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Teaching plan

I First half of the course: Tom McCormick on submodular
function minimization (SFMin).

I Second half of the course: Maurice Queyranne on submodular
function maximization (SFMax).

I There will be three hours for students to work on homework
problems and present solutions.

I The detailed schedule is:

1. TM lectures four hours on SFMin Monday afternoon.

1.1 One hour problem session Tuesday morning.

2. TM lectures three hours on SFMin Tuesday morning.

2.1 Lunch on Tuesday.
2.2 One hour problem session Tuesday afternoon.

3. MQ lectures three hours on SFMax Tuesday afternoon.

3.1 One hour problem session Wednesday morning.

4. MQ lectures three hours on SFMax Wednesday morning.
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Motivating Example

I Suppose that you manage a factory that is capable of making
any one of a large finite set E of products.

I In order to produce product e ∈ E it is necessary to set up the
machines needed to manufacture e, and this costs money.

I The setup cost is non-linear, and it depends on which other
products you choose to produce.

I For example, if you are already producing iPhones, then the
setup cost for also producing iPads is small, but if you are not
producing iPhones, the setup cost for producing iPads is large.

I Suppose that we choose to produce the subset of products
S ⊆ E. Then we write the setup cost of subset S as c(S).
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Set Functions

I Notice that c(S) is a function from 2E (the family of all
subsets of E) to R.

I If f is a function f : 2E → R then we call f a set function.

I We globally use n to denote |E|. Thus a set function f on E
is determined by its 2n values f(S) for S ⊆ E.

I This is a lot of data. We typically have some more compact
representation of f that allows us to efficiently compute f(S)
for a given S.

I Because of this, we talk about set functions using an value
oracle model: we assume that we have an algorithm E whose
input is some S ⊆ E, and whose output is f(S). We denote
the running time of E by EO.

I We typically think that EO = Ω(n), i.e., that it takes at least
linear time to evaluate f on S.
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Back to the motivating example

I We have setup cost set function c : 2E → R.

I Imagine that we are currently producing subset S, and we are
considering also producing product e for e /∈ S.

I The marginal setup cost for adding e to S is
c(S ∪ {e})− c(S).

I To simplify notation we often write c(S ∪ {e}) as c(S + e).

I In this notation the marginal setup cost is c(S + e)− c(S).

I Suppose that S ⊂ T and that e /∈ T . Since T includes
everything in S and more, it is reasonable to guess that the
marginal setup cost of adding e to T is not larger than the
marginal setup cost of adding e to S. That is,

∀S ⊂ T ⊂ T + e, c(T + e)− c(T ) ≤ c(S + e)− c(S). (1)

I When a set function satisfies (1) we say that it is submodular.
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Submodularity definitions

I In general, if f is a set function on E, we say that f is
submodular if

∀S ⊂ T ⊂ T + e, f(T + e)− f(T ) ≤ f(S + e)− f(S). (2)

I The classic definition of submodularity looks quite different.
We also say that set function f is submodular if

for all S, T ⊆ E, f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ). (3)

Lemma
Definitions (2) and (3) are equivalent.

Proof.
Homework.
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More definitions

I We say that set function f is monotone if S ⊆ T implies that
f(S) ≤ f(T ).

I Many set functions arising in applications are monotone, but
not all of them.

I A set function that is both submodular and monotone is
called a polymatroid.

I Polymatroids generalize matroids, and are a special case of the
submodular polyhedra we’ll see later.
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Even more definitions

I We say that set function f is supermodular if it satisfies these
definitions with the inequalities reversed, i.e., if

∀S ⊂ T ⊂ T + e, f(T + e)− f(T ) ≥ f(S + e)− f(S). (4)

Thus f is supermodular iff −f is submodular.

I We say that set function f is modular if it satisfies these
definitions with equality, i.e., if

∀S ⊂ T ⊂ T + e, f(T + e)− f(T ) = f(S + e)− f(S). (5)

Thus f is modular iff it is both sub- and supermodular.

Lemma
Set function f is modular iff there is some vector a ∈ RE such that
f(S) = f(∅) +

∑
e∈S ae.

Proof.
Homework.
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Motivating example again

I The lemma suggest a natural way to extend a vector a ∈ RE

to a modular set function: Define a(S) =
∑

e∈S ae. Note that
a(∅) = 0.

I For example, let’s suppose that the profit from producing
product e ∈ E is pe, i.e., p ∈ RE .

I We assume that these profits add up linearly, so that the
profit from producing subset S is p(S) =

∑
e∈E pe.

I Therefore our net revenue from producing subset S is
p(S)− c(S), which is a supermodular set function (why?).

I Notice that the similar notations “c(S)” and “p(S)” mean
different things here: c(S) really is a set function, whereas
p(S) is an artificial set function derived from a vector p ∈ RE .

I In this example we naturally want to find a subset to produce
that maximizes our net revenue, i.e, to solve
maxS⊆E(p(S)− c(S)), or equivalently

min
S⊆E

(c(S)− p(S)).
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More examples of submodularity

I Let G = (N,A) be a directed graph. For S ⊆ N define
δ+(S) = {i→ j ∈ A | i ∈ S, j /∈ S},
δ−(S) = {i→ j ∈ A | i /∈ S, j ∈ S}. Then |δ+(S)| and
|δ−(S)| are submodular.

I More generally, suppose that w ∈ RA are weights on the arcs.
If w ≥ 0, then w(δ+(S)) and w(δ−(S)) are submodular, and if
w 6≥ 0 then they are not necessarily submodular (homework).

I The same is true for undirected graphs where we consider
δ(S) = {i — j | i ∈ S, j /∈ S}.

I Here, e.g., w(δ+(∅)) = 0.

I Now specialize the previous example slightly to Max Flow /
Min Cut: Let N = {s}∪{t}∪E be the node set with source s
and sink t. We have arc capacities u ∈ RA

+, i.e., arc i→ j has
capacity uij ≥ 0. An s–t cut is some S ⊆ E, and the capacity
of cut S is cap(S) = u(δ+(S + s)), which is submodular.

I Here cap(∅) =
∑

e∈E use is usually positive.
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Max Flow / Min Cut

I Review: Vector x ∈ RA is a feasible flow if it satisfies

1. Conservation: x(δ+({i}) = x(δ−({i}) for all i ∈ E, i.e., flow
out = flow in.

2. Boundedness: 0 ≤ xij ≤ uij for all i→ j ∈ A.

I The value of flow f is val(x) = x(δ+({s}))− x(δ−({s})).

Theorem (Ford & Fulkerson)

For any capacities u, val∗ ≡ maxx val(x) = minS cap(S) ≡ cap∗,
i.e., the value of a max flow equals the capacity of a min cut.

I Now we want to sketch part of the proof of this, since some
later proofs will use the same technique.
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Algorithmic proof of Max Flow / Min Cut

I First, weak duality. For any feasible flow x and cut S:

val(x) = x(δ+({s}))− x(δ−({s}))
+

∑
i∈S [x(δ+({i}))− x(δ−({i}))]

= x(δ+(S + s))− x(δ−(S + s))
≤ u(δ+(S + s))− 0 = cap(S).

I An augmenting path w.r.t. feasible flow x is a directed path P
such that i→ j ∈ P implies either (i) i→ j ∈ A and
xij < uij , or (ii) j → i ∈ A and xji > 0.

I If there is an augmenting path P from s to t w.r.t. x, then
clearly we can push some flow α > 0 through P and increase
val(x) by α, proving that x is not maximum.

I Conversely, suppose 6 ∃ aug. path P from s to t w.r.t. x.
Define S = {i ∈ E | ∃ aug. path from s to i w.r.t. x}.

I For i ∈ S + s and j /∈ S + s we must have xij = uij and
xji = 0, and so val(x) = x(δ+(S + s))− x(δ−(S + s)) =
u(δ+(S + s))− 0 = cap(S).
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More Max Flow / Min Cut observations

I This proof suggests an algorithm: find and push flow on
augmenting paths until none exist, and then we’re optimal.

