# Geometric Representations of Graphs







# Bipartite planar graphs: representation by contacts of segments



vertices → segments edges → contact points same topology

## Bipartite planar graphs: Contacts of segments → 2 trees on 2 pages



Let G be a planar graph such that for any subgraph H of G (with n(H) > 1):

- $m(H) \le 2*n(H) 2$  then G is representable by a contact family of pseudo-segments.
- $m(H) \le 2*n(H) 3$  then G is representable by a contact family of segments.



# Planar graphs: Representation by contacts of triangles → contacts of **T**



Exponential size Linear size

### Vertex packing algorithm →

- straight line drawing on a linear size grid
- representation by contacts of triangles



## Incidence graph of a graph / a contact system



# Planar Linear Hypergraphs: Representation by contacts of segments and/or triangles (Vertices are represented by segments or triangles Edged by contact points)



H linear ⇔ 2 edges share at most 1 vertex

# Planar Linear Hypergraphs: Representation by contacts of segments and/or triangles (Edges are represented by segments or triangles Vertices by contact points)



# Our Hypergraph H (linear, planar)



# Incidence graph **R** of a planar linear hypergraph **H**: planar bipartite graph without cycle of lenght 4

(white vertex → triangle/segment black vertex → contact point)







**H** planar ⇔ R planar

Incidence graph



3-Orientation



Splitting some vertices



Symplifying  $\rightarrow$  (2, $\leq$ 1) Orientation



### Constuction of a (2,≤ 1)-orientation:

- white vertices will get exactly 2 incoming edges
- black vertices will get at most 1 incoming edge

#### Make all faces of length 6



Add a vertex r incident to the black vertices of the external face

#### Double all edges





#### λ-orientation of a multigraph

#### Lemma:

Let G be a multigraph, let  $\lambda$  be a mapping from V(G) to N.

Then there exists an orientation of G such that each vertex  $v \in V(G)$  has indegree bounded by  $\lambda(v)$  if and only if

$$\forall A \subseteq V(G) : |E(G[A])| \le \sum_{v \in A} \lambda(v)$$

Moreover, this orientation is such that each vertex v has indegree  $\lambda(v)$  if and only if we also have the global condition

$$|E(G)| = \sum_{v \in V(G)} \lambda(v).$$

#### 3-orient the graph

We define  $\lambda(v)=3$  for the original vertices and

 $\lambda(r)=0$  for the extra vertex.

Using Euler formula, the previous lemma applies.

## Types of Vertices



# Split white vertices of type 2



# Finally we get a (2,≤1)-Orientation



# (2,≤1)-Orientation



White: indegree = 2 Black: indegree ≤ 1

## **Contacts of Pseudo-Segments**



# Stretching the Pseudo-Segments









# Eventually. . .





Thank you for your attention...