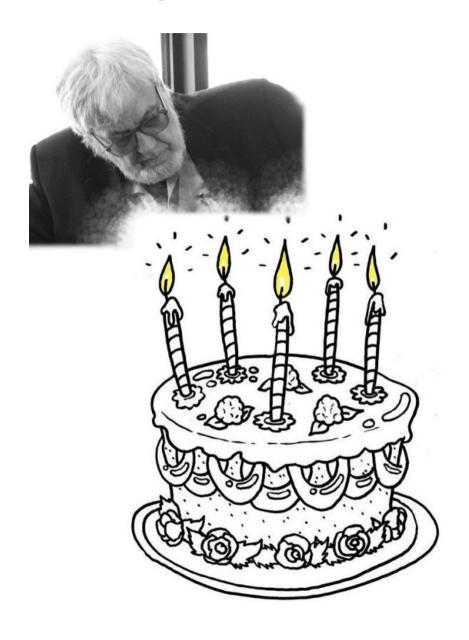
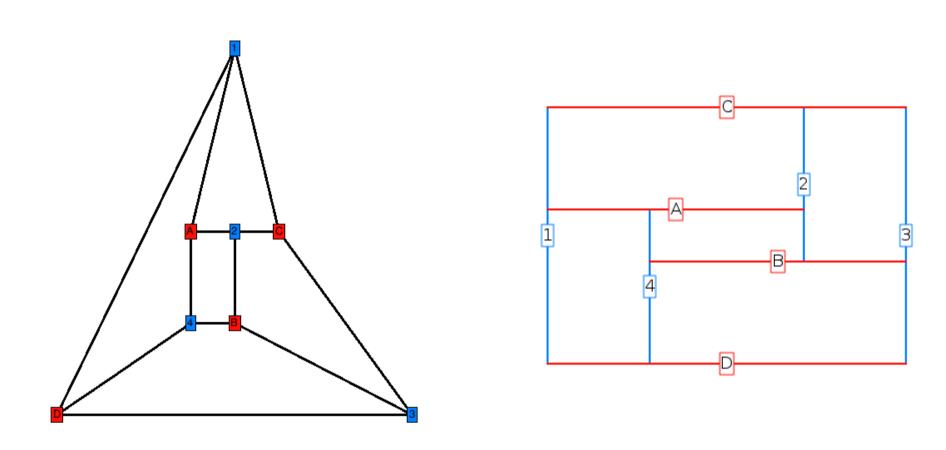
Geometric Representations of Graphs

