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Abstract

Functions that assign values to subsets of a finite ground set are called set functions.
A particular class of set functions are the submodular functions. Submodular functions
are interesting because they have many applications in a wide range of fields, and because
optimization problems involving submodular functions are typically easy to solve.

There are many important applied problems that can be formulated as minimizing or
maximizing a submodular function, perhaps subject to some side constraints. In particular,
Submodular Function Minimization (SFMin) asks for a subset with minimum value, and
Submodular Function Maximization (SFMax) asks for a subset with maximum value. Here
are some homework problems related to this material, some of which were referenced in the
course lectures.

1 Problems

This is an updated and corrected version of what was handed out at the short
course, with answers to all the problems. Answers are given in sans-serif font. If
you have any corrections, questions, or further comments about any of this, please
email me at Tom.McCormick@sauder.ubc.ca.

Question 1. In class we saw two different definitions of submodularity. First, the “factory”
definition:

∀S ⊂ T ⊂ T + e, f(T + e)− f(T ) ≤ f(S + e)− f(S). (1)

Second, the “classic” definition:

for all S, T ⊆ E, f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ). (2)

(a) Prove that definitions (1) and (2) are equivalent.

To show that (2) implies (1), apply (2) to the sets X = S+e and Y = T to get f(S+e)+f(T ) ≥
f((S + e) ∪ T ) + f((S + e) ∩ T ) = f(T + e) + f(S), which is equivalent to (1).

To show that (1) implies (2), first re-write (1) as f(S + e) − f(T + e) ≥ f(S) − f(T ) for
S ⊂ T ⊂ T + e. Now, enumerate the elements of Y −X as e1, e2, . . . , ek and note that, for i < k,
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[(X ∩Y )∪{e1, e2, . . . , ei}] ⊂ [X ∪{e1, e2, . . . , ei}] ⊂ [X ∪{e1, e2, . . . , ei}] + ei+1, so the re-written
(1) implies that

f(X ∩ Y )− f(X) ≤ f((X ∩ Y ) + e1)− f(X + e1)
≤ f((X ∩ Y ) ∪ {e1, e2})− f(X ∪ {e1, e2})
. . .

≤ f((X ∩ Y ) ∪ {e1, e2, . . . , ek})− f(X ∪ {e1, e2, . . . , ek})
= f(Y )− f(X ∪ Y ),

and this is equivalent to (2).

(b) Here is an apparently very weak special case of definition (1) of submodularity. For every
S ⊂ E and every e, g /∈ S,

f(S + e)− f(S) ≥ f(S + e+ g)− f(S + g).

Prove that f is submodular if and only if this weaker condition is true.

If suffices to show that for S ⊆ T ⊆ E and R ⊆ E such that T∩R = ∅, that f(T∪R)−f(S∪R) ≤
f(T )− f(S). Now enumerate R as e1, e2, . . . , ek. Then

f(T ∪R)− f(S ∪R) = f(T + e1 + e2 · · ·+ ek)− f(S + e1 + e2 · · ·+ ek)
≤ f(T + e1 + e2 · · ·+ ek−1)− f(S + e1 + e2 · · ·+ ek−1)
≤ . . .

≤ f(T + e1)− f(S + e1) ≤ f(T )− f(S).

Question 2. Suppose that f is a set function on E with f(∅) = 0.

(a) Prove that f is modular iff there exists a vector w ∈ IRE such that f(S) = w(S) ≡
∑

e∈S we
for all S ⊆ E. (This justifies us treating modular set functions as vectors. Modular set functions
are, roughly speaking, the set function analogue of linear functions.)

(w ∈ IRE ⇒ w(S) is modular with w(∅) = 0): Clearly w(∅) = 0. We want to verify that
w(S) + w(T ) = w(S ∩ T ) + w(S ∪ T ). If e ∈ S ∩ T then it contributes 2we to both sides. If
e ∈ (S−T )∪ (T −S), then it contributes we to both sides. If e ∈ N − (S ∪T ) then it contributes 0
to both sides. Since we have the same contribution to both sides in all cases, the identity is verified.

(f modular with f(∅) = 0⇒ there is w ∈ IRE such that f(S) = w(S)): Set we = f({e}).
Modularity of f and f(∅) = 0 imply that f(S) +we = f(S) + f(e) = f(S + e) + f(∅) = f(S + e),
so induction yields that f(S) = w(S) for all S ⊆ E.

(b) Let G = (N,A) be a directed graph, and let x ∈ IRA be a vector of flows. Then for S ⊆ N
the set function f(S) = x(δ−(S)) − x(δ+(S)) is the net flow into node subset S. Prove that
f(S) is a modular set function with f(∅) = 0.

Clearly f(∅) = 0. From the proof of #3 x(δ+(S))+x(δ+(T )) = x(δ+(S∩T ))+x(δ+(S∪T ))+
x(δ+(S−T, T −S)) +x(δ+(T −S, S−T )) and x(δ−(S)) +x(δ−(T )) = x(δ−(S ∩T )) +x(δ−(S ∪
T ))+x(δ−(S−T, T−S))+x(δ−(T−S, S−T )). Noting that δ−(T−S, S−T ) = δ+(S−T, T−S),
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when we subtract the second from the first we get (x(δ+(S))−x(δ−(S)))+(x(δ+(T ))−x(δ−(T ))) =
(x(δ+(S ∩ T ))− x(δ−(S ∩ T ))) + (x(δ+(S ∪ T ))− x(δ−(S ∪ T ))), so f(S) is modular.

Question 3. Let G = (N,A) be a directed graph. For S ⊆ N define δ(S) = δ+(S) ∪ δ−(S).
Given l, u, w ∈ IRA with w ≥ 0 and l ≤ u, for S ⊆ N define f1(S) = w(δ(S)), f2(S) = w(δ+(S)),
and f3(S) = u(δ+(S))− l(δ−(S)).

(a) Prove that fk is submodular on 2N for k = 1, 2, 3. Give examples showing that fk is
not submodular if w 6≥ 0 or u 6≥ l, k = 1, 2, 3. (Note that S ⊆ T ⊆ N 6⇒ fk(S) ≤ fk(T ),
k = 1, 2, 3, i.e., none of these functions is necessarily monotone, so they are not polymatroid
rank functions.)

