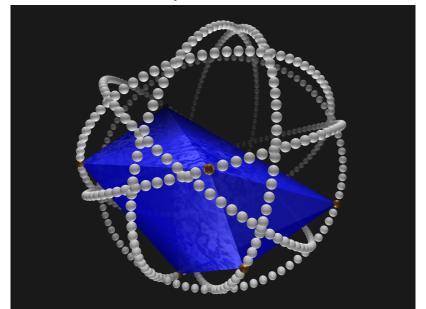
Simplifying with Extended Formulations

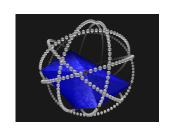
Volker Kaibel

Otto-von-Guericke Universität Magdeburg

Pretty Structure, Existential Polytime and Polyhedral Combinatorics Paris, April 7–9, 2009


What is an extended formulation?

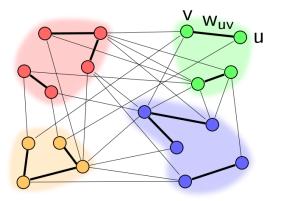
What is an extended formulation?


What is an orbitope?

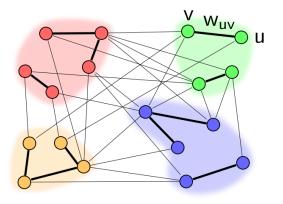
What is an orbitope?

What makes up the orbits?

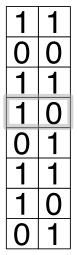
0	1	0	1	1	1	0	0	1
1	0	0	0	0	0	1	1	0
0	1	0	0	0	0	1	0	0
0	0	0	1	1	1	0	0	1
0	0	1	1	0	0	0	0	1
1	0	0	0	1	0	1	1	1
1	1	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0	1


What are the representatives?

1	1	1	1	1	0	0	0	0
0	0	0	0	0	1	1	1	0
1	1	0	0	0	0	0	0	0
0	0	1	1	1	1	0	0	0
0	0	1	1	0	0	0	0	1
1	0	1	0	1	0	1	1	0
0	1	0	1	0	0	1	0	0
0	0	1	0	0	0	0	0	0


Why?

► Symmetry breaking in certain integer programs

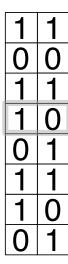



Why?

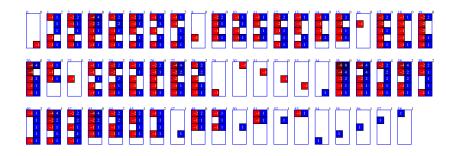
► Symmetry breaking in certain integer programs

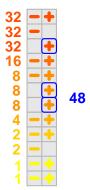


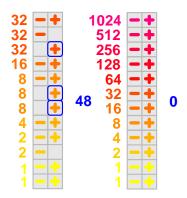
Nice polytopes

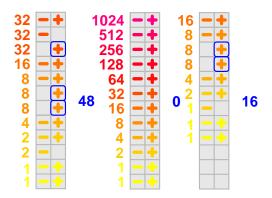


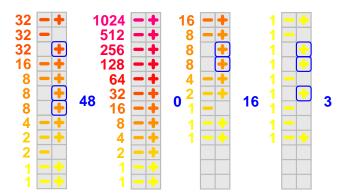
▶ Special Knapsack:
 binary expansion first column
 ≥
 binary expansion second column

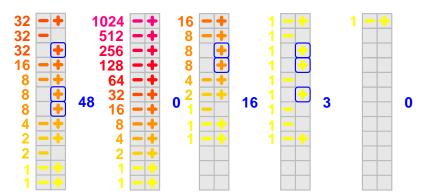


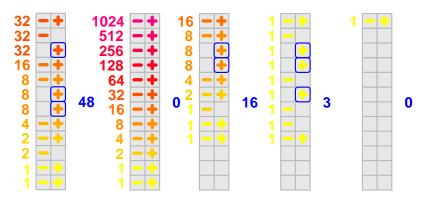

▶ Special Knapsack:
 binary expansion first column
 ≥
 binary expansion second column




- ▶ Special Knapsack:
 binary expansion first column
 ≥
 binary expansion second column
- ▶ Optimization in polynomial time


What polymake says





Theorem (K & Loos 07)

The exponentially many GBE inequalities and trivial inequalities form ideal descriptions of orbisacks.