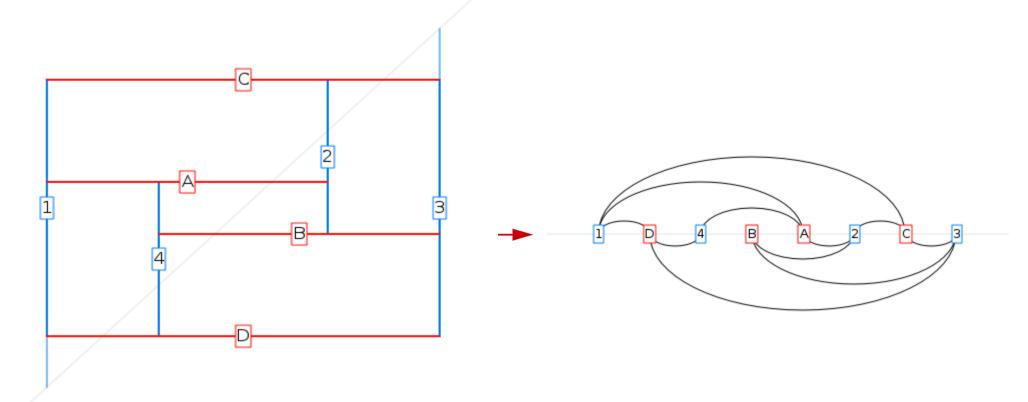


Bipartite planar graphs: representation by contacts of segments



vertices → segments edges → contact points same topology

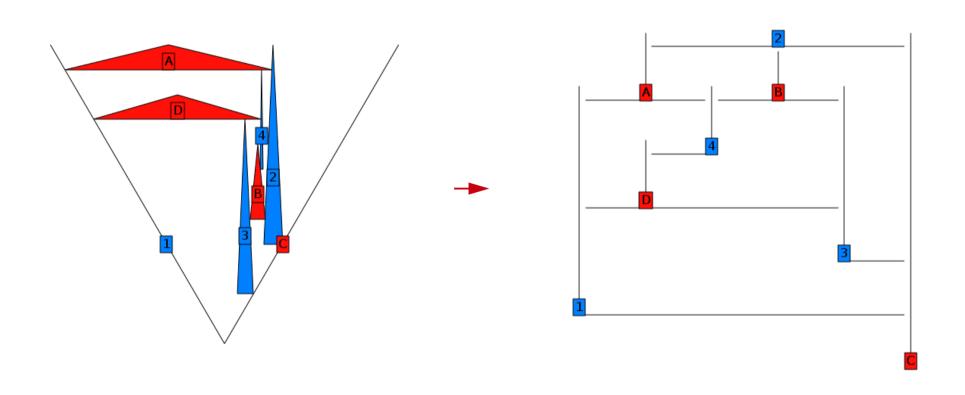
Bipartite planar graphs: Contacts of segments → 2 trees on 2 pages



Let G be a planar graph such that for any subgraph H of G (with n(H) > 1):

- $m(H) \le 2*n(H) 2$ then G is representable by a contact family of pseudo-segments.
- $m(H) \le 2*n(H) 3$ then G is representable by a contact family of segments.

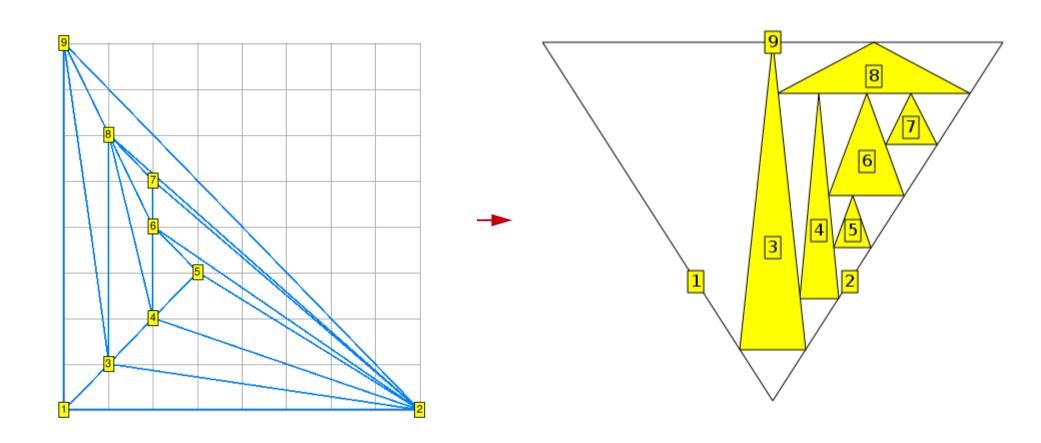
Planar graphs: Representation by contacts of triangles → contacts of **T**