I The trick is to bound the number of iterations (augmenting
paths).

I The generic proof idea we’ll use later: push flow until you
can’t push any more, and then the cut that blocks further
pushes must be a min cut.

I There are Max Flow algorithms not based on augmenting
paths, such as Push-Relabel.

I Push-Relabel allows some violations of conservation, and
pushes flow on individual arcs instead of paths, using distance
labels (that estimate how far node i is from t via an
augmenting path) as a guide.

I Our main SFMin algorithm will be based on Push-Relabel.

I Min Cut is a canonical example of minimizing a submodular
function, and many of the algorithms are based on analogies
with Max Flow / Min Cut.
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Further examples which are all submodular

I Matroids: The rank function of a matroid.

I Coverage: There is a set F a facilities we can open, and a set
C of clients we want to service. There is a bipartite graph
B = (F ∪C,A) from F to C such that if we open S ⊆ F , we
serve the set of clients Γ(S) ≡ {j ∈ C | i→ j ∈ A, some
i ∈ S}. If w ≥ 0 then w(Γ(S)) is submodular.

I Queues: If a system E of queues satisfies a “conservation
law” then the amount of work that can be done by queues in
S ⊆ E is submodular.

I Entropy: The Shannon entropy of a random vector.
I Sensor location: If we have a joint probability distribution over

two random vectors P (X,Y ) indexed by E and the X
variables are conditionally independent given Y , then the
expected reduction in the uncertainty of about Y given the
values of X on subset S is submodular. Think of placing
sensors at a subset S of locations in the ground set E in order
to measure Y ; a sort of stochastic coverage.
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Optimizing submodular functions

I In our motivating example we wanted to minS⊆E c(S)− p(S).

I This is a specific example of the generic problem of
Submodular Function Minimization (SFMin):

Given submodular f , solve min
S⊆E

f(S).

I By contrast, in other contexts we want to maximize. For
example, in an undirected graph with weights w ≥ 0 on the
edges, the Max Cut problem is to maxS⊆E w(δ(S)).

I Generically, Submodular Function Maximization (SFMax) is:

Given submodular f , solve max
S⊆E

f(S).
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Constrained SFMax

I More generally, in the sensor location example, we want to
find a subset that maximizes uncertainty reduction.

I The function is monotone, i.e., S ⊆ T =⇒ f(S) ≤ f(T ).
I So we should just choose S = E to maximize???
I But in such problems we typically have a budget B, and want

to maximize subject to the budget.

I This leads to considering Constrained SFMax:

Given submodular f and budget B, solve max
S⊆E:|S|≤B

f(S).

I There are also variants of this with more general budgets.

I E.g., if a sensor in location i costs ci ≥ 0, then our constraint
would be c(S) ≤ B (a knapsack constraint).

I Or we could have multiple budgets, or . . .
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Complexity of submodular optimization

I The canonical example of SFMin is Min Cut, which has many
polynomial algorithms, so there is some hope that SFMin is
also polynomial.

I The canonical example of SFMax is Max Cut, which is know
to be NP Hard, and so SFMax is NP Hard.

I Constrained SFMax is also NP Hard.
I Thus for the SFMax problems, we will be interested in

approximation algorithms.
I An algorithm for an maximization problem is a
α-approximation if it always produces a feasible solution with
objective value at least α · OPT.
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Complexity of submodular optimization

I Recall that our algorithms interact with f via calls to the
value oracle E , and one call costs EO = Ω(n).

I As is usual in computational complexity, we have to think
about how the running time varies as a function of the size of
the problem.

I One clear measure of size is n = |E|.
I But we might also need to think about the sizes of the values
f(S).

I When f is integer-valued, define M = maxS⊆E |f(S)|.
I Unfortunately, exactly computing M is NP Hard (SFMax), but

we can compute a good enough bound on M in O(nEO) time.
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Types of polynomial algorithms for SFMin/Max

I Assume for the moment that all data are integers.

I An algorithm is pseudo-polynomial if it is polynomial in n, M ,
and EO.

I Allowing M is not polynomial, as the real size of M is
O(log M), and M is exponential in log M .

I An algorithm is (weakly) polynomial if it is polynomial in n,
logM , and EO.

I If non-integral data is allowed, then the running time cannot
depend on M at all.

I An algorithm is strongly polynomial if it is polynomial in n and
EO.

I There is no apparent reason why an SFMin/Max algorithm
needs multiplication or division, so we call an algorithm fully
combinatorial if it is strongly polynomial, and uses only
addition/subtraction and comparisons.
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Is submodularity concavity or convexity?

I Submodular functions are sort of concave: Suppose that set
function f has f(S) = g(|S|) for some g : R→ R. Then f is
submodular iff g is concave (homework). This is the
“decreasing returns to scale” point of view.

I Submodular functions are sort of convex: Set function f
induces values on {0, 1}E via f̂(χ(S)) = f(S), where
χ(S)e = 1 if e ∈ S, 0 otherwise. There is a canonical
piecewise linear way to extend f̂ to [0, 1]E called the Lovász
extension. Then f is submodular iff f̂ is convex.

I Continuous convex functions are easy to minimize, hard to
maximize; SFMin looks easy, SFMax is hard. Thus the convex
view looks better.

I There is a whole theory of discrete convexity starting from the
Lovász extension that parallels continuous convex analysis, see
Murota’s book.
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Submodular polyhedra

I Let’s associate submodular functions with polyhedra.

I It turns out that the right thing to do is to think about
vectors x ∈ RE , and so polyhedra in RE .

I The key constraint for us is for some subset S ⊆ E

x(S) ≤ f(S).

I We can think of this as a sort of generalized upper bound on
sums over subsets of components of x.

I What about when S = ∅? We get x(∅) ≡ 0 ≤ f(∅)???

I To get this to make sense we will normalize all our submodular
functions via f(S)← f(S)− f(∅) in order to be able to
assume that f(∅) = 0.

I Notice that this normalization does not change the optimal
subset for SFMin and SFMax.

I It further implies that the optimal value for SFMin is
non-positive, and the optimal value for SFMax is non-negative,
since we can always get 0 by choosing S = ∅.

I This normalization is non-trivial for Min Cut.
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The submodular polyhedron

I Now that we’ve normalized s.t. f(∅) = 0, define the
submodular polyhedron associated with set function f by

P (f) ≡ {x ∈ RE | x(S) ≤ f(S) ∀S ⊆ E}.

I When f is submodular and monotone (a polymatroid rank
function), P (f) is just the polymatroid.

I It turns out to be convenient to also consider the face of P (f)
induced by the constraint x(E) ≤ f(E), called the base
polyhedron of f :

B(f) ≡ {x ∈ RE | x(S) ≤ f(S)∀S ⊂ E, x(E) = f(E)}.

I We will soon show that B(f) is always non-empty when f is
submodular.
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Optimizing over B(f)

I Now that we have a polyhedron it is natural to want to
optimize over it.

I Consider maxwTx s.t. x ∈ P (f). Notice that y ≤ x and
x ∈ P (f) imply that y ∈ P (f). Thus if some we < 0 the
optimum is unbounded below. So let’s assume that w ≥ 0.

I Intuitively, with w ≥ 0 a maximum solution will be forced up
against the x(E) ≤ f(E) constraint, and so it will become
tight, and so an optimal solution will be in B(f). So we
consider maxx∈RE wTx s.t. x ∈ B(f).

I The naive thing to do is to try to solve this greedily:
Order the elements such that w1 ≥ w2 ≥ · · · ≥ wn.
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The Greedy Algorithm

I Order the elements such that w1 ≥ w2 ≥ · · · ≥ wn.

1. Make x1 as large as possible: x1 ← f({e1})− f(∅).
2. Make x2 as large as possible: x2 ← f({e1, e2})− f({e1}).
3. Make x3 as large as possible: x3 ← f({e1, e2, e3})− f({e1, e2}).
4. Etc, etc . . .

