution S
2. While there exists an ϵ-improving solution $S^{+} \in N(S)$ do $S:=S^{+}$

A Polytime Version of Local Search

Given $\epsilon>0, S^{+} \in N(S)$ is ϵ-improving if its objective value $f\left(S^{+}\right)>(1+\epsilon) f(S)$ (for a maximization problem)
S is an ϵ-local optimum if $f\left(S^{+}\right) \leq(1+\epsilon) f(S)$ for all $S^{+} \in N(S)$

- i.e., if it has no ϵ-improving neighbor

Modified Local Search (MLS): given $\epsilon>0$,

1. Initialization: find a (feasible) solution S
2. While there exists an ϵ-improving solution $S^{+} \in N(S)$ do $S:=S^{+}$
3. Output S

A Polytime Version of Local Search

Given $\epsilon>0, S^{+} \in N(S)$ is ϵ-improving if its objective value $f\left(S^{+}\right)>(1+\epsilon) f(S)$ (for a maximization problem)
S is an ϵ-local optimum if $f\left(S^{+}\right) \leq(1+\epsilon) f(S)$ for all $S^{+} \in N(S)$

- i.e., if it has no ϵ-improving neighbor

Modified Local Search (MLS): given $\epsilon>0$,

1. Initialization: find a (feasible) solution S
2. While there exists an ϵ-improving solution $S^{+} \in N(S)$ do $S:=S^{+}$
3. Output S

A Polytime Version of Local Search

Given $\epsilon>0, S^{+} \in N(S)$ is ϵ-improving if its objective value $f\left(S^{+}\right)>(1+\epsilon) f(S)$ (for a maximization problem)
S is an ϵ-local optimum if $f\left(S^{+}\right) \leq(1+\epsilon) f(S)$ for all $S^{+} \in N(S)$

- i.e., if it has no ϵ-improving neighbor

Modified Local Search (MLS): given $\epsilon>0$,

1. Initialization: find a (feasible) solution S
2. While there exists an ϵ-improving solution $S^{+} \in N(S)$ do $S:=S^{+}$
3. Output S

If $f\left(S_{0}\right)>0$ then after k iterations the current solution S_{k} satisfies $f\left(S_{k}\right)>(1+\epsilon)^{k} f\left(S_{0}\right)$

A Polytime Version of Local Search

Given $\epsilon>0, S^{+} \in N(S)$ is ϵ-improving if its objective value $f\left(S^{+}\right)>(1+\epsilon) f(S)$ (for a maximization problem)
S is an ϵ-local optimum if $f\left(S^{+}\right) \leq(1+\epsilon) f(S)$ for all $S^{+} \in N(S)$

- i.e., if it has no ϵ-improving neighbor

Modified Local Search (MLS): given $\epsilon>0$,

1. Initialization: find a (feasible) solution S
2. While there exists an ϵ-improving solution $S^{+} \in N(S)$ do $S:=S^{+}$
3. Output S

If $f\left(S_{0}\right)>0$ then after k iterations the current solution S_{k} satisfies $f\left(S_{k}\right)>(1+\epsilon)^{k} f\left(S_{0}\right)$
\Rightarrow If $\log \left(\mathrm{OPT} / f\left(S_{0}\right)\right)$ is polynomially bounded (in the instance input size) then for every fixed $\epsilon>0$, MLS terminates and outputs an ϵ-local optimum after at most $\log \left(\mathrm{OPT} / f\left(S_{0}\right)\right) / \log (1+\epsilon)$ iterations, i.e. in polytime

Local Optima for SFMax

Local Optima for SFMax

Let $S \subseteq E$ be a local maximum for the add \& drop moves

Local Optima for SFMax

Let $S \subseteq E$ be a local maximum for the add \& drop moves

Lemma

If $f: 2^{E} \mapsto \mathbb{R}$ is normalized and submodular, and S is such a local optimum then

1. $f(R) \leq f(S)$ for all $R \subset S$, and

Local Optima for SFMax

Let $S \subseteq E$ be a local maximum for the add \& drop moves

Lemma

If $f: 2^{E} \mapsto \mathbb{R}$ is normalized and submodular, and S is such a local optimum then

1. $f(R) \leq f(S)$ for all $R \subset S$, and
2. $f(T) \leq f(S)$ for all $T \supset S$

Local Optima for SFMax

Let $S \subseteq E$ be a local maximum for the add \& drop moves

Lemma

If $f: 2^{E} \mapsto \mathbb{R}$ is normalized and submodular, and S is such a local optimum then

1. $f(R) \leq f(S)$ for all $R \subset S$, and
2. $f(T) \leq f(S)$ for all $T \supset S$

Local Optima for SFMax

Let $S \subseteq E$ be a local maximum for the add \& drop moves

Lemma

If $f: 2^{E} \mapsto \mathbb{R}$ is normalized and submodular, and S is such a local optimum then

1. $f(R) \leq f(S)$ for all $R \subset S$, and
2. $f(T) \leq f(S)$ for all $T \supset S$

Proof by induction on $d=|S \backslash R|$ for 1 .