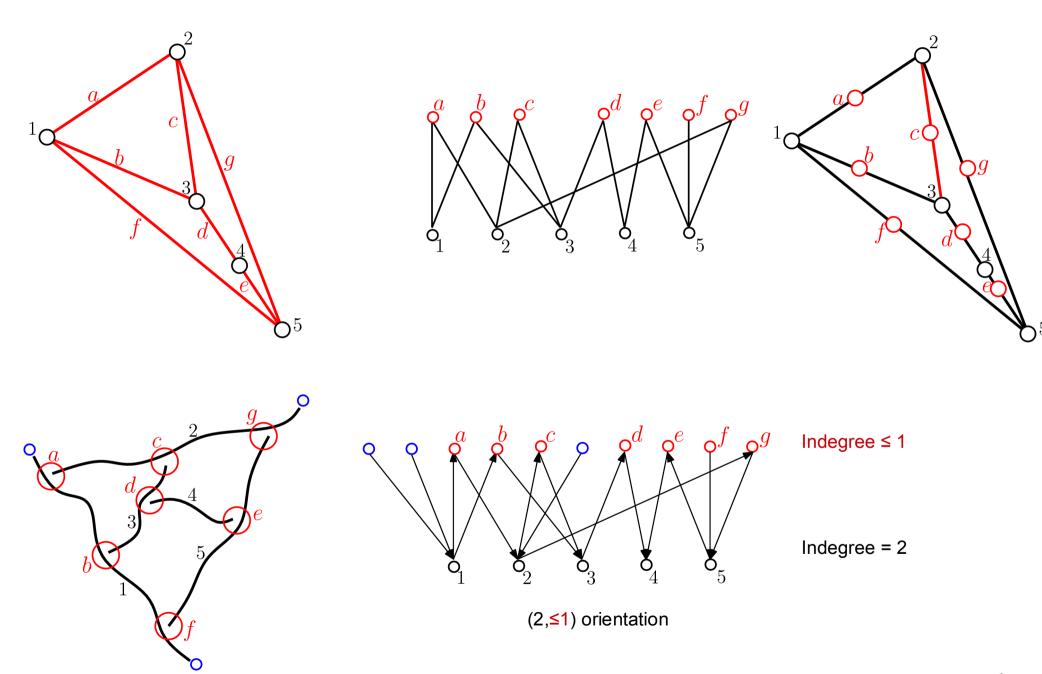
Exponential size Linear size

Vertex packing algorithm →

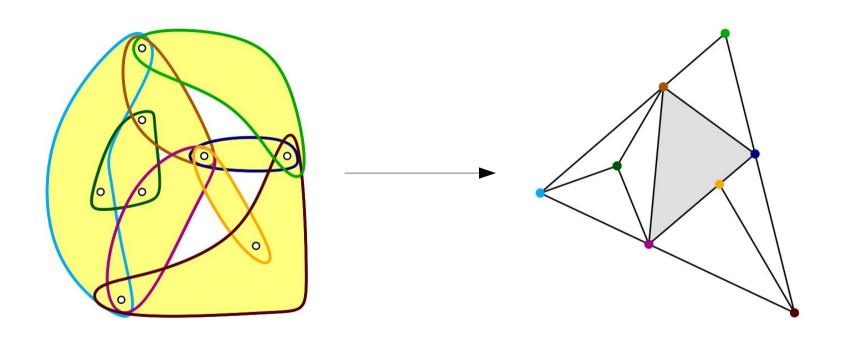
- straight line drawing on a linear size grid
- representation by contacts of triangles



Incidence graph of a graph / a contact system

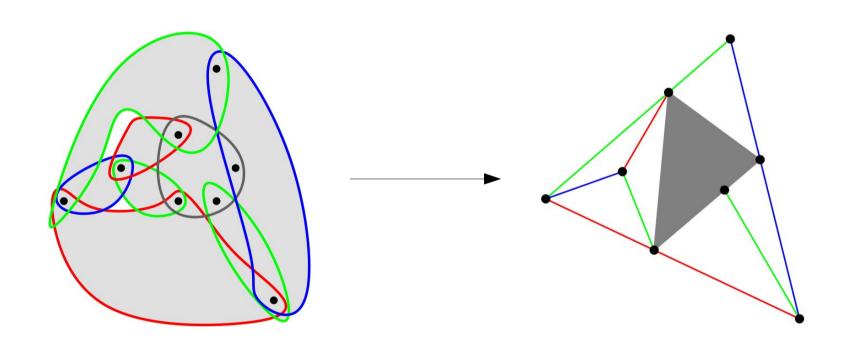


Planar Linear Hypergraphs: Representation by contacts of segments and/or triangles (Vertices are represented by segments or triangles Edged by contact points)

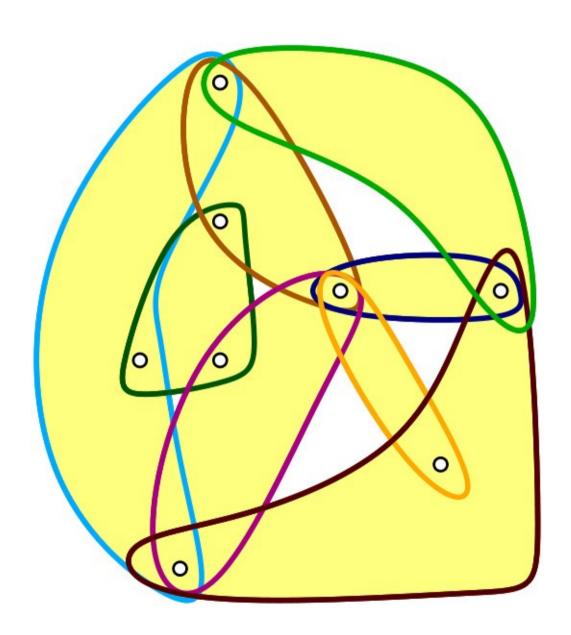


H linear ⇔ 2 edges share at most 1 vertex

Planar Linear Hypergraphs: Representation by contacts of segments and/or triangles (Edges are represented by segments or triangles Vertices by contact points)