For X,Y ⊆ N , define δ+(X,Y ) = {i → j ∈ A | i ∈ X, j ∈ Y } and δ(X,Y ) = δ+(X,Y ) ∪
δ+(Y,X). I claim that w(δ(S))+w(δ(T )) = w(δ(S∩T ))+w(δ(S∪T ))+w(δ(S−T, T −S)). This
is easy to see by considering the 16 cases of an arc starting in one of the four sets S∩T , S−T , T−S,
and N− (S∪T ) and ending in any of the four sets, and noting that each arc a contributes exactly 0,
1, or 2 wa to both sides of the identity. Therefore if w ≥ 0, f1 is submodular. Let N = {1, 2, 3, 4},
A = {1 → 2, 1 → 3, 2 → 3, 2 → 4, 3 → 4}, w = (0, 0,−1, 0, 0), S = {1, 2}, and T = {1, 3}. Then
δ(S) = {1 → 3, 2 → 3, 2 → 4}, δ(T ) = {1 → 2, 2 → 3, 3 → 4}, δ(S ∩ T ) = {1 → 2, 1 → 3}, and
δ(S ∪ T ) = {2 → 4, 3 → 4}. Thus w(δ(S)) + w(δ(T )) = −2 6≥ 0 = w(δ(S ∩ T )) + w(δ(S ∪ T )),
so f1 is not submodular when w 6≥ 0.

The same type of computation shows that w(δ+(S)) +w(δ+(T )) = w(δ+(S ∩ T )) +w(δ+(S ∪
T )) + w(δ+(S − T, T − S)) + w(δ+(T − S, S − T )), implying that if w ≥ 0 that f2 is submodular.
Consider the same counterexample as above. The only change is that δ(T ) is now {1→ 2, 3→ 4},
so that w(δ(S)) +w(δ(T )) = −1 6≥ 0 = w(δ(S ∩ T )) +w(δ(S ∪ T )), so f2 is not submodular when
w 6≥ 0.

The proof of Question 1 shows that (u(δ+(S))−l(δ−(S)))+(u(δ+(T ))−l(δ−(T ))) = (u(δ+(S∩
T ))− l(δ−(S∩T )))+(u(δ+(S∪T ))− l(δ−(S∪T )))+(u− l)(δ(S−T, T −S)), so when u ≥ l f3(S)
is submodular. Consider the same counterexample as above, but with l = 0, u = (0, 0,−1, 0, 0).
Now the key term (u − l)(δ(S − T, T − S)) = −1 (coming from (u − l)23 = −1), so f3 is not
submodular when u 6≥ l.

Question 4. Suppose that f is a set function on 2E . We say that f is a cardinality set
function if there is some function g : {1, 2, . . . , |E|} → IR such that f(S) = g(|S|), i.e., if the
value of f(S) depends only on the size of S. Prove that a cardinality set function is submodular
iff g is concave. [This point of view is consistent with the “decreasing returns to scale” factory
definition of submodularity.]

Since we care only about the values of g at integer points, concavity is equivalent to requiring that
g(i)−g(i−1) ≥ g(i+1)−g(i) for all i. This translates into f(S+e)−f(S) ≥ f(S+e+h)−f(S+h)
whenever e, h /∈ S, which is equivalent to submodularity by Question 1 (b).

Question 5. If f is a submodular function on E with f(∅) = 0, then its associated submodular
polyhedron is P (f) = {x ∈ IRE | x(S) ≤ f(S) ∀S ⊆ E}. If x ∈ P (f), we call S ⊆ E x-tight if
x(S) = f(S).

(a) Prove that the union and intersection of x-tight sets is x-tight.
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S, T x-tight, submodularity of f , and modularity and feasibility of x imply that

x(S ∩ T ) + x(S ∪ T ) = x(S) + x(T )
= f(S) + f(T )
≥ f(S ∩ T ) + f(S ∪ T )
≥ x(S ∩ T ) + x(S ∪ T ),

implying that x(S ∩ T ) + x(S ∪ T ) = f(S ∩ T ) + f(S ∪ T ), and then feasibility of x implies that
x(S ∩ T ) = f(S ∩ T ) and x(S ∪ T ) = f(S ∪ T ).

(b) Suppose that x ∈ P (f) and S ⊂ E, and that for all i ∈ S and j /∈ S we know that there
is an x-tight set Sij containing i but not j. Prove that S is x-tight.

By (a), the set B = ∪i∈S ∩j /∈S Sij is also x-tight. Since ∩j /∈SSij contains i but no elements not
in S, B includes all elements of S and no elements not in S, i.e., B = S.

Question 6. Let G = (N,A) be a max flow network with return arc t→ s. Define S = {s→
i ∈ A}, i.e., the subset of arcs with tail s. For F ⊆ S define v(F ) to be the max flow value in
the network with capacities u′a defined by u′a = 0 for a ∈ S − F , and u′a = ua otherwise, i.e.,
we set the capacities of arcs in S − F to zero and otherwise leave the capacities alone. Thus
v(∅) = 0 and v(S) is the optimal max flow value in the original G.

(a) Prove that F1 ⊆ F2 ⊆ S implies that v(F1) ≤ v(F2), i.e., that v(F ) is monotone.

Let x(F ) be a max flow corresponding to v(F ), so that val(x(F )) = v(F ). Since F1 ⊆ F2,
x(F1) is a feasible flow for the F2 network, so v(F2) ≥ val(x(F1)) = v(F2).

(b) Prove that v(F ) is submodular.

We need to show that v(F1) + v(F2) ≥ v(F1 ∪F2) + v(F1 ∩F2). Let x(F1 ∩F2) be a max flow
corresponding to v(F1∩F2). Use any augmenting path algorithm starting from x(F1∩F2) to extend
it to a max flow x(F1 ∪ F2) corresponding to v(F1 ∪ F2). Note that for s → i ∈ F1 ∩ F2 we must
have x(F1 ∪ F2)si = x(F1 ∩ F2)si, since the optimality of x(F1 ∩ F2) implies that no augmenting
path in the F1 ∪ F2 network can use any arc of F1 ∩ F2. This implies that∑
s→i∈F1

x(F1 ∪ F2)si +
∑

s→i∈F2

x(F1 ∪ F2)si =
∑

s→i∈F1∪F2

x(F1 ∪ F2)si +
∑

s→i∈F1∩F2

x(F1 ∪ F2)si

= v(F1 ∪ F2) + v(F1 ∩ F2).