Local Optima for SFMax

Let $S \subseteq E$ be a local maximum for the add \& drop moves

Lemma

If $f: 2^{E} \mapsto \mathbb{R}$ is normalized and submodular, and S is such a local optimum then

1. $f(R) \leq f(S)$ for all $R \subset S$, and
2. $f(T) \leq f(S)$ for all $T \supset S$

Proof by induction on $d=|S \backslash R|$ for 1 .
Base case: if $d=1$ then $R \in N(S)$ and $f(R) \leq f(S)$

Local Optima for SFMax

Let $S \subseteq E$ be a local maximum for the add \& drop moves

Lemma

If $f: 2^{E} \mapsto \mathbb{R}$ is normalized and submodular, and S is such a local optimum then

$$
\begin{aligned}
& \text { 1. } f(R) \leq f(S) \text { for all } R \subset S \text {, and } \\
& \text { 2. } f(T) \leq f(S) \text { for all } T \supset S
\end{aligned}
$$

Proof by induction on $d=|S \backslash R|$ for 1 .
Base case: if $d=1$ then $R \in N(S)$ and $f(R) \leq f(S)$
Induction: assume 1 holds for $d-1$ and consider any $R \subset S$ with $|S \backslash R|=d$. Choose $u \in S \backslash R$. Then

$$
f(R) \leq f(R+u)+f(S-u)-f(S)
$$

Local Optima for SFMax

Let $S \subseteq E$ be a local maximum for the add \& drop moves

Lemma

If $f: 2^{E} \mapsto \mathbb{R}$ is normalized and submodular, and S is such a local optimum then

$$
\begin{aligned}
& \text { 1. } f(R) \leq f(S) \text { for all } R \subset S \text {, and } \\
& \text { 2. } f(T) \leq f(S) \text { for all } T \supset S
\end{aligned}
$$

Proof by induction on $d=|S \backslash R|$ for 1 .
Base case: if $d=1$ then $R \in N(S)$ and $f(R) \leq f(S)$
Induction: assume 1 holds for $d-1$ and consider any $R \subset S$ with $|S \backslash R|=d$. Choose $u \in S \backslash R$. Then

$$
\begin{aligned}
f(R) & \leq f(R+u)+f(S-u)-f(S) \\
& \leq f(S-u)
\end{aligned}
$$

Local Optima for SFMax

Let $S \subseteq E$ be a local maximum for the add \& drop moves

Lemma

If $f: 2^{E} \mapsto \mathbb{R}$ is normalized and submodular, and S is such a local optimum then

$$
\begin{aligned}
& \text { 1. } f(R) \leq f(S) \text { for all } R \subset S \text {, and } \\
& \text { 2. } f(T) \leq f(S) \text { for all } T \supset S
\end{aligned}
$$

Proof by induction on $d=|S \backslash R|$ for 1 .
Base case: if $d=1$ then $R \in N(S)$ and $f(R) \leq f(S)$
Induction: assume 1 holds for $d-1$ and consider any $R \subset S$ with $|S \backslash R|=d$. Choose $u \in S \backslash R$. Then

$$
\begin{aligned}
f(R) & \leq f(R+u)+f(S-u)-f(S) \\
& \leq f(S-u) \\
& \leq f(S)
\end{aligned}
$$

Local Optima for SFMax

Let $S \subseteq E$ be a local maximum for the add \& drop moves

Lemma

If $f: 2^{E} \mapsto \mathbb{R}$ is normalized and submodular, and S is such a local optimum then

$$
\begin{aligned}
& \text { 1. } f(R) \leq f(S) \text { for all } R \subset S \text {, and } \\
& \text { 2. } f(T) \leq f(S) \text { for all } T \supset S
\end{aligned}
$$

Proof by induction on $d=|S \backslash R|$ for 1 .
Base case: if $d=1$ then $R \in N(S)$ and $f(R) \leq f(S)$
Induction: assume 1 holds for $d-1$ and consider any $R \subset S$ with $|S \backslash R|=d$. Choose $u \in S \backslash R$. Then

$$
\begin{aligned}
f(R) & \leq f(R+u)+f(S-u)-f(S) \\
& \leq f(S-u) \\
& \leq f(S)
\end{aligned}
$$

The proof of 2 is similar

Local Optima for SFMax (2)

Theorem [Feige, Mirrokni \& Vondrák, 2011]
If $f: 2^{E} \mapsto \mathbb{R}$ is normalized, nonnegative and submodular,

Local Optima for SFMax (2)

Theorem [Feige, Mirrokni \& Vondrák, 2011]
If $f: 2^{E} \mapsto \mathbb{R}$ is normalized, nonnegative and submodular, and S is a local optimum for the add \& drop moves,

Local Optima for SFMax (2)

Theorem [Feige, Mirrokni \& Vondrák, 2011]
If $f: 2^{E} \mapsto \mathbb{R}$ is normalized, nonnegative and submodular, and S is a local optimum for the add \& drop moves, then $S^{\prime} \in \arg \max \{f(T): T \in\{S, N \backslash S\}\}$, the better of S and its complement, is a $1 / 3$-approximation

Local Optima for SFMax (2)

Theorem [Feige, Mirrokni \& Vondrák, 2011]
If $f: 2^{E} \mapsto \mathbb{R}$ is normalized, nonnegative and submodular, and S is a local optimum for the add \& drop moves, then $S^{\prime} \in \arg \max \{f(T): T \in\{S, N \backslash S\}\}$, the better of S and its complement, is a $1 / 3$-approximation Proof:

Local Optima for SFMax (2)

Theorem [Feige, Mirrokni \& Vondrák, 2011] If $f: 2^{E} \mapsto \mathbb{R}$ is normalized, nonnegative and submodular, and S is a local optimum for the add \& drop moves, then $S^{\prime} \in \arg \max \{f(T): T \in\{S, N \backslash S\}\}$, the better of S and its complement, is a $1 / 3$-approximation
Proof: Let S^{*} be an optimum solution, then

Local Optima for SFMax (2)

Theorem [Feige, Mirrokni \& Vondrák, 2011] If $f: 2^{E} \mapsto \mathbb{R}$ is normalized, nonnegative and submodular, and S is a local optimum for the add \& drop moves, then

$$
S^{\prime} \in \arg \max \{f(T): T \in\{S, N \backslash S\}\}
$$

the better of S and its complement, is a $1 / 3$-approximation
Proof: Let S^{*} be an optimum solution, then

$$
3 f\left(S^{\prime}\right) \geq 2 f\left(S^{\prime}\right)+f\left(N \backslash S^{\prime}\right)
$$

Local Optima for SFMax (2)

Theorem [Feige, Mirrokni \& Vondrák, 2011]
If $f: 2^{E} \mapsto \mathbb{R}$ is normalized, nonnegative and submodular, and S is a local optimum for the add \& drop moves, then

$$
S^{\prime} \in \arg \max \{f(T): T \in\{S, N \backslash S\}\},
$$

the better of S and its complement, is a $1 / 3$-approximation
Proof: Let S^{*} be an optimum solution, then

$$
\begin{aligned}
3 f\left(S^{\prime}\right) & \geq 2 f\left(S^{\prime}\right)+f\left(N \backslash S^{\prime}\right) \\
& \geq f\left(S^{\prime} \cap S^{*}\right)+f\left(S^{\prime} \cup S^{*}\right)+f\left(N \backslash S^{\prime}\right)
\end{aligned}
$$

Local Optima for SFMax (2)

Theorem [Feige, Mirrokni \& Vondrák, 2011]
If $f: 2^{E} \mapsto \mathbb{R}$ is normalized, nonnegative and submodular, and S is a local optimum for the add \& drop moves, then

$$
S^{\prime} \in \arg \max \{f(T): T \in\{S, N \backslash S\}\},
$$

the better of S and its complement, is a $1 / 3$-approximation
Proof: Let S^{*} be an optimum solution, then

$$
\begin{aligned}
3 f\left(S^{\prime}\right) & \geq 2 f\left(S^{\prime}\right)+f\left(N \backslash S^{\prime}\right) \\
& \geq f\left(S^{\prime} \cap S^{*}\right)+f\left(S^{\prime} \cup S^{*}\right)+f\left(N \backslash S^{\prime}\right) \\
& \geq f\left(S^{\prime} \cap S^{*}\right)+f(N)+f\left(S^{*} \backslash S^{\prime}\right)
\end{aligned}
$$

Local Optima for SFMax (2)

Theorem [Feige, Mirrokni \& Vondrák, 2011]
If $f: 2^{E} \mapsto \mathbb{R}$ is normalized, nonnegative and submodular, and S is a local optimum for the add \& drop moves, then

$$
S^{\prime} \in \arg \max \{f(T): T \in\{S, N \backslash S\}\},
$$

the better of S and its complement, is a $1 / 3$-approximation
Proof: Let S^{*} be an optimum solution, then

$$
\begin{aligned}
3 f\left(S^{\prime}\right) & \geq 2 f\left(S^{\prime}\right)+f\left(N \backslash S^{\prime}\right) \\
& \geq f\left(S^{\prime} \cap S^{*}\right)+f\left(S^{\prime} \cup S^{*}\right)+f\left(N \backslash S^{\prime}\right) \\
& \geq f\left(S^{\prime} \cap S^{*}\right)+f(N)+f\left(S^{*} \backslash S^{\prime}\right) \\
& \geq f\left(S^{*}\right)+f(\emptyset)+f(N)
\end{aligned}
$$

Local Optima for SFMax (2)

Theorem [Feige, Mirrokni \& Vondrák, 2011]
If $f: 2^{E} \mapsto \mathbb{R}$ is normalized, nonnegative and submodular, and S is a local optimum for the add \& drop moves, then

$$
S^{\prime} \in \arg \max \{f(T): T \in\{S, N \backslash S\}\},
$$

the better of S and its complement, is a $1 / 3$-approximation
Proof: Let S^{*} be an optimum solution, then

$$
\begin{align*}
3 f\left(S^{\prime}\right) & \geq 2 f\left(S^{\prime}\right)+f\left(N \backslash S^{\prime}\right) \\
& \geq f\left(S^{\prime} \cap S^{*}\right)+f\left(S^{\prime} \cup S^{*}\right)+f\left(N \backslash S^{\prime}\right) \\
& \geq f\left(S^{\prime} \cap S^{*}\right)+f(N)+f\left(S^{*} \backslash S^{\prime}\right) \\
& \geq f\left(S^{*}\right)+f(\emptyset)+f(N) \geq f\left(S^{*}\right)
\end{align*}
$$