1	1
0	0
1	1
1	0
0	1
1	1
1	0
0	1

0	0	0	1
0	0	0	0
0	0	0	1
0	0	1	0
0	1	0	0
1	1	0	0
1	0	0	0
0	1	0	0

—	1
0	0
1	1
1	0
0	1
1	1
1	0
0	1

0	0	0	1
0	0	0	0
0	0	0	1
0	0	1	0
0	1	0	0
1	1	0	0
1	0	0	0
0	1	0	0

1	1
0	0
1	1
1	0
0	1
1	1
1	0
0	1

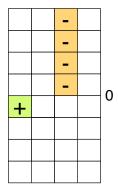
0	0	0	1
0	0	0	0
0	0	0	1
0	0	1	0
0	1	0	0
—	—	0	0
1	0	0	0
0	1	0	0

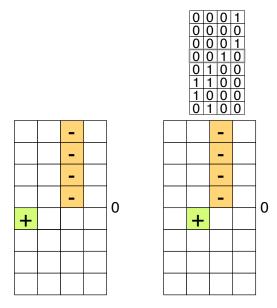
1	1	0	
0	0	0	
1	1	0	
1	0	0	
0	1	0	
1	—	1	
1	0	1	
0	1	0	

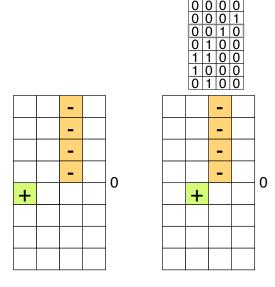
0	0	0	1
0	0	0	0
0	0	0	1
0	0	1	0
0	1	0	0
Τ	—	0	0
1	0	0	0
0	1	0	0

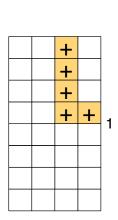
1	1
0	0
1	1
1	0
0	1
1	1
1	0
0	1

0	0	0	1
0	0	0	0
0	0	0	1
0	0	1	0
0	1	0	0
1	1	0	0
1	0	0	0
0	1	0	0


1	1
0	0
1	1
1	0
0	1
1	1
1	0
0	1


0	0	0	1
0	0	0	0
0	0	0	1
0	0	1	0
0	1	0	0
1	┰	0	0
1	0	0	0
0	1	0	0


1	1	
0	0	
1	1	
1	0	
0	—	
1	—	
1	0	
0	1	


0	0	0	1
0	0	0	0
0	0	0	1
0	0	1	0
0	1	0	0
1	Τ	0	0
1	0	0	0
0	1	0	0

0	0	0	1
0	0	0	0
0	0	0	1
0	0	1	0
0	1	0	0
1	1	0	0
1	0	0	0

Extended formulation for orbisacks

Theorem (K & Loos 08)

These inequalities (and bounds) yield extended formulations for Orbisacks with:

- ▶ 4p variables
- ▶ 3p constraints

Extended formulation for orbisacks

Theorem (K & Loos 08)

These inequalities (and bounds) yield extended formulations for Orbisacks with:

- ▶ 4p variables
- ▶ 3p constraints
- Constraint matrix is totally unimodular.

Extended formulation for orbisacks

Theorem (K & Loos 08)

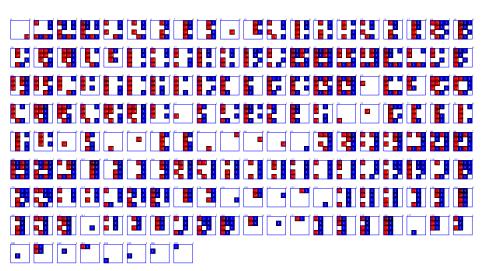
These inequalities (and bounds) yield extended formulations for Orbisacks with:

- ▶ 4p variables
- ▶ 3p constraints
- Constraint matrix is totally unimodular.
- ► Projections of integer points satisfying the formulation are the orbisack vertices.