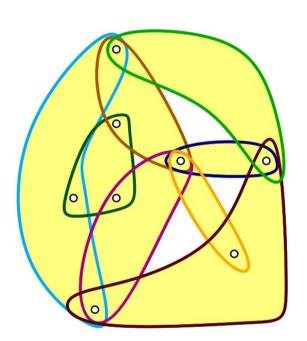


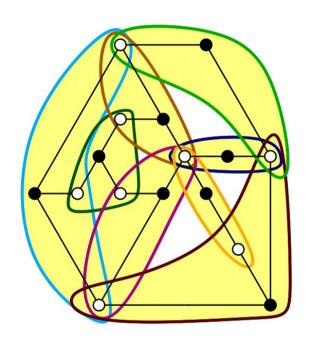
Our Hypergraph H (linear, planar)

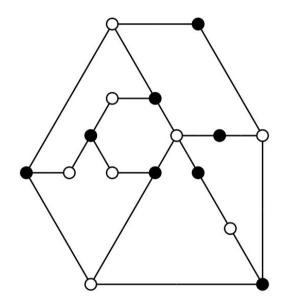


Incidence graph **R** of a planar linear hypergraph **H**: planar bipartite graph without cycle of lenght 4

(white vertex → triangle/segment black vertex → contact point)

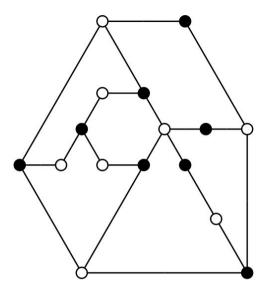




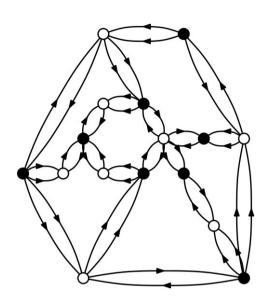


H planar ⇔ R planar

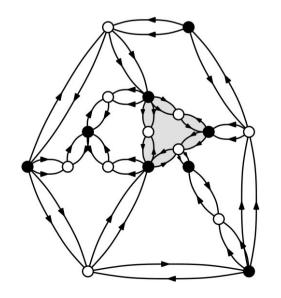
Incidence graph



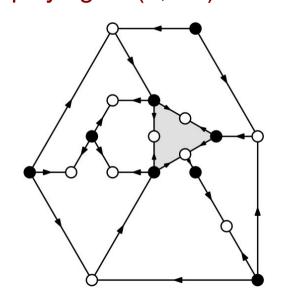
3-Orientation



Splitting some vertices



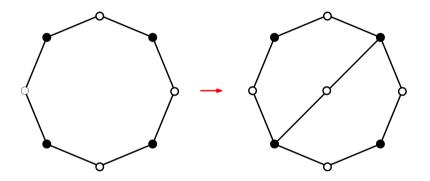
Symplifying \rightarrow (2, \leq 1) Orientation



Constuction of a (2,≤ 1)-orientation:

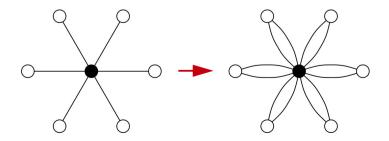
- white vertices will get exactly 2 incoming edges
- black vertices will get at most 1 incoming edge

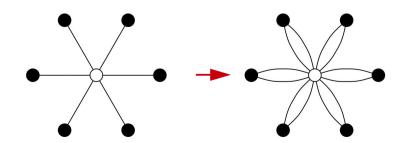
Make all faces of length 6



Add a vertex r incident to the black vertices of the external face

Double all edges





λ-orientation of a multigraph

Lemma:

Let G be a multigraph, let λ be a mapping from V(G) to N.