Local Optima for SFMax (2)

Theorem [Feige, Mirrokni \& Vondrák, 2011]
If $f: 2^{E} \mapsto \mathbb{R}$ is normalized, nonnegative and submodular, and S is a local optimum for the add \& drop moves, then

$$
S^{\prime} \in \arg \max \{f(T): T \in\{S, N \backslash S\}\},
$$

the better of S and its complement, is a $1 / 3$-approximation
Proof: Let S^{*} be an optimum solution, then

$$
\begin{align*}
3 f\left(S^{\prime}\right) & \geq 2 f\left(S^{\prime}\right)+f\left(N \backslash S^{\prime}\right) \\
& \geq f\left(S^{\prime} \cap S^{*}\right)+f\left(S^{\prime} \cup S^{*}\right)+f\left(N \backslash S^{\prime}\right) \\
& \geq f\left(S^{\prime} \cap S^{*}\right)+f(N)+f\left(S^{*} \backslash S^{\prime}\right) \\
& \geq f\left(S^{*}\right)+f(\emptyset)+f(N) \geq f\left(S^{*}\right)
\end{align*}
$$

Theorem. If, in addition to the assumptions of the preceding theorem, f is also symmetric then S^{\prime} is a $1 / 2$-approximation

Local Optima for SFMax (2)

Theorem [Feige, Mirrokni \& Vondrák, 2011]
If $f: 2^{E} \mapsto \mathbb{R}$ is normalized, nonnegative and submodular, and S is a local optimum for the add \& drop moves, then

$$
S^{\prime} \in \arg \max \{f(T): T \in\{S, N \backslash S\}\},
$$

the better of S and its complement, is a $1 / 3$-approximation
Proof: Let S^{*} be an optimum solution, then

$$
\begin{align*}
3 f\left(S^{\prime}\right) & \geq 2 f\left(S^{\prime}\right)+f\left(N \backslash S^{\prime}\right) \\
& \geq f\left(S^{\prime} \cap S^{*}\right)+f\left(S^{\prime} \cup S^{*}\right)+f\left(N \backslash S^{\prime}\right) \\
& \geq f\left(S^{\prime} \cap S^{*}\right)+f(N)+f\left(S^{*} \backslash S^{\prime}\right) \\
& \geq f\left(S^{*}\right)+f(\emptyset)+f(N) \geq f\left(S^{*}\right)
\end{align*}
$$

Theorem. If, in addition to the assumptions of the preceding theorem, f is also symmetric then S^{\prime} is a $1 / 2$-approximation Proof:

Local Optima for SFMax (2)

Theorem [Feige, Mirrokni \& Vondrák, 2011]
If $f: 2^{E} \mapsto \mathbb{R}$ is normalized, nonnegative and submodular, and S is a local optimum for the add \& drop moves, then

$$
S^{\prime} \in \arg \max \{f(T): T \in\{S, N \backslash S\}\},
$$

the better of S and its complement, is a $1 / 3$-approximation
Proof: Let S^{*} be an optimum solution, then

$$
\begin{align*}
3 f\left(S^{\prime}\right) & \geq 2 f\left(S^{\prime}\right)+f\left(N \backslash S^{\prime}\right) \\
& \geq f\left(S^{\prime} \cap S^{*}\right)+f\left(S^{\prime} \cup S^{*}\right)+f\left(N \backslash S^{\prime}\right) \\
& \geq f\left(S^{\prime} \cap S^{*}\right)+f(N)+f\left(S^{*} \backslash S^{\prime}\right) \\
& \geq f\left(S^{*}\right)+f(\emptyset)+f(N) \geq f\left(S^{*}\right)
\end{align*}
$$

Theorem. If, in addition to the assumptions of the preceding theorem, f is also symmetric then S^{\prime} is a $1 / 2$-approximation
Proof: $N \backslash S^{\prime}$ is also a local optimum, so
$2 f\left(S^{\prime}\right)=f\left(S^{\prime}\right)+f\left(N \backslash S^{\prime}\right)$

Local Optima for SFMax (2)

Theorem [Feige, Mirrokni \& Vondrák, 2011]
If $f: 2^{E} \mapsto \mathbb{R}$ is normalized, nonnegative and submodular, and S is a local optimum for the add \& drop moves, then

$$
S^{\prime} \in \arg \max \{f(T): T \in\{S, N \backslash S\}\},
$$

the better of S and its complement, is a $1 / 3$-approximation
Proof: Let S^{*} be an optimum solution, then

$$
\begin{align*}
3 f\left(S^{\prime}\right) & \geq 2 f\left(S^{\prime}\right)+f\left(N \backslash S^{\prime}\right) \\
& \geq f\left(S^{\prime} \cap S^{*}\right)+f\left(S^{\prime} \cup S^{*}\right)+f\left(N \backslash S^{\prime}\right) \\
& \geq f\left(S^{\prime} \cap S^{*}\right)+f(N)+f\left(S^{*} \backslash S^{\prime}\right) \\
& \geq f\left(S^{*}\right)+f(\emptyset)+f(N) \geq f\left(S^{*}\right)
\end{align*}
$$