I Notice that this Greedy Algorithm depends only on the input
linear order. We derived the order from w, but we could apply
the same algorithm to any order ≺.

I Given linear order ≺ and e ∈ E, define e≺ = {g ∈ E | g ≺ e}.

I E.g., suppose that
≺1 is 3 ≺1 1 ≺1 4 ≺1 5 ≺1 2 and
≺2 is 1 ≺2 2 ≺2 3 ≺2 4 ≺2 5.

I Then 3≺1 = ∅, 3≺2 = {1, 2},
and 2≺1 = {1, 3, 4, 5}, 2≺2 = {1}.

I In this notation we can re-express the main step of Greedy on
the ith element in ≺ as
“Make xei ← f(e≺i + ei)− f(e≺i ).”
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The Greedy Algorithm produces a feasible x

I We now prove that the x computed by Greedy belongs to
B(f) as follows:

I Index the elements such that ≺ is e1 ≺ e2 ≺ · · · ≺ en. First,
x(E) =

∑
ei∈E [f(e≺i + ei)− f(e≺i )] = f(E)− f(∅) = f(E).

I Now for any ∅ ⊂ S ⊂ E we need to verify that x(S) ≤ f(S).
Define k as the largest index such that ek ∈ S, and use
induction on k.

I If k = 1 then S = {e1} and
x1 = f(e≺1 + e1)− f(e≺1 ) = f({e1})− f(∅) = f(S).

I If k > 1, then S ∪ e≺k = e≺k+1 and S ∩ e≺k = S − ek. Then
submodularity implies that
f(S) ≥ f(S ∪ e≺k ) + f(S ∩ e≺k )− f(e≺k ) =
f(e≺k+1) + f(S − ek)− f(e≺k ).

I The largest ei in S − ek is smaller than k, so induction applies
to S − ek and we get x(S)− xek

= x(S − ek) ≤ f(S − ek), or
x(S) ≤ f(S − ek) + xek

= f(S − ek) + (f(e≺k + ek)− f(e≺k )).
I Thus x(S) ≤ f(S − ek) + (f(e≺k + ek)− f(e≺k )) =
f(e≺k+1) + f(S − ek)− f(e≺k ) ≤ f(S).
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Is Greedy’s solution optimal?

I Recall that we are trying to solve maxx∈RE wTx s.t.
x ∈ B(f).

I This is a linear program (LP):

maxwTx
s.t. x(S) ≤ f(S) for all ∅ ⊂ S ⊂ E

x(E) = f(E)
x free.

I This LP has 2n constraints, one for each S.
I Optimality is proven via duality. Put dual variable πS on

constraint x(S) ≤ f(S) to get the dual:

min
∑

S⊆E f(S)πS

s.t.
∑

S3e πS = we for all e ∈ E
πS ≥ 0 for all S ⊂ E
πE free.

I In order to show optimality of the x coming from Greedy, we
construct a dual optimal solution.



Is Greedy’s solution optimal?

I Recall that we are trying to solve maxx∈RE wTx s.t.
x ∈ B(f).

I This is a linear program (LP):

maxwTx
s.t. x(S) ≤ f(S) for all ∅ ⊂ S ⊂ E

x(E) = f(E)
x free.

I This LP has 2n constraints, one for each S.
I Optimality is proven via duality. Put dual variable πS on

constraint x(S) ≤ f(S) to get the dual:

min
∑

S⊆E f(S)πS

s.t.
∑

S3e πS = we for all e ∈ E
πS ≥ 0 for all S ⊂ E
πE free.

I In order to show optimality of the x coming from Greedy, we
construct a dual optimal solution.



Is Greedy’s solution optimal?

I Recall that we are trying to solve maxx∈RE wTx s.t.
x ∈ B(f).

I This is a linear program (LP):

maxwTx
s.t. x(S) ≤ f(S) for all ∅ ⊂ S ⊂ E

x(E) = f(E)
x free.

I This LP has 2n constraints, one for each S.

I Optimality is proven via duality. Put dual variable πS on
constraint x(S) ≤ f(S) to get the dual:

min
∑

S⊆E f(S)πS

s.t.
∑

S3e πS = we for all e ∈ E
πS ≥ 0 for all S ⊂ E
πE free.

I In order to show optimality of the x coming from Greedy, we
construct a dual optimal solution.



Is Greedy’s solution optimal?

I Recall that we are trying to solve maxx∈RE wTx s.t.
x ∈ B(f).

I This is a linear program (LP):

maxwTx
s.t. x(S) ≤ f(S) for all ∅ ⊂ S ⊂ E

x(E) = f(E)
x free.

I This LP has 2n constraints, one for each S.
I Optimality is proven via duality. Put dual variable πS on

constraint x(S) ≤ f(S) to get the dual:

min
∑

S⊆E f(S)πS

s.t.
∑

S3e πS = we for all e ∈ E
πS ≥ 0 for all S ⊂ E
πE free.

I In order to show optimality of the x coming from Greedy, we
construct a dual optimal solution.



Is Greedy’s solution optimal?

I Recall that we are trying to solve maxx∈RE wTx s.t.
x ∈ B(f).

I This is a linear program (LP):

maxwTx
s.t. x(S) ≤ f(S) for all ∅ ⊂ S ⊂ E

x(E) = f(E)
x free.

I This LP has 2n constraints, one for each S.
I Optimality is proven via duality. Put dual variable πS on

constraint x(S) ≤ f(S) to get the dual:

min
∑

S⊆E f(S)πS

s.t.
∑

S3e πS = we for all e ∈ E
πS ≥ 0 for all S ⊂ E
πE free.

I In order to show optimality of the x coming from Greedy, we
construct a dual optimal solution.



Dual feasibility

I Here are the dual LPs:

maxwTx
s.t. x(S) ≤ f(S) ∀S

x(E) = f(E)
x free.

min
∑

S⊆E f(S)πS

s.t.
∑

S3e πS = we

πS ≥ 0 S 6= E
πE free.

I Define πS like this: Put πS = wei−1 − wei if S = e≺i ,
πE = wen − 0 (using “wen+1 = 0”), and πS = 0 otherwise.

I First, note that this πS is feasible for the dual LP:

I We chose ≺ s.t. wei−1 − wei
≥ 0, and so πS ≥ 0.

I Now
∑

S3ek
πS =

∑n+1
i=k+1(wei−1 − wei)

= wek
− wen+1 = wek

, as desired.
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Optimality from duality

I For any x ∈ B(f) and π feasible for the dual, note that

wTx =
∑

e∈E(
∑

S3e πS)xe

=
∑

S⊆E πS
∑

e∈S xe

=
∑

S⊆E πSx(S)
≤

∑
S⊆E πSf(S).

I Since we already proved that the Greedy output x ∈ B(f) and
our π is feasible, we only need to show that
wTx =

∑
S⊆E πSf(S).

I Consider the above display. The only place there’s an
inequality is

∑
S⊆E πSx(S) ≤

∑
S⊆E πSf(S).

I If πS = 0 then both sides are zero.
I If πS 6= 0, then S is e≺k for some k.
I But then x(S) =

∑
i<k xei

=
∑

i<k(f(e≺i + ei)− f(e≺i )) =
f(e≺k−1 + ek−1)− f(∅) = f(e≺k ) = f(S).

I Thus we get equality, and so x is (primal) optimal (and π is
dual optimal).



Optimality from duality

I For any x ∈ B(f) and π feasible for the dual, note that

wTx =
∑

e∈E(
∑

S3e πS)xe

=
∑

S⊆E πS
∑

e∈S xe

=
∑

S⊆E πSx(S)
≤

∑
S⊆E πSf(S).

I Since we already proved that the Greedy output x ∈ B(f) and
our π is feasible, we only need to show that
wTx =

∑
S⊆E πSf(S).

