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We use nice, but not always standard, terminology

set system (S, FFFFFFFFF ) : a finite set S

with a collection F of subsets of S

a set system is nice if :

F is closed under taking subsets, and

F covers all of S

G = (V G, EG) a graph, SSSSSSSSSG the collection of all stable sets

( sets containing no adjacent pairs of vertices )

then (V G, SG) is a nice set system
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Coverings

a covering of (S, F) :

a collection of sets from F whose union is S

covering number Cov(S, FFFFFFFFF ) :

the minimum number of elements in a covering

for a graph G : Cov(V G, SG) is just the chromatic number
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That’s easy, so let’s make it more complicated

the covering number is also the solution of the IP problem :

minimise
∑

F ∈F

xF

subject to
∑

F ∋ s

xF ≥ 1, for all s ∈ S

xF ∈ { 0, 1, 2, . . . }, for all F ∈ F
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The fractional version

removing the integrality condition :

minimise
∑

F ∈F

xF

subject to
∑

F ∋ s

xF ≥ 1, for all s ∈ S

xF ≥ 0, for all F ∈ F

gives the fractional covering number Covf(S, FFFFFFFFF )

and we obviously have : Covf(S, F) ≤ Cov(S, F)
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Rule 1 of Linear Programming : dualise

the dual LP problem of the fractional covering number is :

maximise
∑

s ∈ S

ys

subject to
∑

s ∈ F

ys ≤ 1, for all F ∈ F

ys ≥ 0, for all s ∈ S

this gives the fractional packing number Packf(S, FFFFFFFFF )

and by LP-duality : Packf(S, F) = Covf(S, F)
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The packing number

the integral version is the packing number Pack(S, FFFFFFFFF ) :

the maximum size |T | of a subset T of S so that

no two elements of T appear together in a set from F

i.e.: the maximum size |T | of some T ⊆ S so that

|T ∩ F | ≤ 1, for all F ∈ F

for a graph G : Pack(V G, SG) is just the clique number

the maximum size of a set of vertices U ⊆ V G so that

all pairs in U are adjacent
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The status so far

for any nice set system (S, F) we have

Pack(S, F) ≤ Packf(S, F) = Covf(S, F) ≤ Cov(S, F)

we will add one more parameter :

the circular covering number Covc(S, FFFFFFFFF )
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The circular covering number

map the elements of S to a circle so that :

for every unit interval [x, x + 1) along the circle

elements mapped into that interval form a set from F

s1

s2

s3,s4

circular covering number Covc(S, FFFFFFFFF ) :

minimum circumference of a circle for which this is possible
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Let’s put in in the right place - I

for a nice set system : Covc(S, F) ≤ Cov(S, F)

take a disjoint cover F 1, . . . , F k of (S, F)

put the elements of each F i together at unit distance

around a circle with circumference k :

all s ∈ F 1

all s ∈ F 2

gives a circular cover with circumference k
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Let’s put in in the right place - II

for a nice set system : Covf(S, F) ≤ Covc(S, F)

take a circular cover along a circle

s1

s2

s3,s4

“move” the unit interval with “unit speed” round the circle

for a set F that appears in the interval at some point :

denote by xF the “length of time” it appears
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Let’s put in in the right place - II

for a nice set system : Covf(S, F) ≤ Covc(S, F)

take a circular cover along some circle

for a set F that appears in the interval at some point :

denote by xF the “length of time” it appears

then for all s ∈ S :
∑

F ∋ s
xF = 1 s1

s2

s3,s4and
∑

F ∈F

xF = circumference

this gives a fractional cover with value the circumference
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Inequalities, inequalities, and more inequalities

so now we know :

Pack ≤ Packf = Covf ≤ Covc ≤ Cov

can we say for which nice set systems we have equality for

one of the inequalities ?

probably too hard

what about those that satisfy an equality

“through and through” ?