Then there exists an orientation of G such that each vertex $v \in V(G)$ has indegree bounded by $\lambda(v)$ if and only if

$$\forall A \subseteq V(G) : |E(G[A])| \le \sum_{v \in A} \lambda(v)$$

Moreover, this orientation is such that each vertex v has indegree $\lambda(v)$ if and only if we also have the global condition

$$|E(G)| = \sum_{v \in V(G)} \lambda(v).$$

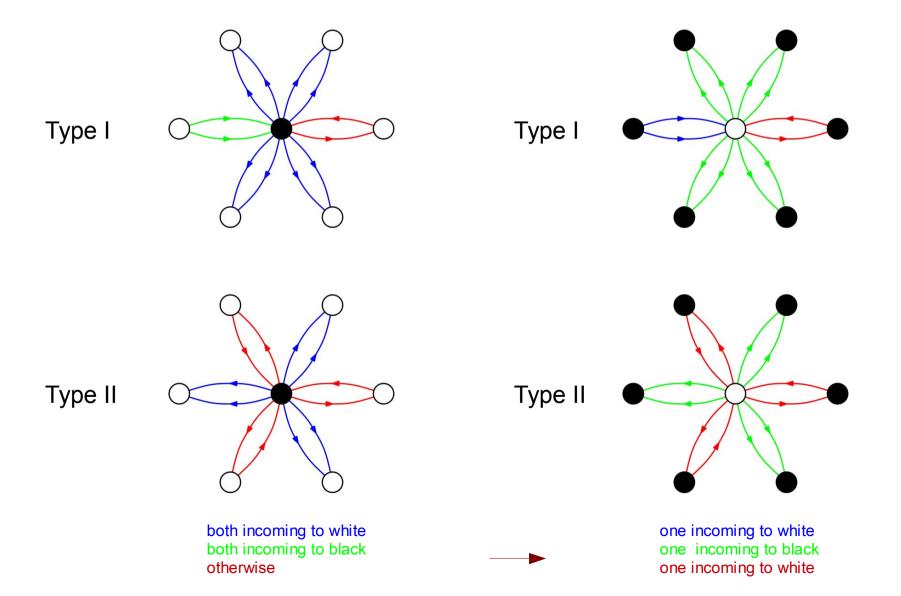
3-orient the graph

We define $\lambda(v)=3$ for the original vertices and

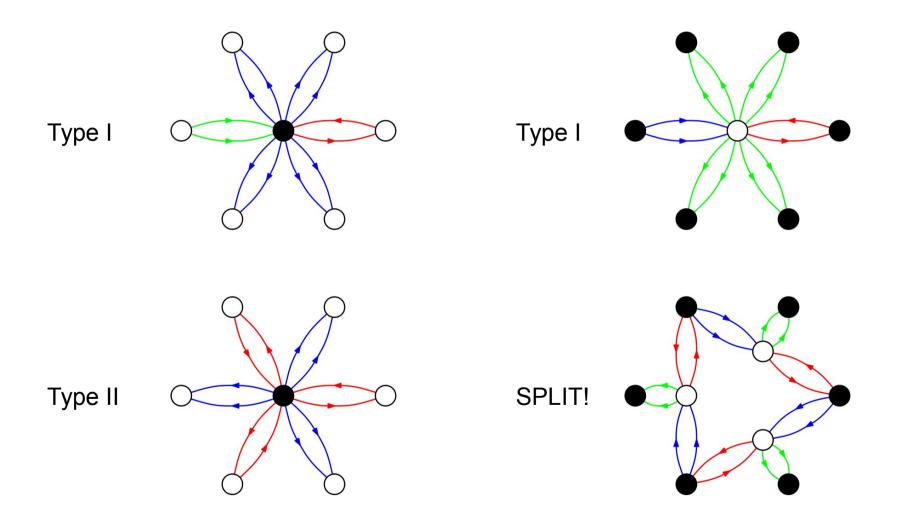
 $\lambda(r)=0$ for the extra vertex.

Using Euler formula, the previous lemma applies.