Theorem. If, in addition to the assumptions of the preceding theorem, f is also symmetric then S^{\prime} is a $1 / 2$-approximation
Proof: $N \backslash S^{\prime}$ is also a local optimum, so
$2 f\left(S^{\prime}\right)=f\left(S^{\prime}\right)+f\left(N \backslash S^{\prime}\right) \geq f\left(S^{\prime} \cap S^{*}\right)+f\left(\left(N \backslash S^{\prime}\right) \cap S^{*}\right)$

Local Optima for SFMax (2)

Theorem [Feige, Mirrokni \& Vondrák, 2011]
If $f: 2^{E} \mapsto \mathbb{R}$ is normalized, nonnegative and submodular, and S is a local optimum for the add \& drop moves, then

$$
S^{\prime} \in \arg \max \{f(T): T \in\{S, N \backslash S\}\},
$$

the better of S and its complement, is a $1 / 3$-approximation
Proof: Let S^{*} be an optimum solution, then

$$
\begin{align*}
3 f\left(S^{\prime}\right) & \geq 2 f\left(S^{\prime}\right)+f\left(N \backslash S^{\prime}\right) \\
& \geq f\left(S^{\prime} \cap S^{*}\right)+f\left(S^{\prime} \cup S^{*}\right)+f\left(N \backslash S^{\prime}\right) \\
& \geq f\left(S^{\prime} \cap S^{*}\right)+f(N)+f\left(S^{*} \backslash S^{\prime}\right) \\
& \geq f\left(S^{*}\right)+f(\emptyset)+f(N) \geq f\left(S^{*}\right)
\end{align*}
$$

Theorem. If, in addition to the assumptions of the preceding theorem, f is also symmetric then S^{\prime} is a $1 / 2$-approximation
Proof: $N \backslash S^{\prime}$ is also a local optimum, so

$$
\begin{aligned}
2 f\left(S^{\prime}\right) & =f\left(S^{\prime}\right)+f\left(N \backslash S^{\prime}\right) \geq f\left(S^{\prime} \cap S^{*}\right)+f\left(\left(N \backslash S^{\prime}\right) \cap S^{*}\right) \\
& \geq f\left(S^{*}\right)+f(\emptyset)
\end{aligned}
$$

Local Optima for SFMax (2)

Theorem [Feige, Mirrokni \& Vondrák, 2011]
If $f: 2^{E} \mapsto \mathbb{R}$ is normalized, nonnegative and submodular, and S is a local optimum for the add \& drop moves, then

$$
S^{\prime} \in \arg \max \{f(T): T \in\{S, N \backslash S\}\},
$$

the better of S and its complement, is a $1 / 3$-approximation
Proof: Let S^{*} be an optimum solution, then

$$
\begin{align*}
3 f\left(S^{\prime}\right) & \geq 2 f\left(S^{\prime}\right)+f\left(N \backslash S^{\prime}\right) \\
& \geq f\left(S^{\prime} \cap S^{*}\right)+f\left(S^{\prime} \cup S^{*}\right)+f\left(N \backslash S^{\prime}\right) \\
& \geq f\left(S^{\prime} \cap S^{*}\right)+f(N)+f\left(S^{*} \backslash S^{\prime}\right) \\
& \geq f\left(S^{*}\right)+f(\emptyset)+f(N) \geq f\left(S^{*}\right)
\end{align*}
$$

Theorem. If, in addition to the assumptions of the preceding theorem, f is also symmetric then S^{\prime} is a $1 / 2$-approximation
Proof: $N \backslash S^{\prime}$ is also a local optimum, so

$$
\begin{align*}
2 f\left(S^{\prime}\right) & =f\left(S^{\prime}\right)+f\left(N \backslash S^{\prime}\right) \geq f\left(S^{\prime} \cap S^{*}\right)+f\left(\left(N \backslash S^{\prime}\right) \cap S^{*}\right) \\
& \geq f\left(S^{*}\right)+f(\emptyset) \geq f\left(S^{*}\right)
\end{align*}
$$

Approximation Algorithms for SFMax

Approximation Algorithms for SFMax

Combining with MLS (for polytime) we get

- a $\left(\frac{1}{3}-\epsilon\right)$-approximation for SFMax with a normalized nonnegative objective, and

Approximation Algorithms for SFMax

Combining with MLS (for polytime) we get

- a $\left(\frac{1}{3}-\epsilon\right)$-approximation for SFMax with a normalized nonnegative objective, and
- a $\left(\frac{1}{2}-\epsilon\right)$-approximation if it is also symmetric

Approximation Algorithms for SFMax

Combining with MLS (for polytime) we get

- a $\left(\frac{1}{3}-\epsilon\right)$-approximation for SFMax with a normalized nonnegative objective, and
- a $\left(\frac{1}{2}-\epsilon\right)$-approximation if it is also symmetric
- matches the $\left(\frac{1}{2}+\epsilon\right)$ inapproximability for Sym-SFMax

Approximation Algorithms for SFMax

Combining with MLS (for polytime) we get

- a $\left(\frac{1}{3}-\epsilon\right)$-approximation for SFMax with a normalized nonnegative objective, and
- a $\left(\frac{1}{2}-\epsilon\right)$-approximation if it is also symmetric
- matches the $\left(\frac{1}{2}+\epsilon\right)$ inapproximability for Sym-SFMax