I Consider the above display. The only place there’s an
inequality is

∑
S⊆E πSx(S) ≤

∑
S⊆E πSf(S).

I If πS = 0 then both sides are zero.
I If πS 6= 0, then S is e≺k for some k.
I But then x(S) =

∑
i<k xei

=
∑

i<k(f(e≺i + ei)− f(e≺i )) =
f(e≺k−1 + ek−1)− f(∅) = f(e≺k ) = f(S).

I Thus we get equality, and so x is (primal) optimal (and π is
dual optimal).



Optimality from duality

I For any x ∈ B(f) and π feasible for the dual, note that

wTx =
∑

e∈E(
∑

S3e πS)xe

=
∑

S⊆E πS
∑

e∈S xe

=
∑

S⊆E πSx(S)
≤

∑
S⊆E πSf(S).

I Since we already proved that the Greedy output x ∈ B(f) and
our π is feasible, we only need to show that
wTx =

∑
S⊆E πSf(S).

I Consider the above display. The only place there’s an
inequality is

∑
S⊆E πSx(S) ≤

∑
S⊆E πSf(S).

I If πS = 0 then both sides are zero.
I If πS 6= 0, then S is e≺k for some k.
I But then x(S) =

∑
i<k xei

=
∑

i<k(f(e≺i + ei)− f(e≺i )) =
f(e≺k−1 + ek−1)− f(∅) = f(e≺k ) = f(S).

I Thus we get equality, and so x is (primal) optimal (and π is
dual optimal).



Optimality from duality

I For any x ∈ B(f) and π feasible for the dual, note that

wTx =
∑

e∈E(
∑

S3e πS)xe

=
∑

S⊆E πS
∑

e∈S xe

=
∑

S⊆E πSx(S)
≤

∑
S⊆E πSf(S).

I Since we already proved that the Greedy output x ∈ B(f) and
our π is feasible, we only need to show that
wTx =

∑
S⊆E πSf(S).

I Consider the above display. The only place there’s an
inequality is

∑
S⊆E πSx(S) ≤

∑
S⊆E πSf(S).

I If πS = 0 then both sides are zero.

I If πS 6= 0, then S is e≺k for some k.
I But then x(S) =

∑
i<k xei

=
∑

i<k(f(e≺i + ei)− f(e≺i )) =
f(e≺k−1 + ek−1)− f(∅) = f(e≺k ) = f(S).

I Thus we get equality, and so x is (primal) optimal (and π is
dual optimal).



Optimality from duality

I For any x ∈ B(f) and π feasible for the dual, note that

wTx =
∑

e∈E(
∑

S3e πS)xe

=
∑

S⊆E πS
∑

e∈S xe

=
∑

S⊆E πSx(S)
≤

∑
S⊆E πSf(S).

I Since we already proved that the Greedy output x ∈ B(f) and
our π is feasible, we only need to show that
wTx =

∑
S⊆E πSf(S).

I Consider the above display. The only place there’s an
inequality is

∑
S⊆E πSx(S) ≤

∑
S⊆E πSf(S).

I If πS = 0 then both sides are zero.
I If πS 6= 0, then S is e≺k for some k.

I But then x(S) =
∑

i<k xei
=

∑
i<k(f(e≺i + ei)− f(e≺i )) =

f(e≺k−1 + ek−1)− f(∅) = f(e≺k ) = f(S).
I Thus we get equality, and so x is (primal) optimal (and π is

dual optimal).



Optimality from duality

I For any x ∈ B(f) and π feasible for the dual, note that

wTx =
∑

e∈E(
∑

S3e πS)xe

=
∑

S⊆E πS
∑

e∈S xe

=
∑

S⊆E πSx(S)
≤

∑
S⊆E πSf(S).

I Since we already proved that the Greedy output x ∈ B(f) and
our π is feasible, we only need to show that
wTx =

∑
S⊆E πSf(S).

I Consider the above display. The only place there’s an
inequality is

∑
S⊆E πSx(S) ≤

∑
S⊆E πSf(S).

I If πS = 0 then both sides are zero.
I If πS 6= 0, then S is e≺k for some k.
I But then x(S) =

∑
i<k xei

=
∑

i<k(f(e≺i + ei)− f(e≺i )) =
f(e≺k−1 + ek−1)− f(∅) = f(e≺k ) = f(S).

I Thus we get equality, and so x is (primal) optimal (and π is
dual optimal).



Optimality from duality

I For any x ∈ B(f) and π feasible for the dual, note that

wTx =
∑

e∈E(
∑

S3e πS)xe

=
∑

S⊆E πS
∑

e∈S xe

=
∑

S⊆E πSx(S)
≤

∑
S⊆E πSf(S).

I Since we already proved that the Greedy output x ∈ B(f) and
our π is feasible, we only need to show that
wTx =

∑
S⊆E πSf(S).

I Consider the above display. The only place there’s an
inequality is

∑
S⊆E πSx(S) ≤

∑
S⊆E πSf(S).

I If πS = 0 then both sides are zero.
I If πS 6= 0, then S is e≺k for some k.
I But then x(S) =

∑
i<k xei

=
∑

i<k(f(e≺i + ei)− f(e≺i )) =
f(e≺k−1 + ek−1)− f(∅) = f(e≺k ) = f(S).

I Thus we get equality, and so x is (primal) optimal (and π is
dual optimal).



Notes about the Greedy Algorithm

I The Greedy Algorithm takes O(nEO + n log n) time:

I It takes O(n log n) time to sort the we.
I There are n calls to E that cost O(nEO).

I It can be shown (see below) that the output x of Greedy is in
fact a vertex of B(f).

I When the input to Greedy is linear order ≺, we denote the
output x by v≺.

I We have shown that wTx is maximized at v≺ for an order ≺
consistent with w, and so in fact these Greedy vertices are all
the vertices of B(f). Thus there are at most n! vertices of
B(f).

I Although B(f) has 2n constraints, the linear order ≺ is a
succinct certificate that v≺ ∈ B(f).

I This proves that B(f) 6= ∅.
I Greedy works on B(f) for any w; it works on P (f) if w ≥ 0.
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Understanding the basis matrix for Greedy

I The basis matrix M for an LP is the submatrix induced by the
columns of the variables not at their bounds, and the rows
whose constraints are tight (satisfied with equality).

I Here all the xe are free (do not have bounds) and so M
includes columns for every e ∈ E.

I As we saw in the proof, the constraint for S = e≺k is tight for
each ek ∈ E.

I Therefore M is the lower triangular matrix:

M =


e1 e2 . . . en

e≺2 1 0 . . . 0
e≺3 1 1 . . . 0
...

...
...

. . .
...

e≺n+1 1 1 . . . 1
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More Greedy basis matrix

I Recall that M is the lower triangular matrix:

M =


e1 e2 . . . en

e≺2 1 0 . . . 0
e≺3 1 1 . . . 0
...

...
...

. . .
...

e≺n+1 1 1 . . . 1



I Let b≺ be the RHS (f(e≺2 ), f(e≺3 ), . . . , f(e≺n+1)).
I Then our Greedy primal vector v≺ solves Mv≺ = b≺.
I Triangular systems like this are easy to solve, and indeed gives

that xei = f(e≺i + ei)− f(e≺i ).
I Duality says that the dual has the same basis matrix, and π

restricted to the e≺i solves πTM = wT .
I Again this triangular system easily solves to πe≺i

= wi−1 − wi.

I This also shows that v≺ is a vertex, as it follows from M
being nonsingular.
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From vertices of B(f) to edges of B(f)

I We now understand the vertices of B(f) via Greedy.

I To be able to move around in B(f) we also need to
understand its edges.

I Suppose that ≺ looks like

e1e2 . . . eilkei+3 . . . en,

and ≺′ looks like

e1e2 . . . eiklei+3 . . . en;

we say that (l, k) are consecutive in ≺.

I For e ∈ E define χ(e) ∈ {0, 1}E by χ(e)e = 1 and χ(e)g = 0
for g 6= e.