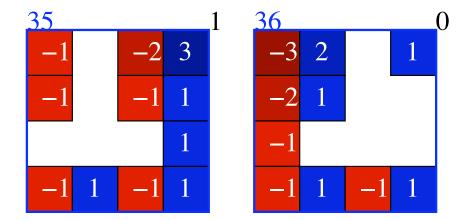
General full orbitopes

Convex hulls of 0/1-matrices with lexicographically sorted columns (non-increasing).

1	1	1	1	1	0	0	0	0
0	0	0	0	0	1	1	1	0
1	1	0	0	0	0	0	0	0
0	0	1	1	1	1	0	0	0
0	0	1	1	0	0	0	0	1
1	0	1	0	1	0	1	1	0
0	1	0	1	0	0	1	0	0
0	0	1	0	0	0	0	0	0


General full orbitopes

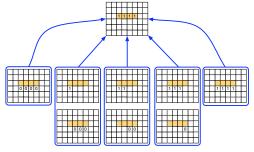
Convex hulls of 0/1-matrices with lexicographically sorted columns (non-increasing).


1	1	1	1	1	0	0	0	0
0	0	0	0	0	1	1	1	0
1	1	0	0	0	0	0	0	0
0	0	1	1	1	1	0	0	0
0	0	1	1	0	0	0	0	1
1	0	1	0	1	0	1	1	0
0	1	0	1	0	0	1	0	0
0	0	1	0	0	0	0	0	0

➤ Optimization in polynomial time (K & Loos 08)

What polymake says

For instance


Extended formulation

Theorem (K & Loos 08)

Compact extended formulation for full orbitopes.

▶ Based on paths in a directed hypergraph.


Extended formulation

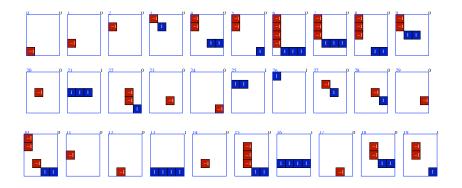
Theorem (K & Loos 08)

Compact extended formulation for full orbitopes.

▶ Based on paths in a directed hypergraph.

► KIPP MARTIN, RARDIN, CAMPBELL 90

Packing-/partitioning orbitopes

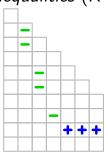

$$\mathsf{O}^{\leq}_{p,q}$$
 and $\mathsf{O}^{=}_{p,q}$

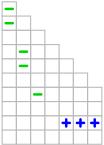
Convex hull of all 0/1-matrices with at most/exactly one 1 per row and lexicographically sorted columns.

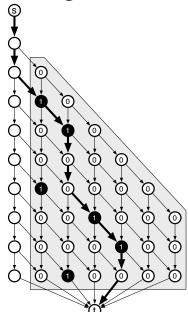
0					
1	0				
0	1	0			
0	0	0	0		
1	0	0	0	0	
0	0	1	0	0	0
0	0	0	1	0	0
0	1	0	0	0	0

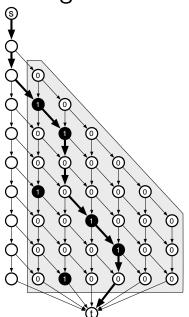
1					
1	0				
0	1	0			
0	1	0	0		
1	0	0	0	0	
0	0	1	0	0	0
0	0	0	1	0	0
0	1	0	0	0	0