Approximation Algorithms for SFMax

Combining with MLS (for polytime) we get

- a $\left(\frac{1}{3}-\epsilon\right)$-approximation for SFMax with a normalized nonnegative objective, and
- a $\left(\frac{1}{2}-\epsilon\right)$-approximation if it is also symmetric
- matches the $\left(\frac{1}{2}+\epsilon\right)$ inapproximability for Sym-SFMax

Buchbinder, Feldman, Naor \& Schwartz (2012): a randomized, linear-time, greedy-like algorithm which is a $\frac{1}{2}$-approximation

- therefore best possible for SFMax

Approximation Algorithms for SFMax

Combining with MLS (for polytime) we get

- a $\left(\frac{1}{3}-\epsilon\right)$-approximation for SFMax with a normalized nonnegative objective, and
- a $\left(\frac{1}{2}-\epsilon\right)$-approximation if it is also symmetric
- matches the $\left(\frac{1}{2}+\epsilon\right)$ inapproximability for Sym-SFMax

Buchbinder, Feldman, Naor \& Schwartz (2012): a randomized, linear-time, greedy-like algorithm which is a $\frac{1}{2}$-approximation

- therefore best possible for SFMax

Other recent approximation results for monotone and non-monotone SFMax subject to a variety of constraints

- one or several knapsacks, matroidal constraints, ...

Additional References (1)

- Anglès d'Auriac, Jean -Christian, Ferenc Iglói, Myriam Preissmann, and Andras Sebő, 2002. "Optimal cooperation and submodularity for computing Potts' partition functions with a large number of states" J. Phys. A35 6973-6983.
- Baïou, Mourad, Francisco Barahona, and Ridha Mahjoub, 2000. "Separation of Partition Inequalities" Math. of OR 25 243-254.
- Buchbinder, Niv, Moran Feldman, Joseph Seffi Naor, and Roy Schwartz, 2012. "A tight linear time (1/2)-approximation for unconstrained submodular maximization" FOCS 2012 649-658.
- Feige, Uriel, 1998. "A threshold of $\ln n$ for approximating Set Cover" J. ACM 45 634-652.
- Feige, Uriel, Vahab S. Mirrokni, and Jan Vondrak, 2011. "Maximizing non-monotone submodular functions" SIAM J. Comput. 40(4) 1133-1153.
- Frank, András, and Eva Tardos, 1988. "Generalized polymatroids and submodular flows" Math. Prog. 42(1-3) 489-563.
- Goemans, Michel X., and José A. Soto, 2013. "Algorithms for Symmetric Submodular Function Minimization under Hereditary Constraints and Generalizations" SIAM J. Discr. Math. 27(2) 1123-1145.

Additional References (2)

- Goldschmidt, Olivier, and Dorit S. Hochbaum, 1994. "A polynomial algorithm for the k-cut problem for fixed k " Math. of OR 19(1) 24-37.
- Minoux, Michel, 1978. "Accelerated greedy algorithms for maximizing submodular set functions" Optimization Techniques (8th IFIP TC 7 Optimization Conference, Springer) 234-243.
- Nagamochi, Hiroshi, and Toshihide Ibaraki, 1998. "A note on minimizing submodular functions" Info. Proc. Letters 67 239-244.
- Nagamochi, Hiroshi, and Toshihide Ibaraki, 2000. "A fast algorithm for computing minimum 3-way and 4-way cuts" Math. Prog. 88(3) 507-520.
- Okumoto, Kazumasa, Takuro Fukunaga, and Hiroshi Nagamochi, 2010. "Divide-and-Conquer Algorithms for Partitioning Hypergraphs and Submodular Systems" Algorithmica 62(3-4) 787-806.
- Zhao, Liang, Hiroshi Nagamochi, and Toshihide Ibaraki, 2005. "Greedy splitting algorithms for approximating multiway partition problems" Math. Prog. 102(1) 167-183.

Short Course on Submodular Functions
Part 2: Extensions and Related Problems
Session 3: Submodularity in Vector Spaces
S. Thomas McCormick and Maurice Queyranne Sauder School of Business, UBC

Rappels: Un Treillis (en anglais: Lattice) est un un ensemble partichement adonné (un "poset") (L, \leqslant) tel que, pour Tous $a, b \in L$ il existe - une plus perite borne supérieure commune $a v b$, le supremum (on supp) de a er b (en anglais, the join of a and b), c'es à dire un unique élément $s=a \cup b \in L$ tel que $a \leq s, b \leq s$ er pour tout $c \in L$ tel que $a \leq c$ er $b \leq c$ on doir aroin $s \leq C$

- et une plus grande borne inférieuse commune $a \wedge b$, ('infimum (ou inf) de aerb (the meet of a and $b): a \cap b \leq a, a \cap b \leq b$ er $\forall c \in L \quad(c \leqslant a$ er $c \leqslant b) \Rightarrow c \leqslant a \wedge b$
Exemples: $\left(2^{E}, \subseteq\right)$ arec $a w b=a \cup b$ (union) et $a \cap b=a \cap b$ (interse $\sqrt{\text { anan }}$)
 \Rightarrow est l^{\prime} implicarian ($a \Rightarrow b$ signifie que b (e $)=$ Vrai pour tors les $e \in E$ rebs que $a(e)=$ Vrai) \checkmark est la disjondrion ("ou" logique: $\forall e \in E$ arb $(e)=V r a i$ xí er seulemar si

$$
\text { I'un au moins de } a(e) \text { ou } b(e)=\text { Vrai) }
$$

\wedge est $l a$ conjounction ("et" logique: $\forall l e E$ anb(e) $=$ Vrai ssi $a(e)=b(e)=V$ rai")