I We are going to show that v≺
′ − v≺ = α(χk − χl) for a step

length α.
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Stepping along an edge

I Recall that v≺ comes from
e1e2 . . . eilkei+3 . . . en, and ≺′ comes from
e1e2 . . . eiklei+3 . . . en.

I Notice that for e 6= k, l we have that e≺ = e≺
′
.

I Thus for e 6= k, l we have that
v≺e = f(e≺ + e)− f(e≺) = f(e≺

′
+ e)− f(e≺

′
) = v≺

′

e .

I For e = k we have
v≺k = f(k≺ + k)− f(k≺) = f(l≺ + k + l)− f(l≺ + l) and

v≺
′

k = f(k≺
′
+ k)− f(k≺

′
) = f(l≺ + k)− f(l≺).

I For e = l we have
v≺l = f(l≺ + l)− f(l≺) = f(l≺ + l)− f(l≺) and

v≺
′

l = f(l≺
′
+ l)− f(l≺

′
) = f(l≺ + k + l)− f(l≺ + k).

I Define α = [f(l≺ + l)− f(l≺)]− [f(l≺ + k + l)− f(l≺ + k)].
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Exchange capacities

I We call this step length
α = [f(l≺ + l)− f(l≺)]− [f(l≺ + k + l)− f(l≺ + k)] the
exchange capacity of the consecutive pair (l, k), and denote it
as c(k, l; v≺).

I Since x(E) = f(E) is a constraint of B(f), all x ∈ B(f) have
the constant sum f(E). Thus it is not a surprise that

|v≺k − v
≺′
k | = |v

≺
l − v

≺′
l | = c(k, l; v≺).

I We have indeed shown that when (l, k) is consecutive in ≺,
then v≺

′ − v≺ = c(k, l; v≺)(χk − χl).

I It turns out that all the edges of B(f) come from consecutive
exchanges like this.

I Given some x ∈ B(f) and k, l ∈ E, it is natural to wonder if
we can compute the more general exchange capacity c(k, l;x),
which is the largest α such that x+ α(χk − χl) ∈ B(f).

I Unfortunately it turns out that computing c(k, l;x) is provably
as difficult as SFMin.
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An algorithmic framework for SFMin

I We now start to develop a framework for algorithms for
SFMin (due to Cunningham) that resembles the Max Flow /
Min Cut algorithms.

I The framework starts by showing that SFMin can be modeled
using a dual pair of linear program (due to Edmonds).

I However, the first weakly and strongly polynomial algorithms
for SFMin came from a very different viewpoint.

I There is an equivalence between Separation and Optimization
via the Ellipsoid Algorithm due to Grötschel, Lovász, and
Schrijver.

I For a certain polymatroid, its Separation problem is equivalent
to SFMin.

I The polymatroid’s Optimization problem is equivalent to the
LP we solved via Greedy.

I Therefore Ellipsoid says that SFMin is (weakly) polynomial.
I GLS then extend this to show a strongly polynomial running

time.
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Edmonds’ LP formulation of SFMin

I Recall that SFMin is minS⊆E f(S). It is very unclear whether
this can be formulated as an LP.

I Let’s modify the dual LPs we used for Greedy by relaxing
x(E) = f(E) to just x(E) ≤ f(E), putting an upper bound u
on x in the primal, and replacing w by the all-ones vector 1:

max1Tx
s.t. x(S) ≤ f(S)

x ≤ u
x free.

minuTσ +
∑

S⊆E f(S)πS

s.t. σe +
∑

S3e πS = 1
σ, π ≥ 0

I These kinds of “combinatorial” LPs often have 0–1 optimal
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LP optimal structure

I We believe that there exists an optimal solution to the dual
where only one πS is positive, say πS∗ = 1.

I Then the constraints σe +
∑

S3e πS = 1 would force that
σ = χ(E − S∗), and so the dual objective value would be
u(E − S∗) + f(S∗). Let’s prove this.

I (Weak duality:)
1Tx = x(E) = x(S) + x(E − S) ≤ f(S) + u(E − S). Thus
we only have to show that this is satisfied with equality.

I Suppose that x∗ is primal optimal, and S and T are both
x∗-tight, i.e., x∗(S) = f(S) and x∗(T ) = f(T ). Then
(homework) both S ∩ T and S ∪ T are also x∗-tight.

I Thus we can take the union of all x∗-tight sets to get S∗,
which is also x∗-tight.

I If x∗e < ue then we must have that e ∈ S∗; if not, then we
could feasibly increase x∗e, contradicting optimality. Thus
xe = ue for all e /∈ S∗.

I Thus x(E) = x(S∗) + x(E − S∗) = f(S∗) + u(E − S∗),
proving that S∗ induces a dual optimal solution.
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Specialize the LP to get SFMin

I Our LP strong duality says that
maxx∈P (f):x≤u x(E) = minS⊆E(f(S) + u(E − S)).

I If we choose u = 0 then we get
maxx∈P (f):x≤0 x(E) = minS⊆E f(S) + 0. This dual LP is just
SFMin!

I For y ∈ RE define y− ∈ RE via y−e = min(ye, 0) ≤ 0.

I If y ∈ B(f) then y− ≤ 0 and y− ∈ P (F ), so it is primal
feasible.

I We now want to show the converse, that if x ∈ P (f) and
x ≤ 0, then there is some y ∈ B(f) with y ≥ x and y− = x.

I We know that an optimal x∗ ∈ P (f) with x∗ ≤ 0 looks like:

(0 0 0 0 0 0 0 0 0 0 0 0︸ ︷︷ ︸
not in any x∗-tight set

0 0 0 0 − − − − − − − −︸ ︷︷ ︸
S∗ = biggest x∗-tight set

)
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Moving from P (f) to B(f)

I We know that an optimal x∗ ∈ P (f) with x∗ ≤ 0 looks like:

(0 0 0 0 0 0 0 0 0 0 0 0︸ ︷︷ ︸
not in any x∗-tight set

0 0 0 0 − − − − − − − −︸ ︷︷ ︸
S∗ = biggest x∗-tight set

)

I Set y = x∗ and pick some e /∈ S∗ and increase ye (making it
positive) until it becomes tight (there is an exponential but
finite number of constraints to check).

I Continue until every e is contained in an y-tight set.
I Now every e is in an y-tight set, and so E is tight, so the new
y is in B(f). It looks like:

(+ + + + + + + +︸ ︷︷ ︸
increased elements

0 0 0 0 0 0 0 0 − − − − − − − −︸ ︷︷ ︸
S∗ is still y-tight

)

I Thus we can use the modified primal LP maxy∈B(f) y
−(E).

I This is the form of the LP that we will use.
I This LP is quite close to the Greedy LP, except that the

objective is the piecewise linear y−(E) instead of x(E), and
this makes solving the problem much harder.
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SFMin weak duality, complementary slackness

I Here is weak duality for these LPs:

y−(E) ≤ y−(S) tight if ye < 0 =⇒ e ∈ S
≤ y(S) tight if e ∈ S =⇒ ye ≤ 0
≤ f(S) tight if S is y-tight.

Complementary slackness is equivalent to the tightness
conditions that ensure that each inequality is an equality.

I Therefore an optimal y and S look like:

y = (− − − − 0 0 0 0 0 0︸ ︷︷ ︸
S includes all −, no +

0 0 0 0 + + + + + + +)

I If we can achieve this picture along with y(S) = f(S), it
proves that y and S jointly solve SFMin.

I Or does it? What is missing? . . . . . . . . .
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How do we know that y ∈ B(f)?

I How can we verify that y ∈ B(f)? There are 2n inequalities
to check.

I Here is a clever way to do it (Cunningham):

1. B(f) is bounded, and so it is the convex hull of its vertices,
i.e., y ∈ B(f) iff y is a convex combination of vertices of B(f).

