# Simplifying with Extended Formulations

Volker Kaibel

Otto-von-Guericke Universität Magdeburg

Pretty Structure, Existential Polytime and Polyhedral Combinatorics Paris, April 7–9, 2009

#### What is an extended formulation?

#### What is an extended formulation?



## What is an orbitope?

# What is an orbitope?



## What makes up the orbits?

| 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 |
|---|---|---|---|---|---|---|---|---|
| 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 |
| 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |



# What are the representatives?

| 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |



# Why?

► Symmetry breaking in certain integer programs



## Why?

► Symmetry breaking in certain integer programs



Nice polytopes





▶ Special Knapsack:
 binary expansion first column
 ≥
 binary expansion second column



▶ Special Knapsack:
 binary expansion first column
 ≥
 binary expansion second column



- ▶ Special Knapsack:
  binary expansion first column
  ≥
  binary expansion second column
- ▶ Optimization in polynomial time

## What polymake says















#### Theorem (K & Loos 07)

The exponentially many GBE inequalities and trivial inequalities form ideal descriptions of orbisacks.

| 1 | 1 |
|---|---|
| 0 | 0 |
| 1 | 1 |
| 1 | 0 |
| 0 | 1 |
| 1 | 1 |
| 1 | 0 |
| 0 | 1 |

| 0 | 0 | 0 | 1 |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 1 | 1 | 0 | 0 |
| 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 |

| <b>—</b> | 1 |
|----------|---|
| 0        | 0 |
| 1        | 1 |
| 1        | 0 |
| 0        | 1 |
| 1        | 1 |
| 1        | 0 |
| 0        | 1 |

| 0 | 0 | 0 | 1 |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 1 | 1 | 0 | 0 |
| 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 |

| 1 | 1 |
|---|---|
| 0 | 0 |
| 1 | 1 |
| 1 | 0 |
| 0 | 1 |
| 1 | 1 |
| 1 | 0 |
| 0 | 1 |

| 0        | 0        | 0 | 1 |
|----------|----------|---|---|
| 0        | 0        | 0 | 0 |
| 0        | 0        | 0 | 1 |
| 0        | 0        | 1 | 0 |
| 0        | 1        | 0 | 0 |
| <b>—</b> | <b>—</b> | 0 | 0 |
| 1        | 0        | 0 | 0 |
| 0        | 1        | 0 | 0 |

| 1 | 1        | 0 |  |
|---|----------|---|--|
| 0 | 0        | 0 |  |
| 1 | 1        | 0 |  |
| 1 | 0        | 0 |  |
| 0 | 1        | 0 |  |
| 1 | <b>—</b> | 1 |  |
| 1 | 0        | 1 |  |
| 0 | 1        | 0 |  |

| 0 | 0        | 0 | 1 |
|---|----------|---|---|
| 0 | 0        | 0 | 0 |
| 0 | 0        | 0 | 1 |
| 0 | 0        | 1 | 0 |
| 0 | 1        | 0 | 0 |
| Τ | <b>—</b> | 0 | 0 |
| 1 | 0        | 0 | 0 |
| 0 | 1        | 0 | 0 |

| 1 | 1 |
|---|---|
| 0 | 0 |
| 1 | 1 |
| 1 | 0 |
| 0 | 1 |
| 1 | 1 |
| 1 | 0 |
| 0 | 1 |

| 0 | 0 | 0 | 1 |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 1 | 1 | 0 | 0 |
| 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 |

| 1 | 1 |
|---|---|
| 0 | 0 |
| 1 | 1 |
| 1 | 0 |
| 0 | 1 |
| 1 | 1 |
| 1 | 0 |
| 0 | 1 |

| 0 | 0 | 0 | 1 |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 1 | ┰ | 0 | 0 |
| 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 |

| 1 | 1        |  |
|---|----------|--|
| 0 | 0        |  |
| 1 | 1        |  |
| 1 | 0        |  |
| 0 | <b>—</b> |  |
| 1 | <b>—</b> |  |
| 1 | 0        |  |
| 0 | 1        |  |

| 0 | 0 | 0 | 1 |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 1 | Τ | 0 | 0 |
| 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 |

| 0 | 0 | 0 | 1 |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 1 | 1 | 0 | 0 |
| 1 | 0 | 0 | 0 |
|   |   |   |   |