Now conformal decomposition implies that we can transform x(F1 ∪ F2) into a flow x′(F1)
feasible for the F1 network such that x(F1∪F2)si = x′(F1)si for all s→ i ∈ F1, and similarly we can
transform x(F1∪F2) into a flow x′(F2) feasible for the F2 network such that x(F1∪F2)si = x′(F2)si
for all s→ i ∈ F2. Note that∑

s→i∈F1

x′(F1)si +
∑

s→i∈F2

x′(F2)si =
∑

s→i∈F1∩F2

x(F1 ∩ F2)si +
∑

s→i∈F1∪F2

x(F1 ∪ F2)si

since every s→ i arc is counted exactly the same number of times (0, 1, or 2) on both sides.
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Then v(F1) ≥
∑

s→i∈F1
x′(F1)si and v(F2) ≥

∑
s→i∈F2

x′(F2)si, so

v(F1) + v(F2) ≥
∑

s→i∈F1

x′(F1)si +
∑

s→i∈F2

x′(F2)si

=
∑

s→i∈F1∪F2

x(F1 ∩ F2)si +
∑

s→i∈F1∪F2

x(F1 ∪ F2)si

= v(F1 ∪ F2) + v(F1 ∩ F2).

Note that (a) and (b) imply that Q = {y ∈ IRS | y(F ) ≤ v(F ) ∀F ⊆ S} is a polymatroid.
The flow polyhedron is P (G) = {x ∈ IRA | x is a feasible flow in G}. If X ⊆ A is a subset of

arcs, then the projection of P (G) onto X is P (X) = {y ∈ IRX | ∃x ∈ P (G) s.t. ya = xa ∀a ∈ X},
i.e., the linear algebraic projection of P (G) onto the components in X.

(c) We would like to show that Q = P (S), i.e., that the flow polyhedron projected onto the
arcs with tail s is a polymatroid. The only thing left to prove is that every q ∈ Q also belongs
to P (S), i.e., that if q ∈ Q then there is a feasible flow x in G whose projection on S is q. Prove
this.

Let G(q) be the max flow network with usi replaced by qsi for all s→ i ∈ S, let x(q) be a max
flow in G(q), and define S(q) to be a corresponding min cut. If x(q) saturates all arcs in S we are
done, so to get a contradiction assume that there is at least one s→ i ∈ S with x(q)si < qsi. This
implies that the set I = {s→ i ∈ S | i ∈ S(q)} is non-empty.

Now conformally decompose x(q) into flows on s–t paths. Note that any path P whose first
arc s → j is not in I cannot contain any other arc of δ+(S(q)) besides s → j (since it would
then have to also contain an arc of δ−(S(q)), and x(q) is zero on all such arcs). Thus when
we subtract out the flow of all such paths from x(q), we get a new flow x(I) which still satisfies
complementary slackness with S(q), so that x(I) is a max flow in the network corresponding to v(I).
But val(x(I)) <

∑
s→i∈I x(q)si ≤

∑
s→i∈I qsi ≤ v(I) (by feasibility of q for Q), contradicting that

x(I) is a max flow for the v(I) network.

(d) Note that S = δ+({s}). This makes it tempting to conjecture that if C = δ+(T ) for some
s–t cut T , then P (C) is also a polymatroid. Prove that this is true or give a counterexample
showing that this conjecture is false.

The conjecture is false: Consider the network in Figure 1 with N = {s, 1, 2, t}, A = {s→ 1, s→
2, 1 → t, 2 → t, 1 → 2}, and u = (4, 10, 10, 4, 1). Let T = {s, 1} so that C = {s → 2, 1 →
2, 1 → t}. Put X = {s → 2, 1 → 2} and Y = {1 → 2, 1 → t}, so that X ∩ Y = {1 → 2} and
X ∪ Y = {s → 2, 1 → 2, 1 → t}. Then v(X) = v(Y ) = 4, v(X ∩ Y ) = 1, and v(X ∪ Y ) = 8, so
that v(X) + v(Y ) = 4 + 4 6≥ 1 + 8 = v(X ∩ Y ) + v(X ∪ Y ). Thus v is not submodular, so P (C) is
not a polymatroid.

Question 7. Suppose that f is a submodular set function on E with polyhedron P (f). A
base of P is a point x ∈ P with 1Tx = f(E). (This specializes to the usual definition that a
base in a matroid (E, I) is a subset B ⊆ E such that B ∈ I and |B| = f(E).) Prove that if x
and y are two bases of P (f) and xe > ye, then there exists g ∈ E with xg < yg, and ε > 0, such
that x+ ε(χg − χe) and y − ε(χg − χe) (the same g in both cases) are both also bases. This is
called the Base Exchange Property.
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Figure 1: Counterexample

Define E+ = {g ∈ E | xg > yg} and E− = {g ∈ E | xg < yg}. Now fix our attention on the
given element e ∈ E+. Note that x+ ε(χg − χe) ∈ P (f) for sufficiently small ε > 0 iff there is no
x-tight set containing g but not e. Define Xbad = {g ∈ E− | ∃ x-tight G containing g but not e}
(the set of elements of E− that cannot be swapped with e in x). Similarly, y − ε(χg − χe) ∈ P (f)
for sufficiently small ε > 0 iff there is no y-tight set containing e but not g. Define Ybad = {g ∈
E− | ∃ y-tight G containing e but not g} (the set of elements of E− that cannot be swapped with
e in y). These definitions imply that if there is an g ∈ E− − (Xbad ∪ Ybad), then we are done.

Assume to the contrary that Xbad ∪ Ybad = E−. For each g ∈ Xbad there is an x-tight set Xg

containing g but not e, and for each g ∈ Ybad there is a y-tight set Yg containing e but not g. Then
by #21 (a) X∗ = ∪g∈Xbad

Xg is an x-tight set containing Xbad but not e, and Y ∗ = ∩g∈Ybad
Yg is a

y-tight set containing e but Y ∗ ∩ Ybad = ∅. Now tightness of X∗ and Y ∗, submodularity of f , and
feasibility of x and y imply that

x(X∗) + y(Y ∗) = f(X∗) + f(Y ∗)
≥ f(X∗ ∩ Y ∗) + f(X∗ ∪ Y ∗)
≥ y(X∗ ∩ Y ∗) + x(X∗ ∪ Y ∗).

This plus modularity of x and y implies that x(Y ∗ −X∗) ≤ y(Y ∗ −X∗). Now Xbad ∪ Ybad = E−

and Y ∗ ∩ Ybad = ∅ imply that Y ∗ ∩E− ⊆ Xbad − Ybad ⊆ Xbad ⊆ X∗, or Y ∗ ∩E− ⊆ X∗, implying
that (Y ∗ − X∗) ∩ E− = ∅. But xg ≥ yg on E − E−, e ∈ Y ∗ − X∗, and xe > ye imply that
x(Y ∗ −X∗) > y(Y ∗ −X∗), a contradiction.