2. We know that all vertices of B(f) come from Greedy applied
to linear orders, which have succinct certificates.

3. Carathéodory’s Theorem says that in fact there is always a
convex hull representation of y using at most n vertices.

I Therefore the algorithms will keep a representation of y like
this:

I We have an index set I of size O(n).
I For each i ∈ I we have a linear order ≺i with associated

Greedy vertex vi.
I We keep multipliers λi ≥ 0 for i ∈ I satisfying

∑
i∈I λi = 1.

I Then y =
∑

i∈I λiv
i is a succinct certificate proving that

y ∈ B(f).
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3. Carathéodory’s Theorem says that in fact there is always a
convex hull representation of y using at most n vertices.

I Therefore the algorithms will keep a representation of y like
this:

I We have an index set I of size O(n).
I For each i ∈ I we have a linear order ≺i with associated

Greedy vertex vi.
I We keep multipliers λi ≥ 0 for i ∈ I satisfying

∑
i∈I λi = 1.

I Then y =
∑

i∈I λiv
i is a succinct certificate proving that

y ∈ B(f).



How do we know that y ∈ B(f)?

I How can we verify that y ∈ B(f)? There are 2n inequalities
to check.

I Here is a clever way to do it (Cunningham):

1. B(f) is bounded, and so it is the convex hull of its vertices,
i.e., y ∈ B(f) iff y is a convex combination of vertices of B(f).

2. We know that all vertices of B(f) come from Greedy applied
to linear orders, which have succinct certificates.
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Keeping |I| = O(n)

I As the algorithms proceed, they will add new indices to I (and
possibly delete some old indices), and so |I| grows over time.

I When I becomes too large, from time to time we need to
“Carathéodory-ize” it and bring its size back down to n.

I Let V be the matrix with |E|+ 1 rows and |I| columns which
has a row of all ones at the top, and whose column i
otherwise is vi.

I Therefore we keep the equation V λ = (1 y).

I The task of subroutine ReduceV is to eliminate redundant
columns of V while maintaining V λ = (1 y) and λ ≥ 0.

I This can be done with standard linear algebra techniques in
O(n3) time.
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Outline of a generic SFMin algorithm

I We keep linear orders ≺i with associated vi, and y ∈ B(f) as
y =

∑
i∈I λiv

i.

I Suppose that y looks like:

y = (− − − − − −︸ ︷︷ ︸
S−(y)

0 0 0 0 0︸ ︷︷ ︸
S0(y)

+ + + +︸ ︷︷ ︸
S+(y)

)

I To maximize y−(E) (⇐⇒ minS y
+(E)), we want to increase

ye for some e ∈ S−(y) (or decrease ye for some e ∈ S+(y)).

I We know that ye increases if we move e to the left in some ≺i,
and ye decreases if we move e to the right in some ≺i.

I This suggests we find some k ∈ S−(y) and l ∈ S+(y) and
compute c(k, l; y), then set y′ ← y + α(χk − χl) for some
α ≤ c(k, l; y).

I But unfortunately computing c(k, l; y) is as hard as SFMin.
I And if we don’t have any ≺i with (l, k) consecutive in ≺i,

then how can we change the representation y =
∑

i∈I λiv
i to

track this χk − χl direction?
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SFMin augmenting paths

Assume that we have the situation as in the picture below, where
(k2, k1) is consecutive in ≺1, (k3, k2) is consecutive in ≺2, and
(k4, k3) is consecutive in ≺3.
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SFMin augmenting paths

Assume that we have the situation as in the picture below, where
(k2, k1) is consecutive in ≺1, (k3, k2) is consecutive in ≺2, and
(k4, k3) is consecutive in ≺3.
But if we do all three swaps at the same time this would ↑ yk1 and
↓ yk4 , and this would increase y−(E).

Makes yk1 ↑, yk4 ↓
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S+(y)

k4k1

k2

k3



SFMin is like Max Flow / Min Cut

I This suggests a rudimentary algorithm:

1. Make a network with nodes E, and arc e→ g whenever (g, e)
is consecutive in some ≺i.

2. If there is a directed path from S−(y) to S+(y) then augment
along it; repeat until no such path remains.

3. If 6 ∃ a directed path from S−(y) to S+(y), define
S∗ = {e ∈ E | ∃ augmenting path from S−(y) up to e}. Then
we show below that S∗ solves SFMin.

I Note that S−(y) ⊆ S∗ ⊆ E − S+(y), so S∗ satisfies two of
the three complementary slackness conditions.

I I claim that S∗ is at the left of every ≺i.

I Suppose that there is some ≺i with l /∈ S∗ to the left of some
k ∈ S∗.

I Then there must be such a pair (l, k) that is consecutive in ≺i.
I But then we could extend the augmenting path to k along arc
k → l coming from consecutive pair (l, k), contradicting that
l /∈ S∗.
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SFMin is like Max Flow / Min Cut

I I just showed that S∗ is at the left of every ≺i.

I Now S∗ at the left of ≺i implies that vi(S∗) = f(S∗).

I Then y(S∗) =
∑

i∈I λiv
i(S∗) =

∑
i∈I λif(S∗) =

f(S∗)
∑

i∈I λi = f(S∗).

I Thus S∗ is y-tight, the third complementary slackness
condition, and so S∗ is indeed optimal for SFMin.

I This proof is very much in the same spirit as the Max Flow /
Min Cut augmenting path proof.

I The same proof works with a more general definition of arcs:
Put e→ g ∈ A whenever g ≺i e for some i ∈ I.

I The “only” remaining thing to do is to find some way to
arrange augmentations so there is only a polynomial number
of them.
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SFMin is not like Max Flow / Min Cut

I The set of arcs changes dynamically as I changes and y
changes.

I The “capacity” of arcs changes dynamically.

I One augmenting path could contain several arcs coming from
the same ≺i, implying that computing the augmentation
amount is quite complicated.

I Augmentation amounts depend on the λi, which can be
arbitrarily small.

I These are some of the reasons why it took many, many years
to figure out how to get a combinatorial SFMin algorithm,
and why Cunningham’s SFMin algorithm was only
pseudo-polynomial.
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The Fleischer-Iwata Push-Relabel version of Schrijver’s
Algorithm

I Recall our original naive idea: find some k ∈ S−(y) and
l ∈ S+(y) and update y ← y + α(χk − χl) for some
α ≤ c(k, l; y).

I This seemed like a bad idea for two reasons:

1. How can we compute a representation of the direction χk−χl?
2. Computing c(k, l; y) is as hard as SFMin.

I Schrijver figured out a clever way around these difficulties.
I Recall that c(k, l; y) is easy when (l, k) is consecutive in a

linear order defining a vertex.
I Define (l, k]≺ = {e ∈ E | l ≺ e � k}.
I So, intuitively, we can think of |(l, k]≺| as being a measure of

difficulty of computing c(k, l; y).

I When (l, k) is consecutive in ≺, then |(l, k]≺| = 1; as |[l, k]≺|
becomes larger than 1, computing c(k, l; y) becomes more
difficult.
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Block swaps

I Suppose that we have identified l ∈ S+(y) and k ∈ S−(y), so
we want to ↓ yl and ↑ yk by moving l to the right and k to
the left in some ≺h, call it just ≺.

I Suppose that ≺ looks like this for some j ∈ (l, k]≺:

· · · sa−1salt1t2 . . . tbju1u2kw1w2 · · · ,

I Now define linear order ≺l,j such that j is moved to the left,
just ahead of l, so that ≺l,j looks like:

· · · sa−1sajlt1t2 . . . tbu1u2kw1w2 · · · .

I Doing this block swap that moves in the direction vl,j − v≺
would indeed ↓ yl, but it wouldn’t affect yk.