- ($\left.\mathbb{R}^{d}, \leq\right)$ oin \leq br e^{\prime} adre pariel "par composantes" $x \leq y \Leftrightarrow x_{j} \leq y_{j} \forall j=1 . . d$
\checkmark esr le supremum par copesants

$$
\left(x \vee y_{j}\right)_{j}=x_{j} \vee y_{j}=\max \left\{x_{j}, y_{j}\right\} \quad \forall f=1 . . d
$$

Λ est l^{\prime} infimum pan conposants

$$
\left(x \wedge y_{j}=x_{j} \wedge y_{j}=\min \left\{x_{j}, g_{j}\right\} \quad \forall j=1 . . d\right.
$$

On définir de mime $\left(\mathbb{Z}^{d}, \leq\right),\left(\mathbb{B}^{d}, \leq\right)$ (oir $\left.\mathbb{B}=\{0,1\}\right)$
or plus géménalent $\left(\bigotimes_{j=1}^{\alpha} A_{j}, \leq\right)$ oin $\bigotimes_{j=1}^{d} A_{j}$ eor le produrit Can résien de sons-ensenbles arbitraines $A_{j} \subseteq \mathbb{R}$, avec ('ache pariel pancomposentes \leqslant En particulin, pon $l, u \in \mathbb{Z}^{d}$ tels que $l \leq u$, La boite $B_{l, u}=\left\{x \in \mathbb{Z}^{d}: l \leq x \leq u\right\}$ est un theillis (c'estrm sous. teillis de \mathbb{Z}^{d}, c'stà dire un sons.ensalle de \mathbb{Z}^{d} stable (on feumes) pan les opeatias v er \wedge de $\left.\left(\mathbb{Z}^{d}, \leq\right)\right)$
Remanques: 1) on définit de mécma les beits (on rectaingles) dams \mathbb{R}^{d}
2) les theillis $\left(2^{E}, \leq\right),\left(\mathbb{T}^{E}, \Rightarrow\right) \operatorname{er}\left(\mathbb{B}^{E}, \leq\right)$ sant, natmellemat, "isomorphes"
3) Les sous-tacillis de ($2 E, \subseteq$) sout les anneaut d'ensembles
4) daus Tour heiltis, on a les équivideneses $a \leq b \Leftrightarrow a \cup b=b \Leftrightarrow a \wedge b=a$

Fonctions sous-modulaires dans les theilis er les apaces ve $\sqrt{\text { ridels : }}$
Une farsia $f: L \rightarrow \mathbb{R}$ es sons.modulain si

$$
f(a \vee b)+f(a \wedge b) \leqslant f(a)+f(b) \quad \forall a, b \in L
$$

Caractériswirm de la sous modulaité

- daus \mathbb{Z}^{d} : si (L, \leq) es un sous teilts de $\mathbb{Z}^{d}, f: L \rightarrow \mathbb{R}$ es soms-modulañe ssi elle swisfart la propritei α 'inceriments decroissants:
$f\left(x+e_{i}+e_{j}\right)-f\left(x+e_{j}\right) \leqslant f\left(x+e_{i}\right)-f(x) \quad \forall x$ tel que $x+e_{i} e^{r} x+e_{j} \in L$ oì $e_{i}=\left(0, \ldots, 0, \frac{1}{1}, 0 \ldots, 0\right)^{\top}$ est le $i^{\text {icmes.itic }}$ vevem unitains
extecice: pronver certe équivalence
- dava $\mathbb{R}^{d}: f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ difféwirable eor sons-medalaine
$\Leftrightarrow \frac{\partial}{\partial x_{i}} f(x)$ es non-cooissante en $x_{j} \quad \forall i \neq j$

$$
\Leftrightarrow \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} f(x) \leq 0 \quad \forall i \neq j
$$

exencice: pronver cette équivalence

Remanque : celte dernière condition montre que la sous-modulaite'est différenter à la fris de la cauverxité er de la cancavite': en effet $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, deux fors différensiable, ent

- Sous modulain ssi son Hession $H f(x)=\left(\frac{\partial^{2}}{\partial x_{i} \partial x_{j}} f(x)\right)_{\substack{i=1 . . d \\ j=1 \ldots d}}$ a, pourtowr $x \in \mathbb{R}^{d}$, rous ses termes non-diagonaux qui sart nou-positifs. (une propriété independente des termes diagonaux $\frac{\partial^{2}}{\partial x_{i}^{2}} f(x)$)
- Convexe ssi, $\forall x \in \mathbb{R}^{d}, H f(x)$ es poririf semi-défini (prd) proprictés de tonte
- concave ssi, $\forall x \in \mathbb{R}^{d},-H f(x)$ es pid la matrice $H f(x)$