## Extended formulation for orbisacks



#### Theorem (K & Loos 08)

These inequalities (and bounds) yield extended formulations for Orbisacks with:

- ▶ 4p variables
- ▶ 3p constraints

#### Extended formulation for orbisacks



#### Theorem (K & Loos 08)

These inequalities (and bounds) yield extended formulations for Orbisacks with:

- ▶ 4p variables
- ▶ 3p constraints
- Constraint matrix is totally unimodular.

#### Extended formulation for orbisacks



#### Theorem (K & Loos 08)

These inequalities (and bounds) yield extended formulations for Orbisacks with:

- ▶ 4p variables
- ▶ 3p constraints
- Constraint matrix is totally unimodular.
- ► Projections of integer points satisfying the formulation are the orbisack vertices.

#### General full orbitopes

Convex hulls of 0/1-matrices with lexicographically sorted columns (non-increasing).

| 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |

#### General full orbitopes

Convex hulls of 0/1-matrices with lexicographically sorted columns (non-increasing).

| 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |

➤ Optimization in polynomial time (K & Loos 08)

# What polymake says



#### For instance



#### Extended formulation



#### Theorem (K & Loos 08)

Compact extended formulation for full orbitopes.

▶ Based on paths in a directed hypergraph.



#### Extended formulation



#### Theorem (K & Loos 08)

Compact extended formulation for full orbitopes.

▶ Based on paths in a directed hypergraph.



► KIPP MARTIN, RARDIN, CAMPBELL 90



# Packing-/partitioning orbitopes

$$\mathsf{O}^{\leq}_{p,q}$$
 and  $\mathsf{O}^{=}_{p,q}$ 

Convex hull of all 0/1-matrices with at most/exactly one 1 per row and lexicographically sorted columns.

| 0 |   |   |   |   |   |
|---|---|---|---|---|---|
| 1 | 0 |   |   |   |   |
| 0 | 1 | 0 |   |   |   |
| 0 | 0 | 0 | 0 |   |   |
| 1 | 0 | 0 | 0 | 0 |   |
| 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 |

| 1 |   |   |   |   |   |
|---|---|---|---|---|---|
| 1 | 0 |   |   |   |   |
| 0 | 1 | 0 |   |   |   |
| 0 | 1 | 0 | 0 |   |   |
| 1 | 0 | 0 | 0 | 0 |   |
| 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 |

## What polymake says



#### Some facts

 $lackbox{O}_{p,q}^{=}$  is a face of  $O_{p,q}^{\leq}$ 

#### Some facts

- ▶  $O_{p,q}^{=}$  is a face of  $O_{p,q}^{\leq}$
- ► Complete description with exponentially many shifted column inequalities (K & Pfetsch 05)











x: node variables (matrix entries)



- x: node variables (matrix entries)
- ▶ y: arc variables



- x: node variables (matrix entries)
- ▶ y: arc variables
- ▶ feasible flow: s-t-flow of value one



- x: node variables (matrix entries)
- ▶ y: arc variables
- ▶ feasible flow: s-t-flow of value one
- ► (Matrix cannot be recovered from *s-t*-path.)

#### The path formulation



#### Theorem (Faenza & K 08)

The convex hull of the path-extensions (x, y) of the vertices x of  $O_{p,q}^{\leq}$  is the polytope P described by

1. the flow constraints on y and

#### The path formulation



#### Theorem (Faenza & K 08)

The convex hull of the path-extensions (x, y) of the vertices x of  $O_{p,q}^{\leq}$  is the polytope P described by

- 1. the flow constraints on y and
- 2.