I But ≺l,j does have the nice property that (l, k]≺l,j ⊂ (l, k]≺,
so it gets closer to being a c(k, j; y) that we can compute.
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The block swap matrix

I Index the elements of (l, k]≺ as l ≺ u1 ≺ u2 · · · ≺ uq = k and
consider the submatrix of the matrix of columns vl,ub − v≺:



vl,u1 vl,u2 vl,u3 . . . vl,uq

l 	 	 	 . . . 	
u1 ⊕ 	 	 . . . 	
u2 0 ⊕ 	 . . . 	
u3 0 0 ⊕ . . . 	
...

...
...

...
. . .

...
k = uq 0 0 0 . . . ⊕



I Since vl,ub differs from v≺ only on elements in l + (l, k]≺, the
sum of each column of this submatrix is 0.

I Thus the matrix has a redundant row, and we can treat it as a
triangular matrix
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Setting up the equations to solve

I Our aim is to produce a solution α, µ of the equations

v≺ + α(χk − χl) =
∑

j∈(l,k]≺

µjv
l,j (6)

such that α ≥ 0, µ ≥ 0, and
∑

j µj = 1.

I Suppose that for some j ∈ (l, k]≺ that vl,j
j = v≺j , i.e., the

diagonal entry of the matrix is 0.

I Then we must have that vl,j = v≺, since if the only possible
positive term vl,j

j − v
≺
j = 0 and the sum is 0, all possibly

negative terms must also be 0.

I Thus we can choose α = 0 and get this version of (6):

v≺ + 0 · (χk − χl) = 1 · vl,j .

I Now we are free to assume that all vl,j
j > v≺j , i.e., the

diagonal entries of the matrix are strictly positive.
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Synthesizing the direction χk − χl

I With all diagonal entries strictly positive, consider the
equations in variables ηj



vl,u1 vl,u2 vl,u3 . . . vl,uq

l 	 	 	 . . . 	
u1 + 	 	 . . . 	
u2 0 + 	 . . . 	
u3 0 0 + . . . 	
...

...
...

...
. . .

...
k = uq 0 0 0 . . . +




η1

η2
...
ηq

 =



−1
0
0
0
...

+1


.

I Since this system is triangular with positive diagonal, it has a
solution η ≥ 0.

I Put α = 1/
∑

j ηj and µ = αη. Then (vl,j − v≺)η = χk − χl

becomes (vl,j − v≺)µ = α(χk − χl), or
v≺ + α(χk − χl) =

∑
j∈(l,k]≺

µjv
l,j which is (6) as desired.
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The ExchBd subroutine

I Computing the matrix take O(n2EO) time, and solving the
triangular system takes O(n2) time, so computing α and µ is
O(n2EO).

I Since v≺ + α(χk − χl) =
∑

j∈(l,k]≺
µjv

l,j shows that

v≺ + α(χk − χl) ∈ B(f), we must have that α ≤ c(k, l; v≺).

I Return to using vh for v≺. If we replace the term λhv
h in

y =
∑

i λiv
i by λh(

∑
j∈(l,k]≺

µjv
l,j), then y will change by

λhα(χk − χl), and so we’ll move in the direction we want.

I We could also take a partial step where we choose some β
with 0 ≤ β ≤ αλh and replace λhv

h by
(λh − β/α)vh + β

∑
j∈(l,k]≺

µjv
l,j , and then y would change

by β(χk − χl).

I We call this operation ExchBd, since it gives us the bound α
on c(k, l; v≺).



The ExchBd subroutine

I Computing the matrix take O(n2EO) time, and solving the
triangular system takes O(n2) time, so computing α and µ is
O(n2EO).

I Since v≺ + α(χk − χl) =
∑

j∈(l,k]≺
µjv

l,j shows that

v≺ + α(χk − χl) ∈ B(f), we must have that α ≤ c(k, l; v≺).

I Return to using vh for v≺. If we replace the term λhv
h in

y =
∑

i λiv
i by λh(

∑
j∈(l,k]≺

µjv
l,j), then y will change by

λhα(χk − χl), and so we’ll move in the direction we want.

I We could also take a partial step where we choose some β
with 0 ≤ β ≤ αλh and replace λhv

h by
(λh − β/α)vh + β

∑
j∈(l,k]≺

µjv
l,j , and then y would change

by β(χk − χl).

I We call this operation ExchBd, since it gives us the bound α
on c(k, l; v≺).



The ExchBd subroutine

I Computing the matrix take O(n2EO) time, and solving the
triangular system takes O(n2) time, so computing α and µ is
O(n2EO).

I Since v≺ + α(χk − χl) =
∑

j∈(l,k]≺
µjv

l,j shows that

v≺ + α(χk − χl) ∈ B(f), we must have that α ≤ c(k, l; v≺).

I Return to using vh for v≺. If we replace the term λhv
h in

y =
∑

i λiv
i by λh(

∑
j∈(l,k]≺

µjv
l,j), then y will change by

λhα(χk − χl), and so we’ll move in the direction we want.

I We could also take a partial step where we choose some β
with 0 ≤ β ≤ αλh and replace λhv

h by
(λh − β/α)vh + β

∑
j∈(l,k]≺

µjv
l,j , and then y would change

by β(χk − χl).

I We call this operation ExchBd, since it gives us the bound α
on c(k, l; v≺).



The ExchBd subroutine

I Computing the matrix take O(n2EO) time, and solving the
triangular system takes O(n2) time, so computing α and µ is
O(n2EO).

I Since v≺ + α(χk − χl) =
∑

j∈(l,k]≺
µjv

l,j shows that

v≺ + α(χk − χl) ∈ B(f), we must have that α ≤ c(k, l; v≺).

I Return to using vh for v≺. If we replace the term λhv
h in

y =
∑

i λiv
i by λh(

∑
j∈(l,k]≺

µjv
l,j), then y will change by

λhα(χk − χl), and so we’ll move in the direction we want.

I We could also take a partial step where we choose some β
with 0 ≤ β ≤ αλh and replace λhv

h by
(λh − β/α)vh + β

∑
j∈(l,k]≺

µjv
l,j , and then y would change

by β(χk − χl).

I We call this operation ExchBd, since it gives us the bound α
on c(k, l; v≺).



The ExchBd subroutine

I Computing the matrix take O(n2EO) time, and solving the
triangular system takes O(n2) time, so computing α and µ is
O(n2EO).

I Since v≺ + α(χk − χl) =
∑

j∈(l,k]≺
µjv

l,j shows that

v≺ + α(χk − χl) ∈ B(f), we must have that α ≤ c(k, l; v≺).

I Return to using vh for v≺. If we replace the term λhv
h in

y =
∑

i λiv
i by λh(

∑
j∈(l,k]≺

µjv
l,j), then y will change by

λhα(χk − χl), and so we’ll move in the direction we want.

I We could also take a partial step where we choose some β
with 0 ≤ β ≤ αλh and replace λhv

h by
(λh − β/α)vh + β

∑
j∈(l,k]≺

µjv
l,j , and then y would change

by β(χk − χl).

I We call this operation ExchBd, since it gives us the bound α
on c(k, l; v≺).



Distance labels

I Now we use distance labels as in the Goldberg-Tarjan
Push-Relabel Algorithm for Max Flow / Min Cut.

I Distance labels d ∈ ZE are valid if

1. de = 0 for all e ∈ S−(y).
2. dl ≤ dk + 1 if there is some i ∈ I with l ≺i k.

I Thus we are effectively looking at a directed graph on nodes
E, where arc k → l ∈ A exists iff there is some i ∈ I with
l ≺i k, and de is a lower bound on the number of arcs in a
path from an element of S−(y) to e.

I When we call ReduceV it will delete some i from I and so
some arcs from A, but this won’t violate validity.

I As usual, it’s easy to show that if de = n, then e is never
going to be active again in the algorithm, so each de ≤ n.

I The de are monotonically non-decreasing during the
algorithm, and only subroutine Relabel increases a de, so
there are O(n2) Relabels.

I We can initialize with d ≡ 0, which is valid.
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Pushing from active nodes

I Call a node l active if l ∈ S+(y) and dl < n.

I Suppose that l ≺h k (and so k → l ∈ A) and dk = dl − 1 (we
are trying to push the positive part of yl to a lower distance
label).