Question 8. Suppose that in a Max Flow / Min Cut network, instead of computing a Min
Cut, we wanted to compute a cut S solving min∅6=S⊆N cap(S)/|S|, a min ratio cut. A standard
way of dealing with such problems is to have a parameter ρ representing the value of the ratio
cap(S)/|S|. Here we consider an extension of this that we call Submodular Function Mean
Minimization (SFMMin): We are given a submodular function f on E and want to solve

min
∅6=S⊆E

f(S)/|S|
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(note that the optimal value of this might be positive, negative, or zero). Consider these LPs:

min
∑

S⊆E f(S)πS∑
S3e πS − σe = 0 for all e ∈ E∑

e∈E σe = 1
σe ≥ 0 for all e ∈ E
πS ≥ 0 for all S ⊆ E.

max ρ
y(S) ≤ f(S) for all S ⊆ E

ρ ≤ ye for all e ∈ E,
ye free for all e ∈ E
ρ free

(a) Argue that these dual linear programs formulate SFMMin.

By standard arguments we can see that there must be an optimal solution to the primal with
πS = 1 for exactly one S ⊆ E, call it S∗, and then σ = χ(S∗) so that

∑
e∈E σe = |S∗|. By the

usual argument we could then move the normalizing constraint
∑

e∈E σe = 1 into the denominator
of the objective to get the objective minS⊆E f(S)/|S|, which is what we want.

(b) Use complementary slackness between your two LPs to get necessary and sufficient con-
ditions for optimal solutions.

Let S∗, π∗, σ∗, y∗, and ρ∗ be optimal. Since π∗S∗ > 0 we have y∗(S∗) must equal f(S∗). If
ρ∗ < y∗e then we must have σ∗e = 0, i.e., e /∈ S∗. If y∗(S) < f(S) then we must have π∗S = 0,
i.e., S 6= S∗. If σ∗e > 0 (i.e., e ∈ S∗) then we must have ρ∗ = y∗e . [Notice that f(S∗) = y∗(S∗)
and y∗e = ρ∗ for all e ∈ S∗ implies that y∗(S∗) = ρ∗|S∗| = f(S∗), or ρ∗ = f(S∗)/|S∗|, the optimal
objective value.]

(c) Suppose that we are running some hypothetical SFMin-like algorithm to solve this problem
where we represent our current point y ∈ B(f) as y =

∑
i λiv

i with
∑

i λi = 1, where each vi is a
vertex associated with linear order ≺i. How would we recognize optimality in such an algorithm?

Let ρ = mine ye, and S = {e | ye = ρ}. Suppose that in each vi all elements of S come before
all elements of E − S. Then by how Greedy works to generate vi, we have that vi(S) = f(S), and
so y(S) = f(S). Since ye > ρ implies that e /∈ S and e ∈ S implies that ye = ρ, this y, ρ, and
S satisfy the complementary slackness from (b), and so are optimal. [This give a rudimentary idea
for an algorithm: whenever there exists some j, k ∈ E such that ρ = yj < yk and for some i we
have k ≺i j, then move k rightwards (which tends to decrease yk) and j leftwards (which tends to
increase yj) in ≺i until we can find no such pair, and then we must be optimal.]

(d) Suppose that both S and T solve the min ratio problem. Prove that S ∪ T also solves it,
and if S ∩ T 6= ∅, S ∩ T also solves it.

Denote ρ = f(S1)/|S1| = f(S2)/|S2|. Submodularity implies that f(S1 ∪ S2) ≤ f(S1) +
f(S2) − f(S1 ∩ S2), and modularity that |S1 ∪ S2| = |S1| + |S2| − |S1 ∩ S2|. If S1 ∩ S2 = ∅, then
f(S1 ∪ S2)/|S1 ∪ S2| ≤ (f(S1) + f(S2))/(|S1|+ |S2|) = (ρ|S1|+ ρ|S2|)/(|S1|+ |S2|) = ρ. Since ρ
is the minimum possible ratio, we must have that f(S1 ∪ S2)/|S1 ∪ S2| = ρ, and so S1 ∪ S2 is also
optimal for SFMMin.

Now assume that S1 ∩ S2 6= ∅. To get a contradiction, assume that S1 ∩ S2 is not optimal for
SFMMin, i.e., that f(S1 ∩ S2)/|S1 ∩ S2| > ρ. Then f(S1 ∪ S2)/|S1 ∪ S2| ≤ (f(S1) + f(S2) −
f(S1 ∩ S2))/(|S1|+ |S2| − |S1 ∩ S2|) < (ρ|S1|+ ρ|S2| − ρ|S1 ∩ S2|)/(|S1|+ |S2| − |S1 ∩ S2|) = ρ,
contradicting that ρ is the minimum possible ratio. Thus we must have that f(S1 ∩S2)/|S1 ∩S2| =
f(S1 ∪ S2)/|S1 ∪ S2| = ρ, and so both S1 ∪ S2 and S1 ∩ S2 are also optimal for SFMMin.

Question 9. All existing combinatorial SFMin algorithms prove that the current point x
belongs to the base polytope B(f) via finding vertices vj ∈ B(f) and expressing x as the convex
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combination x =
∑

j λjv
j with

∑
j λj = 1 and λ ≥ 0. This is unpleasant because even if f is

integer-valued, the λj are typically quite fractional, and it makes the SFMin algorithms have to
do linear algebra to keep the number of vj small.

Here is the start of a different idea (due to Fujishige) for proving that x ∈ B(f) called
combinatorial hull. We use tildes to represent the simple projection obtained by dropping the
first coordinate, so that Ẽ = E − {1} and x̃ = (x2, x3, . . . , xn). Suppose that we know that
x(E) = f(E) (which is easily checkable), and that we have points y, z ∈ B(f) (e.g., perhaps y
and z are vertices of B(f)) such that ỹ ≤ x̃ ≤ z̃, i.e., (the projection of) x is contained in the
box defined by (the projections of) y and z.
(a) Prove that this implies that x ∈ B(f). (Note that when x and f are integral, this
representation involves only integers, and only addition, subtraction, and comparison.)

It suffices to prove that x(S) ≤ f(S) for all S ⊂ E. Suppose that 1 /∈ S, so that S = S̃. Then
x(S) = x̃(S̃) ≤ z̃(S̃) = z(S) ≤ f(S).