► For objective function  $\langle c, (x, y) \rangle$  modify c to  $\tilde{c}$ :



▶ For each  $(x,y) \in P$ :  $\langle c, (x,y) \rangle \leq \langle \tilde{c}, (\mathbf{0},y) \rangle$ 

▶ For objective function  $\langle c, (x, y) \rangle$  modify c to  $\tilde{c}$ :



▶ For each  $(x,y) \in P$ :  $\langle c, (x,y) \rangle \leq \langle \tilde{c}, (\mathbf{0},y) \rangle$ 

▶ For objective function  $\langle c, (x, y) \rangle$  modify c to  $\tilde{c}$ :



▶ For each  $(x,y) \in P$ :  $\langle c, (x,y) \rangle \leq \langle \tilde{c}, (\mathbf{0},y) \rangle$ 



- ▶ For each  $(x,y) \in P$ :  $\langle c, (x,y) \rangle \leq \langle \tilde{c}, (\mathbf{0},y) \rangle$  **△**
- ► For each *s*-*t*-path *y* there is a 0/1 *x* with  $(x,y) \in P$  and  $\langle c, (x,y) \rangle = \langle \tilde{c}, (\mathbf{0},y) \rangle$



- ▶ For each  $(x,y) \in P$ :  $\langle c, (x,y) \rangle \leq \langle \tilde{c}, (\mathbf{0},y) \rangle$
- ► For each *s*-*t*-path *y* there is a 0/1 *x* with  $(x,y) \in P$  and  $\langle c, (x,y) \rangle = \langle \tilde{c}, (\mathbf{0},y) \rangle$
- ► Thus, *P* is integral.



- ► For each  $(x,y) \in P$ :  $\langle c, (x,y) \rangle \leq \langle \tilde{c}, (\mathbf{0},y) \rangle$
- ► For each *s*-*t*-path *y* there is a 0/1 *x* with  $(x,y) \in P$  and  $\langle c,(x,y) \rangle = \langle \tilde{c},(\mathbf{0},y) \rangle$
- ► Thus, *P* is integral.
- ► (From this, the theorem follows easily.)

#### A linear transformation



#### A very compact formulation

# Theorem (Faenza & K 08) The following inequalities give an extended formulation for $O_{p,q}^{\leq}$ : $(\approx 2pq \text{ variables}, 4pq \text{ constraints}, 10pq \text{ nonzeroes})$

1. For  $x \ge \mathbf{0}$  with  $x(row_i) \le 1$  (for all i) define a canonical lifting  $\Lambda(x) = (x, y)$ .

- 1. For  $x \ge \mathbf{0}$  with  $x(\mathsf{row}_i) \le 1$  (for all i) define a canonical lifting  $\Lambda(x) = (x, y)$ .
- 2. Find inequalities for x that

- 1. For  $x \ge \mathbf{0}$  with  $x(\mathsf{row}_i) \le 1$  (for all i) define a canonical lifting  $\Lambda(x) = (x, y)$ .
- 2. Find inequalities for x that
  - guarantee  $\Lambda(x) \in P$  (i.e., y feasible flow and





- 1. For  $x \ge 0$  with  $x(row_i) \le 1$  (for all i) define a canonical lifting  $\Lambda(x) = (x, y)$ .
- 2. Find inequalities for x that
  - guarantee  $\Lambda(x) \in P$  (i.e., y feasible flow and



hold)

 $\blacktriangleright$  and are valid for  $O_{p,q}^{\leq}$ .



# Obtaining capacities from x

























#### **Canonical lifting** of x

Vector (x, y) with *the* right-most feasible flow y.















#### Extended formulations can ...





#### Extended formulations can ...



▶ ... be very simple



#### Extended formulations can . . .





- ▶ ... be very simple
- ▶ ... be easier to obtain

#### Extended formulations can . . .





- ▶ ... be very simple
- ▶ ... be easier to obtain
- ▶ ...shorten proofs

#### Extended formulations can ...





- ▶ ... be very simple
- ▶ ... be easier to obtain
- ▶ ...shorten proofs
- ▶ ... yield more insight