I If no such k exists (due to all k with k → l ∈ A having
dk ≥ dl), then we can Relabel: dl ← dl + 1; this does not
violate validity.

I Then for β ≤ αλh call ExchBd to do y ← y + β(χk − χl).

I To keep validity we can’t allow yl to become negative, so we
must choose β ≤ yl; thus we choose β = min(αλh, yl).

I If β = αλh then we call this a saturating step; if β = yl we
call it a non-saturating step.

I In a saturating step h drops out of I and so one source of the
arc k → l disappears, which is not so easy to analyze.

I In a saturating step yl drops to zero, which is easier to analyze.
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How to choose l, k, and h?

I We choose some active l with maximum dl.

I Then we scan through the possible k in a fixed order, and
when we find k with dk = dl − 1 and k → l ∈ A we call
Push(l, k):

1. Now k → l ∈ A because l ≺h k for some h ∈ I. Among the
choices for h choose one that maximizes |(l, k]≺h

|.
2. Call ExchBd; If the step was non-saturating (yl = 0) exit;

else call ReduceV, go to 1.

I I claim that these choices imply that there are O(n2) calls of
ExchBd in Push(l, k).

I Non-saturating Pushes exit, so worry only about saturating
Pushes.

I Each saturating Push(l, k) either reduces maxi |(l, k]≺i
| or

the number of i achieving this max. Since |(l, k]≺i
| ≤ n, there

are O(n2) iterations.
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The overall algorithm

1. Initialize ≺1 as any linear order, I = {1}, y = v1, d ≡ 0.

2. While S+(y) 6= ∅ and S−(y) 6= ∅ do

2.1 Choose active l that maximizes dl.
2.2 Scan through potential k’s with dk = dl − 1:

2.2.1 If find a k, call Push(l, k).
2.2.2 If no such k, Relabel(l).

2.3 End scan.

3. End while.

4. Compute S = {e | e is reachable from S1(y)} and return S as
an optimal SFMin solution.
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Validity of distance labels is preserved

I Each call to ExchBd during Push(l, k) adds all the vl,j to I.

I Suppose that ≺h had l ≺h u ≺h t ≺h k and we consider ≺l,t.

I Then ≺′≡≺l,t has t ≺′ l ≺′ u ≺′ k.

I This creates new arc u→ t, and we need to check that
dt ≤ du + 1.

I Validity on u→ l of ≺h implies that dl ≤ du + 1.

I Validity on k → t of ≺h implies that dt ≤ dk + 1.

I Doing Push(l, k) implies that dl = dk + 1.

I Thus dt ≤ dk + 1 = dl ≤ du + 1, which is valid.

I We already noted that other operations preserve validity.
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Number of Pushes

I I claim that there are O(n3) non-saturating Pushes:

I A non-saturating Push(l, k) makes yl drop to 0.
I So there needs to be a Push(u, l) to make yl > 0 before the

next non-saturating Push at l.
I Since we Push from a max distance node, du at the

Push(u, l) must be greater than dl at the Push(l, k), which is
at least du at the Push(l, k).

I Thus there was a Relabel(u) between the Pushes.
I Each such Relabel(u) can re-activate at most n such l’s,

and there are O(n2) Relabels, and so O(n3) non-saturating
Pushes.

I I claim that there are O(n3) saturating Pushes:

I Due to scanning, there are at most n saturating Pushes
before each Relabel(l).

I There are at most n Relabel(l)’s, and so O(n2) saturating
Pushes from l, and so O(n3) total saturating Pushes.
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Running time analysis of Push-Relabel version of Schrijver

I The algorithm produces the optimal SFMin solution via the
“Max Flow / Min Cut” Lemma

I I claim that the overall running time is O(n7EO + n8):

I There are O(n3) total Pushes.
I Each Push calls ExchBd and ReduceV O(n2) times =⇒
O(n5) calls to ExchBd and ReduceV.

I Each call to ExchBd costs O(n2EO); each call to ReduceV
costs O(n3), for a total of O(n2EO + n3) per iteration.

I Now O(n5) iterations times O(n2EO + n3) time per iterations
gives O(n7EO + n8) total time.

I Thus the Push-Relabel version of Schrijver’s Algorithm is a
strongly polynomial SFMin algorithm.
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Notes on SFMin algorithms

I Another style of SFMin algorithms started with the Iwata,
Fleischer, Fujishige (IFF) paper.

I IFF relaxes y ∈ B(f) to z ∈ B(f + ρκ), where ρ is a
relaxation parameter that is scaled towards zero, and
κ(S) = δ(S) w.r.t. the complete graph.

I As a scaling algorithm, IFF is naturally weakly polynomial, but
there are strongly polynomial and fully combinatorial versions
of it.

I A third style of SFMin algorithms stems from Orlin, including
an Iwata-Orlin (IO) algorithm.

I These algorithms have different distance labels for each i ∈ I.
I Orlin’s Algorithm solves a more complicated system for its

improving direction that preserves S0(y).
I The IO Algorithm concentrates on an `2-norm objective that

was known to solve SFMin in a strong sense.
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Current fastest SFMin algorithms

I The current fastest weakly polynomial SFMin algorithm is
Iwata’s Hybrid Algorithm, which runs in
O((n4EO + n5) logM) time.

I Hybrid uses some IFF ideas, and some Schrijver ideas.

I The current fastest strongly polynomial SFMin algorithm is
Orlin’s Algorithm, which runs in O(n5EO + n6) time.

I This is even faster than the strongly polynomial version of
Ellipsoid, which runs in Õ(n5EO + n7) time.

I The current fastest fully combinatorial SFMin algorithm is a
version of the Iwata-Orlin Algorithm, which runs in
O((n7 + n8) log n) time.
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Empirical testing of SFMin algorithms

I The fastest running time we’ve seen is worse than O(n5),
which is quite high.

I Iwata did some empirical testing on perturbed Min Cut
problems. He found that the best empirical run times were
about O(n3.5) from Hybrid, using O(n2.5) calls to E .

I Fujishige et al did further testing on a wider range of instances
(though still based on Min Cut). They found empirical
performance varied from O(n3.7) for Hybrid on Iwata’s
instances, to O(n4.4) for Schrijver-PR on other instances.

I There is another SFMin algorithm called the Fujishige-Wolfe
(FW) Algorithm.

I It comes from a general algorithm for minimizing `2 distance
to a polytope.

I It has no known polynomial bound, but its empirical
performance beat all other algorithms that Fujishige et al
tested: O(n3.3).
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Related SFMin complexity results

I Given T ⊂ E, solving minS⊆T f(S) and minT⊆S⊆E f(S) are
both also polynomial (homework).

I Instead of considering all of 2E , what if we have F ⊂ 2E? All
these versions are polynomial:

I F is closed under ∩ and ∪ (a ring family).
I F is closed under ∩ and ∪ only when S ∩ T 6= ∅ (an

intersecting family).
I F is 2E − {∅, E}.
I F is all S with |S| odd/even.
I F is all S with |T ∩ S| odd/even.
I . . . and more, see Goemans and Ramakrishnan.

I It is also polynomial to compute a compact representation of
all SFMin solutions.

I But don’t get carried away: Solving minS⊆E:|S|=k f(S) is NP
Hard.
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Future directions for SFMin algorithms

I Computational testing indicates that the linear algebra of
ReduceV is a computational bottleneck.

I This implies that trying to find another way to prove that
y ∈ B(f) besides convex hull might be worthwhile.

I Fujishige proposed combinatorial hull (see homework) as a
possible replacement. This is an interesting research problem.

I Is there any way to get a non-trivial lower bound on the
number of calls to E necessary to solve SFMin?

I There are other variations:

I Parametric SFMin.
I Constrained SFMin; some versions are NP Hard, some are

polynomial.
I Minimization of bisubmodular functions, a “signed” analogue

of submodular functions.
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