Now suppose that 1 ∈ S so that S̃ = S − {1}. Note that x(E) = f(E) implies that x1 =
f(E)−x̃(Ẽ). Thus x(S) = x̃(S̃)+x1 = x̃(S̃)+f(E)−x̃(Ẽ) = f(E)−x̃(Ẽ−S̃) ≤ f(E)−ỹ(Ẽ−S̃) =
ỹ(S̃) + f(E)− ỹ(Ẽ) = y(S̃) + y1 = y(S) ≤ f(S).

Open problem: This procedure can be iterated to find more complicated proofs that a point
belongs to B(f) involving more than two vertices of B(f) (and possibly involving projecting out
other coordinates). What is the “Carathéodory number” of such a representation, i.e., the
smallest k such that any x ∈ B(f) has a combinatorial hull representation using at most k
vertices of B(f)? There is a rather trivial bound one can get of 2n−1 via greedily increasing
x along some coordinate until we hit the boundary, which is one dimension smaller to get two
points; for each of these, repeat to get two more points in one smaller dimension, etc. The
obvious conjecture here is that some polynomial bound suffices. One way to go at this: what
if we have a “too-large” such representation? How can we go about reducing the number of
vertices used, as we do with convex combinations?

Suppose that we could solve this open problem and had an SFMin algorithm using com-
binatorial hull instead of convex hull. An important part of an SFMin algorithm is the fact
that if a point x is represented via the convex combination of vertices vj of a base polytope as
x =

∑
j∈J λjv

j with
∑

j∈J λj = 1 and λj > 0 for all j ∈ J (often we’d instead write λj ≥ 0, but
we can trivially drop any j with λj = 0 from J), then S ⊆ E is tight for x iff S is tight for each
vj .

(b) Prove that when x is in the combinatorial hull of y and z, any S tight for both y and z
is tight also for x.

Suppose that S is tight for y and z, so that f(S) = y(S) = z(S). If 1 /∈ S, then f(S) =
y(S) = ỹ(S̃) ≤ x̃(S̃) = x(S) = x̃(S̃) ≤ z̃(S̃) = z(S) = f(S). Hence we have equality everywhere,
and so x(S) = f(S). If instead 1 ∈ S, then f(S) = z(S) = z(S̃) + z1 = z̃(S̃) + f(E) − z̃(Ẽ) =
f(E)− z̃(Ẽ − S̃) ≤ f(E)− x̃(Ẽ − S̃) = x̃(S̃) + f(E)− x̃(Ẽ) = x̃(S̃) + x1 = x(S) = x̃(S̃) + x1 =
x̃(S̃) + f(E)− x̃(Ẽ) = f(E)− x̃(Ẽ− S̃) ≤ f(E)− ỹ(Ẽ− S̃) = ỹ(S̃) + f(E)− ỹ(Ẽ) = y(S̃) + y1 =
y(S) = f(S). Again we thus have equality everywhere, and so x(S) = f(S).

(c) Construct a counterexample showing that we could have that S is tight for x and z, but
not tight for y.
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Put E = {1, 2}, f({1}) = f({2}) = f({1, 2}) = 1, and note that f is submodular. Then set
x = z = (0, 1) and y = (1, 0), so that y and z are vertices of B(f) and ỹ = (0) ≤ x̃ = (1) ≤ z̃ = (1),
so that x is in the combinatorial hull of y and z. Then S = {2} is tight for x and z, but not for y.

This attempt to show that combinatorial hull has the same property as convex hull does not
have any condition equivalent to λj > 0 for j ∈ J . A reasonable equivalent is to insist that x be
in the relative interior of y and z. Let F = {e ∈ E − {1} | ye = ze}. Then we say that x is in
the relative interior of the combinatorial hull of y and z if ye < xe < ze for all e /∈ F − {1}.

(d) Prove that when x is in the relative interior of the combinatorial hull of y and z and S is
tight for x, then S is tight for both y and z.

Suppose that S is tight for x and that S 6⊆ F . Suppose that 1 /∈ S, so that x̃(S̃) < z̃(S̃).
Then f(S) = x(S) = x̃(S̃) < z̃(S̃) = z(S) ≤ f(S), a contradiction. Thus S ⊆ F and so
y(S) = x(S) = z(S) = f(S), and S is tight for y and z.

Suppose instead that 1 ∈ S and E − F 6⊆ S, so that ỹ(Ẽ − S̃) < x̃(Ẽ − S̃). Then f(S) =
x(S) = x̃(S̃) + x1 = x̃(S̃) + f(E) − x̃(Ẽ) = f(E) − x̃(Ẽ − S̃) < f(E) − ỹ(Ẽ − S̃) = ỹ(S̃) +
f(E) − ỹ(Ẽ) = ỹ(S̃) + y1 = y(S) ≤ f(S), again a contradiction. Thus E − F ⊆ S, and so
y(E − S) = ỹ(Ẽ − S̃) = x̃(Ẽ − S̃) = z(E − S). Since, e.g., z(S) = z(E)− z(E − S), this implies
that y(S) = x(S) = z(S) = f(S), and so S is tight for y and z.

Question 10. Let’s consider parametric submodular minimization. Suppose that E is a finite
ground set and that g(S, λ) is a function where S ⊆ E and λ is a scalar parameter. One example
would be where E is N − {s, t} in a parametric max flow network with capacities uij(λ), and
g(S, λ) is the value of cut S + {s} w.r.t. λ.

We suppose that g(S, λ) is submodular in S for each fixed value of λ, and that it satisfies
the following Decreasing Differences property for each S ⊆ T and λ′ ≥ λ:

g(T, λ)− g(S, λ) ≥ g(T, λ′)− g(S, λ′). (3)

(a) Prove that the following weaker version of (3) implies (3): For all e ∈ E, S ⊆ E, and
λ′ ≥ λ,

g(S + e, λ)− g(S, λ) ≥ g(S + e, λ′)− g(S, λ′). (4)

Enumerate T − S as {e1, e2, . . . , ek}. Then using (4) repeatedly we get g(T, λ) − g(S, λ) =
(g(S + {e1, e2, . . . , ek}, λ) − g(S + {e1, e2, . . . , ek−1}, λ)) + (g(S + {e1, e2, . . . , ek−1}, λ) − g(S +
{e1, e2, . . . , ek−2}, λ)) + · · · + (g(S + {e1}, λ) − g(S, λ)) ≥ (g(S + {e1, e2, . . . , ek}, λ′) − g(S +
{e1, e2, . . . , ek−1}, λ′))+(g(S+{e1, e2, . . . , ek−1}, λ′)−g(S+{e1, e2, . . . , ek−2}, λ′))+ · · ·+(g(S+
{e1}, λ′)− g(S, λ′)) = g(T, λ′)− g(S, λ′).

