

Lovász and Lehman Theorems on Clutters a common generalization

Grigor GASPARYAN, Myriam PREISSMANN, András SEBŐ

Some definitions

$$V = \{1, 2, ..., n\}$$

A set \mathcal{A} of subsets of V is a *clutter* if

We associate to \mathcal{A}

a matrix A of size m x n : the rows are the characteristic vectors of the elements of \mathcal{A}

the antiblocking polyhedron $P_{\leq}(\mathcal{A}) = \{x \in \mathbb{R}^n; Ax \leq 1 \text{ and } x \geq 0\}$

the **antiblocker** $\mathbf{b}_{\leq}(\mathcal{A}) = \{B; B \subseteq V \text{ maximal such that } | B \cap A | \leq 1 \ \forall A \in \mathcal{A} \}$: a clutter on V

A particular case

$$G = (V,E)$$

Clutter $A(G) = \{maximal cliques of G\}$

b_≤(\mathcal{A} (G)) = {B; B⊆V maximal such that $|B \cap K| \le 1 \ \forall K \in \mathcal{A}$ } = {maximal stable set of G}

Theorem (Lovász 1972):

 $P_{\leq}(\mathcal{A}(G)) = \{x \in \mathbb{R}^n; Ax \leq 1 \text{ and } x \geq 0\} = b_{\leq}(\mathcal{A}) \text{ iff } G \text{ is perfect.}$

So if G is minimal imperfect then $P_{\leq}(\mathcal{A}(G))$ has some non integer vertex, but $P_{\leq}(\mathcal{A}(G'))$ any proper induced subgraph G' of G.

Lovász Theorem and Padberg Corollaries

Theorem: Let G=(V,E) be a minimal imperfect graph,

- ω =maximum size of clique
- α =maximum size of a stable set

then G

- has n= $\alpha \omega$ +1 vertices,
- contains exactly n ω-cliques K₁, ..., K_n and n α-stable sets S₁, ..., S_n and K_i∩S_i=1 if i≠j and K_i∩S_i=0,
- every vertex v of G belongs to exactly ω ω -cliques $K_{i1}, K_{i2}, ..., K_{i\omega}$, α α -stable sets $S_{i1}, S_{i2}, ..., S_{i\alpha}$
 - and S_{i1} , S_{i2} , ..., $S_{i\omega}$ is a partition of V\v $K_{i1}, K_{i2}, ..., K_{i\alpha} \text{ is a partition of V} \lor v$

Lovász Theorem and Padberg Corollaries

another formulation

Theorem: Let

 A_G ={maximal cliques of a minimal imperfect graph G} then

- $P_{\leq}(\mathcal{A}_{G})$ is non integer, $(1/\omega, ..., 1/\omega)$ is its unique fractional vertex, and $P_{\leq}(\mathcal{A}_{G})$ is integer for every proper induced subgraph G' of G,

and there exists

- X nxn matrix, rows =char. vectors of elements of \mathcal{A}_{G}
- Y nxn matrix columns=char. vectors of elements of $b_{\leq}(\mathcal{A}_G)$

such that X and Y are uniform and XY=YX=J-I

J = nxn all one matrix, I= nxn identity matrix, uniform = same number of 1 in each row and column, ω =max size of a clique, α = max size of a stable set.

Some other definitions

Given a clutter A on V

the matrix A of size m x n : rows = the characteristic vectors of the elements of \mathcal{A}

The blocking polyhedron $P_{\geq}(A) = \{x \in \mathbb{R}^n; Ax \geq 1 \text{ and } x \geq 0\}$

the blocker

b_>(\mathcal{A}) = {B; B⊆V maximal such that $|B \cap A| \ge 1 \forall A \in \mathcal{A}$ }: a clutter

<u>Theorem</u> (Edmonds-Fulkerson1970) : $b_{\geq}(b_{\geq}(A))$.

 \mathcal{A} is said to be **ideal** if $P_{\geq}(\mathcal{A}) = b_{\geq}(\mathcal{A})$

More definitions

Let x in Rⁿ, i in V, P a polyhedron in Rⁿ

The **projection** of x parallel to the ith coordinate is

$$\mathbf{x}^{i} = (\mathbf{x}_{1}, \dots, \mathbf{x}_{i-1}, \mathbf{x}_{i+1}, \dots, \mathbf{x}_{n})$$

Deletion: $P = \{x^i; x \in P\}$

Contraction: $P/i = \{x^i; x \in P \text{ and } x_i = 0\}$

 \mathcal{A} is minimally non ideal if

 $P_{\geq}(\mathcal{A}) = \{x \in \mathbb{R}^n; Ax \geq 1\}$ has at least one non-integer

vertex but ∀i∈V all vertices of P\i and P/i are integer

Some minimally non-ideal clutters

The degenerative projective plane clutter $\mathcal{F}_n(n\geq 3)$:

$$\mathcal{F}_n = \{1, 2, ..., n-1\}, \{1,n\}, \{2,n\}, ...\{n-1,n\}\}$$

 $P_{>}(\mathcal{F}_n)$ has the fractional vertex

(1/n-1, 1/n-1, ..., n-2/n-1)

Lehman Theorem

Theorem (Lehman 1990)

Let A be a minimally non ideal clutter,

either
$$\mathcal{A} = \mathcal{F}_n$$

or there exists

- **nxn** matrix X, rows = char. vectors of elements of \mathcal{A}
- nxn matrix Y columns=char. vectors of elements of $\mathcal{B}_{\geq}(\mathcal{A})$

such that X and Y are uniform and

XY=YX=J +(
$$\mu$$
-1)I for some μ ≥2

Our theorem

Let $\mathcal{A}_{<}$ and $\mathcal{A}_{>}$ two clutters

and P:= $P_{\leq}(A_{\leq}) \cap P_{\geq}(A_{\geq})$ be minimally non integer, then

either $\mathcal{A}_{\leq} = \emptyset$, $\mathcal{A} = \mathcal{F}_n$ and w=(1/n-1, 1/n-1, ..., n-2/n-1) isa unique fractionnal vertex of P

Or one or both of the following hold:

 \mathcal{A}_{\leq} is as in the case of Lovasz theorem and $(1/r_{\leq}, 1/r_{\leq}, ..., 1/r_{\leq})$ is a vertex of P

 \mathcal{A}_{\geq} is as in the case of Lehman theorem and $(1/r_{\geq}, 1/r_{\geq}, ..., 1/r_{\geq})$

One key element of the proofs

The commutativity Lemma:

If X and Y are two nxn (0,1) matrices
and XY are such that all non diagonal elements are
equal to 1 and the diagonal elements are either all
equal to 0 or all >1 then

X uniform ⇒ Y is uniform too, all diagonal elements are equal and XY=YX

Happy birthday Jack