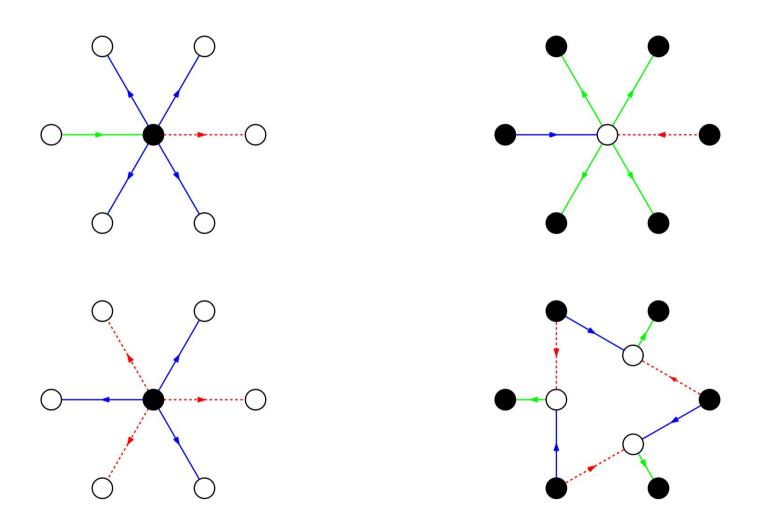
Types of Vertices



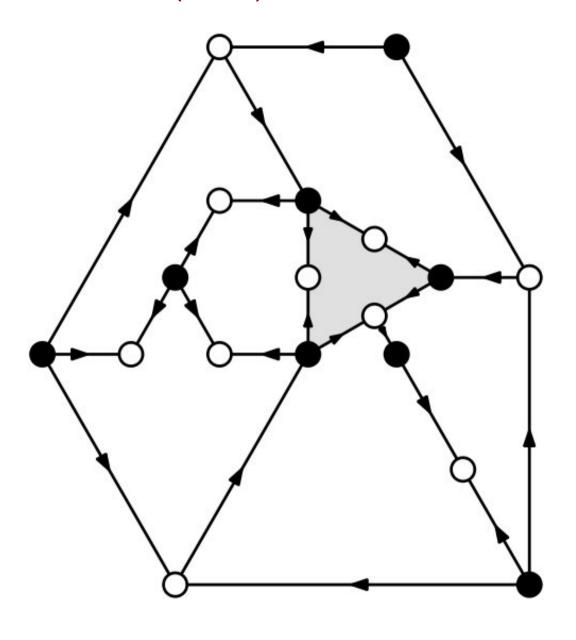
Split white vertices of type 2



Finally we get a (2,≤1)-Orientation

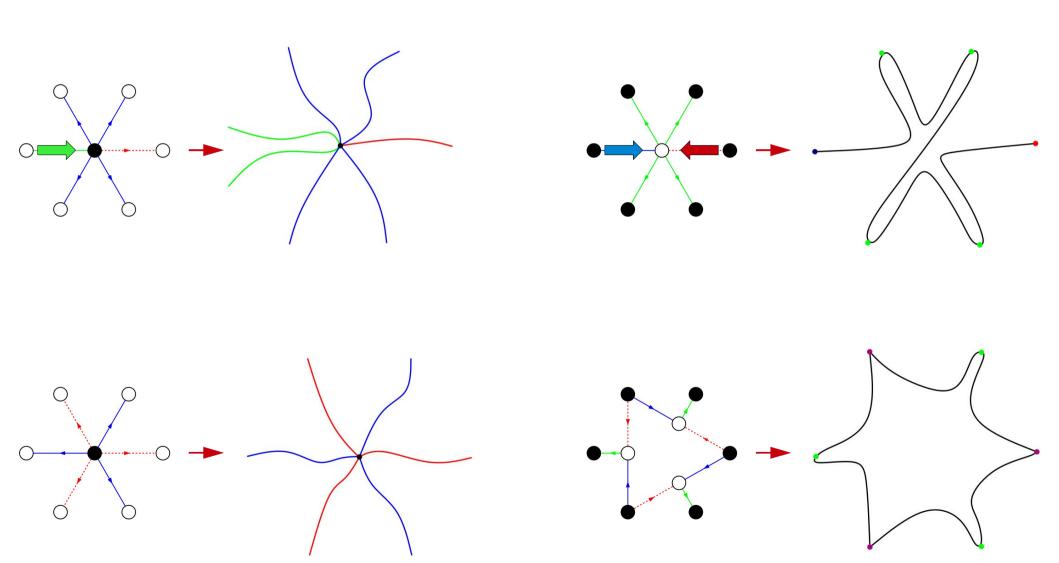


(2,≤1)-Orientation

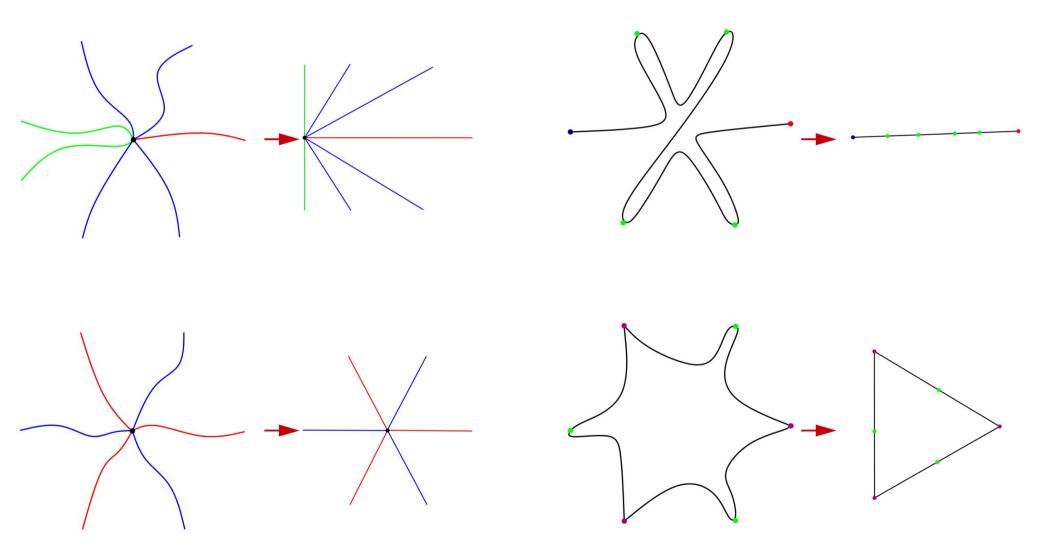


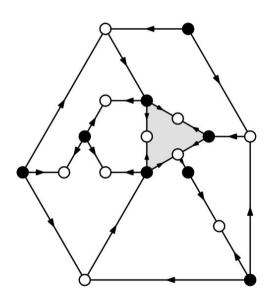