(b) Suppose that Q minimizes g at λ and Q′ minimizes g at λ′. Prove that Q ∩ Q′ also
minimizes g at λ, and Q ∪Q′ minimizes g at λ′.

Using respectively the optimality of Q, submodularity of g, (3), and optimality of Q′ we get
0 ≥ g(Q,λ)− g(Q∩Q′, λ) ≥ g(Q∪Q′, λ)− g(Q′, λ) ≥ g(Q∪Q′, λ′)− g(Q′, λ′) ≥ 0. Thus we get
equality everywhere, and so we have that g(Q,λ) = g(Q∩Q′, λ) (i.e., Q∩Q′ is optimal for λ), and
g(Q,λ′) = g(Q ∪Q′, λ′) (i.e., Q ∪Q′ is optimal for λ′).

(c) Consider now the following strict version of (3): For S ⊂ T and λ < λ′

g(T, λ)− g(S, λ) > g(T, λ′)− g(S, λ′). (5)
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Prove that when (5) is true that if Q is a min cut for λ and Q′ is a min cut for λ′ with λ′ > λ,
that Q ⊆ Q′. (Thus with (5), every min cut for λ is nested with every min cut for λ′.)

If Q 6⊆ Q′, then Q′ ⊂ Q′ ∪ Q and so (5) applies to S = Q′ and T = Q ∪ Q′. Then as in (b)
we get 0 ≥ g(Q,λ) − g(Q ∩ Q′, λ) ≥ g(Q ∪ Q′, λ) − g(Q′, λ) > g(Q ∪ Q′, λ′) − g(Q′, λ′) ≥ 0, a
contradiction. Hence we must have that Q ⊆ Q′.

Question 11. Consider the base polytope B(f) of a submodular function f defined on ground
set E. For S ⊆ E define M(S) to be the maximum value of x(S) over x ∈ B(f), and m(S) to
be the minimum value of x(S) over x ∈ B(f).

(a) Give closed-form expressions for M(S) and m(S) (in terms of f and S and E), and show
how to compute some x′ ∈ B(f) with x′(S) = M(S) and some x′′ ∈ B(f) with x′′(S) = m(S).

Clearly for any x ∈ B(f) we must have that x(S) ≤ f(S). Let ≺ be a linear order where all
elements of S come before all elements of E − S, with corresponding Greedy vertex x′ = v≺. Then
we can compute that x′(S) = f(S) − f(∅) = f(S), and so M(S) = f(S), and this is attained by
any vertex coming from a linear order with S coming before E − S.

For any x ∈ B(f) we have x(E − S) = x(E) − x(S) = f(E) − x(S), and so x(S) = f(E) −
x(E−S) ≥ f(E)−f(E−S), and so f(E)−f(E−S) is a lower bound on m(S). Let ≺ be a linear
order where all elements of S come after all elements of E − S, with corresponding Greedy vertex
x′′ = v≺. Then we can compute that x′′(S) = f(E)− f(E−S), and so m(S) = f(E)− f(E−S),
and this is attained by any vertex coming from a linear order with S coming after E − S.

(b) Let’s extend part (a) a bit. Let n = |E| and suppose that v is the Greedy vertex
corresponding to linear order ≺. Assume w.l.o.g. that ≺= 123 · · ·n. For j ∈ E define B([1, j),≺
) = {x ∈ B(f) | x1 = v1, x2 = v2, . . . , xj−1 = vj−1} and B((j, n],≺) = {x ∈ B(f) | xn =
vn, xn−1 = vn−1, . . . , xj+1 = vj+1}; notice that both B([1, j),≺) and B((j, n],≺) are non-empty
since v belongs to both. Prove that vj = max{xj | x ∈ B([1, j),≺)} and vj = min{xj | x ∈
B((j, n],≺)}.

We prove the first part, as the second part is similar. Suppose that x ∈ B([1, j,≺). Define Sj =
123 · · · j and Sj−1 = 123 · · · j − 1. Since v(Sj−1) = f(Sj−1) by Greedy, and x(Sj−1) = v(Sj−1) by
x ∈ B([1, j),≺), we have x(Sj−1) = f(Sj−1). By Greedy vj = f(Sj)−f(Sj−1) = f(Sj)−x(Sj−1).
Now f(Sj) ≥ x(Sj) = xj + x(Sj−1) = xj + f(Sj−1), or xj ≤ f(Sj) − f(Sj−1) = vj . Thus vj is
indeed the max value of the j-th component among members of B([1, j),≺).

(c) If S, T ⊆ E with S ⊆ T , then the interval [S, T ] = {R ⊆ E | S ⊆ R ⊆ T}. Let α ≥ 0 be
a scalar, T ⊆ E, and define fT,−α(S) to be f(S) − α for S ∈ [T,E], and f(S) for S /∈ [T,E],
and define fT,+α(S) to be f(S) for S ∈ [∅, T ], and f(S) + α for S /∈ [∅, T ]. Prove that fT,±α are
again submodular with fT,±α(∅) = 0.

First consider fT,+α (the other case is similar). Since ∅ ∈ [∅, T ], we have fT,+α(∅) = f(∅) = 0.
Consider the submodular inequality f(S) + f(R) ≥ f(S ∪ R) + f(S ∩ R). If both S and R

belong to [∅, T ], then all four terms have f equal to fT,+α, and so it is preserved. If neither S nor
R belongs to [∅, T ], then the LHS gains 2α ≥ 0, and the RHS gains at most 2α (really, at most α
since S ∪ R 6⊆ T ), so it is preserved again. If S 6⊆ T but R ⊆ T , then S ∩ R ⊆ T but S ∪ R 6⊆ T ,
and so both sides gain α, so it is again preserved. This is related to the concept of #-duality from
Fujishige’s book pp. 43–44.
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(d) The membership problem for B(f) is this: Given some point x ∈ IRE with x(E) = f(E),
either prove that x ∈ B(f) or find some S ⊂ E such that x(S) > f(S).

Show how to reduce the membership problem for a general x and submodular f to the
membership problem for 0 and an associated f̂ with f̂(E) = f̂(∅) = 0, i.e., determining whether
0 ∈ B(f̂) is equivalent to determining if x ∈ B(f).