SFM in dous we boite disceete
étant donnés $l \leq u \in \mathbb{Z}^{d}$
er $f: B_{e_{n}} \rightarrow \mathbb{Q}$ sous-modulàie, donneé pan un nack de valeun SFMin $\left(B_{l, n}\right): \quad \min \left\{f(x): x \in \mathbb{Z}^{d}, l \leq x \leq u\right\}$

- Pent-ar résondre ce problime en Teups polzuaial (polynaid en d, les tailles d'input de l er u et d'une borne syeneiéne $\left.M \geqslant \operatorname{manc}\left\{|f(x)|: x \in B_{l, n}\right\}\right)$?
- La répouse est NON:

Proposition: Tour algoultime ponsesode SFMin ($B_{l_{n}}$) doit utiliser an moins $\sum_{i=1}^{d}\left(u_{i}-l_{i}+1\right)$, un nombre psende-polynomial, d'appels à L'aade de valuns.
Preuve: Tonte fancorm séporable $f=\sum_{i=1}^{d} f_{i}$ définie om $B_{l, u}$, c.a.d., $f(x)=\sum_{i=1}^{d} f_{i}\left(x_{i}\right)$ ai chaque $f_{i}:\left\{l_{i}, l_{i}+1, \ldots, u_{i}\right\} \rightarrow \mathbb{Q}$ est sons-modulaine exercice: vérifien cette affirmarion
Comue les foncios f_{i} penvurt éte quelcaque, il furt connaitse tontes lemss valews pour ponvör en mimimiser la somme.
[Plus précisement,on definit la strategis advese suivente pour
 Alos, pour tonte sépuence de moim de $\sum_{i=1}^{d} f_{i}\left(x_{i}\right)$ requites il extste une coordonnés it ve valum $v_{i} \in\left\{l_{i}, l_{i+1}, \ldots, u_{i}\right\}$ qui n'apponait das ancure repincte. L'algailtem es incapable de différencia en fansim $f^{1}=f_{i}^{1}+\sum_{j \neq i} f_{j}$ er $f^{2}=f_{i}^{2}+\sum_{j \neq i} f_{j}$ oi $f_{j}(v)=1$ pantates les cordonnees $j=1$..d er valus v, sanf que $f_{i}^{1}\left(v_{i}\right)=0$ er $f_{i}^{2}\left(v_{i}\right)=2$, et $\operatorname{argmin}\left\{f^{\prime}(x): x \in B_{\rho, n}\right\}=\left\{x \in B_{l, n}: x_{i}=v_{i}\right\}$ alos que $\left.\operatorname{argmin}\left\{f^{2}(x): x \in B_{\rho, n}\right\}=\left\{x \in B_{l, n}: x_{i} \neq v_{i}\right\}\right]$

Remanque: cet angumeat inglique aussi une borne supérieme de $\left(1-\frac{1}{d-1}\right)$ sm l^{\prime} apposeximabilite' de SFMin $\left(B_{l_{n}}\right)$ lasque $f \geqslant 0$

Voici un algan'ture psendo-polynomial pan SFMin $\left(B_{e_{n}}\right)$:
con difinit l'expansion unains de chaque corrdouncé:
$x_{j}=l_{j}+\sum_{k=1}^{w_{j}} y_{j, k}$ oin $w_{j}=u_{j}-l_{j} \quad$ or chaque $y_{j, k} \in \mathbb{B}$ satisfait $y_{j, 1} \geqslant y_{j, 2} \geqslant \ldots \geqslant y_{j, w_{j}}$

- soient $E=\left\{(j, k): j=1 . . d, k=1 . . w_{j}\right\} \quad l^{\prime}$ ensenble des indices de ces variables $y_{j} k$

$$
\mathscr{F}=\left\{S \leq E:(j, k) \in S \Rightarrow(j, k-1) \in S \quad \forall \rho=1 . . d, \forall k=1 \ldots w_{j}-1\right\}
$$

$\varphi: \mathcal{F}_{t} \rightarrow B_{\rho, u}$ où $x=\varphi^{-1}(s)$ a pon composantes

$$
\begin{gathered}
x_{j}=e_{j}+|\{k:(j, k) \in S\}| \\
F=f \circ \varphi: \sqrt[r]{ } \rightarrow \mathbb{Q} \quad(\text { c.a.d, } F(S)=f(\varphi(s)))
\end{gathered}
$$

exercice: vénfing que

- \mathcal{H}^{2} es or stable pan l'mion er l'ivensedia. donc un annean d'ensenbles
- φ es rum bijecion, et $s \leqslant T \Leftrightarrow \varphi(s) \leqslant \varphi(T)$ done φ est un ibamorphisme de (sons-) heillis
- F est une foncion son-modulaine sm l^{\prime} annean d^{\prime} 'usubbls $\mathcal{F r}^{4}$ et $x \in \operatorname{angmin}\left\{f: x \in B_{l, n}\right\} \Leftrightarrow \varphi^{-1}(x) \in \operatorname{argmin}\{F(S): S \in \Gamma\}$

On pent done résondre SFMin (Bl, n) en Teups psendo polynaid en résolvart SFMin pon la fonvire F sun l'annean d'ensembles Fin

Référence (daus la liste distribuée avec les Problìmes)
[22] K. Murota (2003) Disacte Conver Analys is (livre)