Pack ≤
Covf

Packf
≤ Covc ≤ Cov
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Through and through = induced

(S, F) a nice set system and T ⊆ S , then define :

FT = { F ∩ T | F ∈ F } = { F ∈ F | F ⊆ T }

(T , FT ) is again a nice set system

called an induced set system

for a graph G with U ⊆ V G :

(SG)U are the stable sets of the subgraph induced by U

Pack ≤
Covf

Packf
≤ Covc ≤ Cov
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Degrees of perfectness

a nice set system is (A = B)-perfect :

the system and all its induced systems satisfy A = B

note that we have six degrees of perfectness

by definition, perfect graphs are exactly those graphs G

for which (V G, SG) is (Pack = Cov)-perfect

that makes them perfect for all inequalities !

Pack ≤
Covf

Packf
≤ Covc ≤ Cov
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What about the other set systems ?

we know non-perfect graphs very well :

Strong Perfect Graph Theorem

G not a perfect graph ⇐⇒

G contains an induced copy :

of an odd cycle C2k+1 , k ≥ 2, or

of the complement C2k+1 of an odd cycle, k ≥ 2

Pack ≤
Covf

Packf
≤ Covc ≤ Cov
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What about other “graphical” set systems ?

for an odd cycle C2k+1 , k ≥ 2, it’s easy to check :

Pack(V C2k+1, SC2k+1) = 2

Covf(V C2k+1, SC2k+1) = Covc(V C2k+1, SC2k+1) = 2 +
1

k

Cov(V C2k+1, SC2k+1) = 3

similar things happen for

the complement C2k+1 of an odd cycle, k ≥ 2

Pack ≤
Covf

Packf
≤ Covc ≤ Cov
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Perfect graphs are very perfect

so :

a nice set system of the form (V G, SG) is

(Pack = Covf)-perfect, or (Pack = Covc)-perfect, or

(Pack = Cov)-perfect, or (Covf = Cov)-perfect, or

(Covc = Cov)-perfect

⇐⇒ G is perfect

problem :

prove this for (Covc = Cov)-perfectness,

without using the Strong Perfect Graph Theorem

Pack ≤
Covf

Packf
≤ Covc ≤ Cov
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And what about non-graphical set systems ?

suppose (S, F) is a nice set system such that

all minimal sets outside F have size 2

( smaller than 2 is not possible, as F covers S )

then form the graph G with V G = S by setting

s1s2 ∈ EG ⇐⇒ {s1, s2} /∈ F

easy to check : (S, F) = (V G, SG)

Pack ≤
Covf

Packf
≤ Covc ≤ Cov
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That’s that about non-graphical set systems !

(S, F) is a non-graphical nice set system ⇐⇒

there is a subset T ⊆ S with |T | = k ≥ 3 so that :

T /∈ F

but every proper subset of T is in F

for such a T , the induced set system (T , FT ) satisfies :

Pack(T , FT ) = 1

Covf(T , FT ) = Covc(T , FT ) = 1 +
1

k − 1
Cov(T , FT ) = 2

Pack ≤
Covf

Packf
≤ Covc ≤ Cov
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Perfect graphs are really, really perfect !

so :

a nice nice set system (S, F) is

(Pack = Covf)-perfect, or (Pack = Covc)-perfect, or

(Pack = Cov)-perfect, or (Covf = Cov)-perfect, or

(Covc = Cov)-perfect

⇐⇒

(S, F) = (V G, SG) for some perfect graph G

Pack ≤
Covf

Packf
≤ Covc ≤ Cov
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The bit that’s left to do

what nice set systems (S, F) are (Covf = Covc)-perfect ?

well . . .

stable sets of perfect graphs

stable sets of odd cycles or complements of odd cycles

loopless matroids ( vdH & Thomassé )

and a lot more

Covf ≤ Covc
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What the ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ is a loopless matroid ?

a set system (S, F) is a loopless matroid if

(S, F) is nice

for each F 1, F 2 ∈ F with |F 1| > |F 2| :

there is an s ∈ F 1 \ F 2 so that F 2 ∪ {s} ∈ F

by the way :

a stable set system (V G, SG) is a loopless matroid

⇐⇒ G is the disjoint union of cliques

Covf ≤ Covc
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This looks likes it’s going to be complicated

so nice set systems that are (Covf = Covc)-perfect include

stable sets of perfect graphs

stable sets of odd cycles or complements of odd cycles

loopless matroids

disjoint unions of the above

and probably a lot more . . .

question :

can we characterise (Covf = Covc)-perfect set systems ?

Covf ≤ Covc
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