Define f̂(S) = f(S) − x(S). Clearly we have that f̂(E) = f̂(∅) = 0. Since x(S) is modular,
f̂(S) is submodular. Now x /∈ B(f) iff there is some S ⊂ E such that x(S) > f(S), which translates
into 0 > f(S)− x(S) = f̂(S) and so 0 /∈ B(f̂).

Question 12. Two useful variants of SFMin are these: Given T with ∅ ⊂ T ⊂ E, solve (1)
minS⊆T f(S), and (2) minS⊇T f(S). Define auxiliary set functions like this: For S ⊆ T define
f⊆T (S) = f(S); for S ⊆ E − T define f⊇T (S) = f(S ∪ T )− f(T ).

(a) Prove that both f⊆T and f⊇T are submodular and equal to zero on the empty set.

Since f(T ) is just a constant, clearly both are submodular. Also, f⊆T (∅) = 0 = f(T )− f(T ) =
f⊇T (∅).

(b) Prove that S solves minS⊆T f(S) iff S solves SFMin for f⊆T , and S solves minS⊇T f(S)
iff S − T solves SFMin for f⊇T .

The first follows from the fact that f⊆T = f on subsets of T . For the second, suppose that S
solves minS⊇T f(S). Then R ≡ S − T ⊆ E − T . If R does not minimize f⊇T , then there is some
R′ ⊆ E−T with f⊇T (R′) < f⊇T (R), or f(R′∪T )−f(T ) < f(R∪T )−f(T ), or f(R′∪T ) < f(S).
But then R′ ∪ T contains T and contradicts that S solves minS⊇T f(S). Thus R minimizes f⊇T .
Conversely, suppose that S − T solves SFMin for f⊇T . If S doesn’t solve minS⊇T f(S) then there
is some S′ ⊇ T with f(S′) < f(S). But then f⊇T (S′ − T ) = f(S′) − f(T ) < f(S) − f(T ) =
f⊇T (S − T ), contradicting that S − T solves SFMin for f⊇T .

(c) Suppose that x ∈ IRE . For T ⊆ E define x|T ∈ IRT by x
|T
e = xe, i.e., vector x restricted

to the components in T . If x ∈ IRT and y ∈ IRE−T , define x ⊕ y by (x ⊕ y)e = xe if e ∈ T ,
(x⊕ y)e = ye if e ∈ E − T . Prove that if x ∈ B(f⊆T ) and y ∈ B(f⊇T ), then x⊕ y ∈ B(f).

Define z = x ⊕ y. Let S ⊆ E. Then z(S) = z(S ∩ T ) + z(S − T ) = x(S ∩ T ) + y(S − T ) ≤
f⊆T (S∩T )+f⊇T (S−T ) = f(S∩T )+(f(S∪T )−f(T )) ≤ f(S). When S = E this specializes to
z(E) = z(T ) + z(E − T ) = x(T ) + y(E − T ) = f(T ) + (f(E)− f(T )) = f(E), and so z ∈ B(f).

(d) As a partial converse to (c), suppose that z ∈ B(f) and T is such that T is z-tight. Prove
that x ≡ z|T ∈ B(f⊆T ) and y ≡ z|(E−T ) ∈ B(f⊇T ).

For S ⊆ T we have x(S) = z(S) ≤ f(S) = f⊆T (S), and by hypothesis x(T ) = f(T ), and so
x ∈ B(f⊆T ). For S ⊆ E − T we have y(S) = z(S) = z(S) + (z(T )− f(T )) = z(S ∪ T )− f(T ) ≤
f(S ∪ T ) − f(T ) = f⊇T (S). Specializing to S = E − T we get y(E − T ) = z(E − T ) =
z(E − T ) + (z(T )− f(T )) = z(E)− f(T ) = f(E)− f(T ) = f⊇T (E − T ), and so y ∈ B(f⊇T ).

(e) Assume that ≺ is a linear order which has the elements of T before all other elements. For
e ∈ T and linear order ≺ we have two ways to generate v≺⊆T

e : we can do Greedy w.r.t. f and ≺
and take component e, or we can do Greedy w.r.t. f⊆T and take component e. For e ∈ E − T
and linear order ≺ we have two ways to generate v≺⊇T

e : we can do Greedy w.r.t. f and ≺ and
take component e, or we can do Greedy w.r.t. f⊇T and take component e. In each case prove
that we get the same answer either way.
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The ≺⊆T case: Here e≺⊆T = e≺, so Greedy gives the same answer. The ≺⊇T case: Here

e≺⊇T ∪T = e≺, and so for component e we get v
≺⊇T
e = f⊇T (e≺⊇T + e)−f⊇T (e≺⊇T

e ) = (f((e≺⊇T +
e) ∪ T )− f(T ))− (f(e≺⊇T ∪ T )− f(T )) = f(e≺ + e)− f(e≺) = v≺e .

(f) (1) Suppose that ∅ ⊂ T1 ⊂ T2 ⊂ E. Prove that (f⊆T2)⊆T1 = f⊆T1 . (2) Suppose that
∅ ⊂ T1 ⊂ E and ∅ ⊂ T2 ⊂ E − T1. Prove that (f⊇T1)⊇T2 = f⊇(T1∪T2). (3) Suppose that
∅ ⊂ T1 ⊂ T2 ⊂ E. Prove that (f⊇T1)⊆T2−T1 = (f⊆T2)⊇T1 . (Therefore we can apply these
operations repeatedly and in any order, and we know that the resulting function will depend
only on the largest set we have to contain, and the smallest set we have to be contained in.)

(1) For S ⊆ T1, (f⊆T2)⊆T1(S) = f⊆T1(S) = f(S).
(2) For S ⊆ E − (T1 ∪ T2), (f⊇T1)⊇T2(S) = f⊇T1(S ∪ T2) − f⊇T1(T2) = (f(S ∪ T2 ∪ T1) −

f(T1))− (f(T2 ∪ T1)− f(T1)) = f(S ∪ (T1 ∪ T2))− f(T1 ∪ T2) = f⊇(T1∪T2)(S).
(3) For R s.t. T1 ⊆ R ⊆ T2 define S = R − T1. Then (f⊇T1)⊆T2−T1(S) = f⊇T1(S) =

f(S ∪ T1)− f(T1) = f⊆T2(S ∪ T1)− f⊆T2(T1) = (f⊆T2)⊇T1 .