White: indegree = 2 Black: indegree ≤ 1

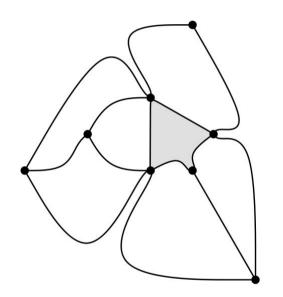
Contacts of Pseudo-Segments

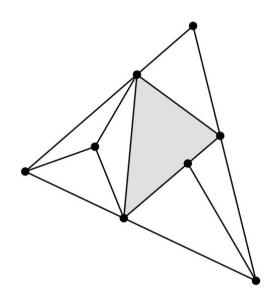


Stretching the Pseudo-Segments

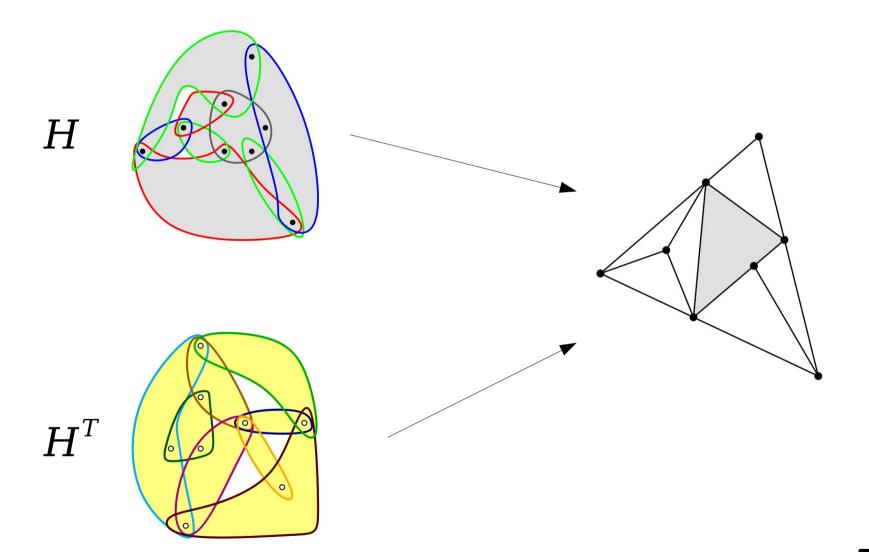








Eventually. . .



Thank you for your attention...