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Combinatorial manifolds

Given:  rank  r

collection M of r-element sets called rooms

set of vertices V =   M

wall = room without a vertex  v (wall “opposite” v)

any wall belongs to exactly 2 rooms

(i.e. any (r1)-set of vertices belongs to 0 or 2 rooms)

call M a manifold.



Room partitionings

Given a manifold M with vertex set V, 

room partitioning = partition of V into rooms.

(Then |V| is a multiple of the rank r.)

Theorem.

M has an even number of room partitionings.

Proof by Parity Argument (PPA).
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6 extra points, 12 extra rooms
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Exponential length of paths

Note:

The path length is exponential in the number of rooms!



Abstract Sperner

• Manifold M of rank r

• each vertex v has label (color) in {1, . . ., r}

• call a set of vertices multicolored if no two of its 

vertices have the same color.

Theorem.

M has an even number of multicolored rooms.
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find color 1, done!
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Concrete Sperner

• simplex S with r vertices, triangulation T

• each vertex of T has color in {1, ..., r}

• color of a vertex of S not found on opposite facet

(Sperner condition).

Theorem.

T has an odd number of multicolored simplices.



Proof: Corollary to Abstract Sperner

• Induction on rank r:  each facet has odd number of 
multicolored simplices (in one dimension lower)

• Add vertex w of any color and connect w to 

outside vertices ( get manifold T  {w­rooms}).

• By induction:  T  {w­rooms} has odd number of 

multicolored simplices that contain w 

 T  {w­rooms} and hence T has odd number of 

multicolored simplices that do not contain w.
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Sperner and PPAD

• PPAD = proof by parity argument with direction, 

• direction “local” to the path.



PPAD = opposite orientation of end-rooms
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rooms = facets of simplicial polytope
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vertices = r-vectors, pivot to next room,
orientation = determinant of vertices in order of labels
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Apply to orientable abstract manifolds

Given a room with vertices  a1 a2 . . . ar , call any two 

permutations of the vertices equivalent if they differ

by an even number of transpositions.

   Get two equivalence classes called orientations.

Call adjacent rooms {a1 a2 . . . ar }  and  {b1 a2 . . . ar} 

consistently oriented if  a1 a2 . . . ar   and  b1 a2 . . . ar 

have opposite orientation (doable  oriented manifold).



Simplicial polytopes and games

Given:  M = conv {e1 ,..., er , b1, ..., bn} with labels 

• i  for negative unit vector ei ,  i = 1,...,r

• c(j) {1, ..., r} for r-vector bj > 0, j = 1,...,n.

 

Then: completely labeled facets of M  

 Nash equilibria of the r  n bimatrix game 

( [ ec(1) ... ec(n) ], [ B1 ... Bn ] )

where  Bj = bj / (1 + || bj ||1),    j = 1,...,n.



Path lengths for Abstract Sperner

• Linear in number of rooms.

• May be exponential in number of vertices:

 if rooms = facets of simplicial polytope,

path-following via pivoting.
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Example [Morris 1994]

c = 123456645231

111111000000 ... 000110110110
011111100000 000011110110
011110110000 000011011110
011011110000 000001111110
011011011000 000000111111
011001111000
011000111100
001100111100 In general: N = 2r,
001101101100
001111001100 path exponentially
001111000110
000111100110 long in r .



Open problems

� Is “Find a second room partitioning” in PPAD?

[ Direction at most possible when choosing 

missing vertex  w,  otherwise don't get opposite 

orientations of partitions at end of paths even for 

polytopes, e.g. octahedron. ]

� ...  PPA-complete?  [No such problem known.]