Question 13 Suppose that we have a submodular function f with polyhedron P (f), and a
scalar σ. Define the hyperplane Hσ as {x ∈ IRE | x(E) = σ}.

(a) How can we determine whether P (f)|σ ≡ P (f) ∩Hσ is empty or not?

If σ > f(E) then clearly P (f)|σ = ∅, as all x ∈ P (f) satisfy x(E) ≤ f(E) < σ.
On the other side, suppose that σ ≤ f(E). Then we know that there are points x ∈ B(f) ⊂ P (f)

satisfying x(E) = f(E). Also, any y ≤ x is also in P (f), and thus e.g. for some e y ≡ x− (f(E)−
σ)χe ∈ P (f) and has y(E) = x(E)− (f(E)− σ) = σ, and so P (f)|σ 6= ∅.

(b) Suppose that P (f)|σ 6= ∅. Given weight vector w ∈ IRE , how can we adapt Greedy to
solve maxwTx s.t. x ∈ P (f)|σ?

One way to go at this is to define f |σ(S) = f(S) for S 6= E, f |σ(E) = σ, and prove that f |σ(S)
is submodular. This follows since the only significant change to f(S) + f(T ) ≥ f(S ∪T ) + f(S ∩T )
could be when the union is E, and then the RHS goes down while the LHS stays the same. Then
Greedy adapted to this is the same as ordinary Greedy, except that in the last step it sets xen to
σ− f(E − en) instead of f(E)− f(E − en). But since the proof that Greedy works doesn’t depend
on the sign of πE , the same proof still shows that this adapted Greedy produces the optimal solution.
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[7] U. Feige, V. Mirrokni, and J. Vondrák (2007). Maximizing Non-monotone Submodular
Functions. Proceedings of 48th Annual IEEE Symposium on Foundations of Computer Sci-
ence (FOCS), 461–471.
Approximation algorithm for SFMax.

[8] L. K. Fleischer (2000). Recent Progress in Submodular Function Minimization. Optima,
September 2000, 1–11.
A shorter survey of early algorithms for SFMin.

[9] L. K. Fleischer and S. Iwata (2003). A Push-Relabel Framework for Submodular Function
Minimization and Applications to Parametric Optimization. “Submodularity” special issue
of Discrete Applied Mathematics, S. Fujishige ed., 131, 311-322.
Has Push-Relabel version of Schrijver, parametric SFMin.

[10] S. Fujishige (2005). Submodular Functions and Optimization. Second Edition. North-
Holland.
Standard reference book for submodular optimization.

[11] M. R. Garey and D. S. Johnson (1979). Computers and Intractability, A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New York.
Basic reference on NP Completeness.

[12] M. Grötschel, L. Lovász, and A. Schrijver (1988). Geometric Algorithms and Combinatorial
Optimization. Springer-Verlag.
Standard text on how the Ellipsoid Algorithm shows the equivalence of Separation and Opti-
mization.

[13] S. Iwata (2002). A Fully Combinatorial Algorithm for Submodular Function Mini-
mization. J. Combin. Theory Ser. B, 84, 203–212; a corrected version is available at
http://www.sr3.t.u-tokyo.ac.jp/~iwata/.
First fully combinatorial algorithm for SFMin.

[14] S. Iwata (2003). A Faster Scaling Algorithm for Minimizing Submodular Functions. SIAM
J. on Computing, 32, 833–840.
One of the fastest known SFMin algorithms.

[15] S. Iwata (2008). Submodular Function Minimization. Mathematical Programming, 112,
45–64.
Another SFMin survey.

[16] S. Iwata, L. Fleischer, and S. Fujishige (2001). A Combinatorial, Strongly Polynomial-Time
Algorithm for Minimizing Submodular Functions. J. ACM, 48, 761–777.
The original IFF SFMin algorithm paper.

[17] S. Iwata and J. B. Orlin (2009). A Simple Combinatorial Algorithm for Submodular Func-
tion Minimization. Technical report; an extended abstract appears in Proceedings of the
Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2009), pp. 1230–
1237.
The most recent and sometimes faster SFMin algorithm.

13



[18] A. Krause and D. Golovin (2013). Submodular Function Maximization. Chapter in
Tractability: Practical Approaches to Hard Problems (to appear), Cambridge University
Press.
Survey of SFMax.

[19] A. Krause and C. Guestrin (2011). Submodularity and its Applications in Optimized In-
formation Gathering. ACM Transactions on Intelligent Systems and Technology, 2, Article
32.
Survey of how SFMax applies to problems such as sensor location.

[20] L. Lovász (1983). Submodular Functions and Convexity. In Mathematical Programming —
The State of the Art, A. Bachem, M. Grötschel, B. Korte eds., Springer, Berlin, 235–257.
Gives result showing that submodular functions are convex via the Lovász extension.

[21] S. T. McCormick (2006). Submodular Function Minimization. Chap-
ter 7 in the Handbook on Discrete Optimization, Elsevier, K.
Aardal, G. Nemhauser, and R. Weismantel, eds., 321–391. See
http://www.elsevier.com/wps/find/bookdescription.cws home/699541/description
Published version of Tom’s SFMin survey.

[22] K. Murota (2003). Discrete Convex Analysis. SIAM Monographs on Discrete Mathematics
and Applications, Society for Industrial and Applied Mathematics, Philadelphia.
Standard reference for discrete convexity.

[23] Nemhauser, George L., Wolsey, Laurence A., and Fisher, Marshall L. (1978). An analysis of
approximations for maximizing submodular set functions - I. Mathematical Programming,
14 265-294.
Contains the first approximation algorithm for SFMax.

[24] J.B. Orlin (2007). A Faster Strongly Polynomial Algorithm for Submodular Function Min-
imization. Proceedings of IPCO 12, M. Fischetti and D. Williamson, eds., Ithaca, NY,
240–251.
The current fastest SFMin algorithm in most cases.

[25] M. N. Queyranne (1998). Minimizing Symmetric Submodular Functions. Math. Prog., 82,
3–12.
Queyranne’s Algorithm for Symmetric SFMin.

[26] A. Schrijver (2000). A Combinatorial Algorithm Minimizing Submodular Functions in
Strongly Polynomial Time. J. Combin. Theory Ser. B 80, 346–355.
Schrijver’s Algorithm for SFMin.

[27] A. Schrijver (2003). Combinatorial Optimization: Polyhedra and Efficiency. Springer,
Berlin.
Standard textbook for basics of combinatorial optimization.

14