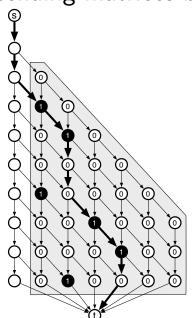
What polymake says

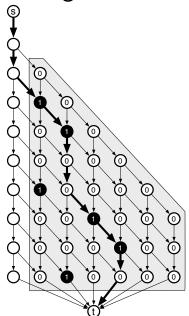

Some facts

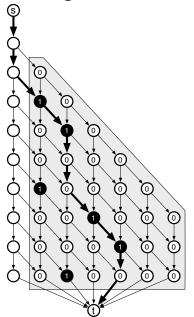

 $lackbox{O}_{p,q}^{=}$ is a face of $O_{p,q}^{\leq}$


Some facts


- ▶ $O_{p,q}^{=}$ is a face of $O_{p,q}^{\leq}$
- ► Complete description with exponentially many shifted column inequalities (K & Pfetsch 05)






x: node variables (matrix entries)

- x: node variables (matrix entries)
- ▶ y: arc variables

- x: node variables (matrix entries)
- ▶ y: arc variables
- ▶ feasible flow: s-t-flow of value one

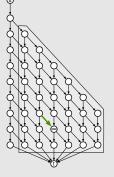
- x: node variables (matrix entries)
- ▶ y: arc variables
- ▶ feasible flow: s-t-flow of value one
- ► (Matrix cannot be recovered from *s-t*-path.)

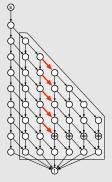
The path formulation

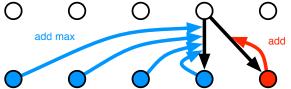
Theorem (Faenza & K 08)

The convex hull of the path-extensions (x, y) of the vertices x of $O_{p,q}^{\leq}$ is the polytope P described by

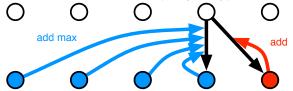
1. the flow constraints on y and

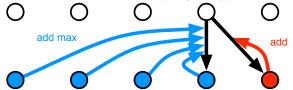

The path formulation



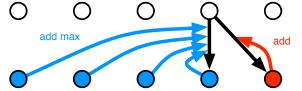

Theorem (Faenza & K 08)

The convex hull of the path-extensions (x, y) of the vertices x of $O_{p,q}^{\leq}$ is the polytope P described by

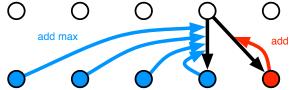

- 1. the flow constraints on y and
- 2.



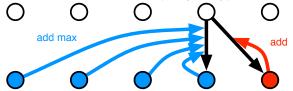
► For objective function $\langle c, (x, y) \rangle$ modify c to \tilde{c} :

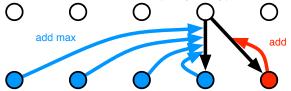

▶ For each $(x,y) \in P$: $\langle c, (x,y) \rangle \leq \langle \tilde{c}, (\mathbf{0},y) \rangle$

▶ For objective function $\langle c, (x, y) \rangle$ modify c to \tilde{c} :

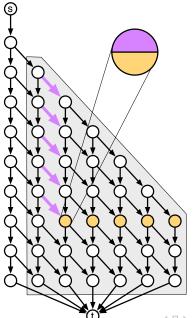


▶ For each $(x,y) \in P$: $\langle c, (x,y) \rangle \leq \langle \tilde{c}, (\mathbf{0},y) \rangle$


▶ For objective function $\langle c, (x, y) \rangle$ modify c to \tilde{c} :


▶ For each $(x,y) \in P$: $\langle c, (x,y) \rangle \leq \langle \tilde{c}, (\mathbf{0},y) \rangle$

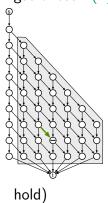
- ▶ For each $(x,y) \in P$: $\langle c, (x,y) \rangle \leq \langle \tilde{c}, (\mathbf{0},y) \rangle$ **△**
- ► For each *s*-*t*-path *y* there is a 0/1 *x* with $(x,y) \in P$ and $\langle c, (x,y) \rangle = \langle \tilde{c}, (\mathbf{0},y) \rangle$

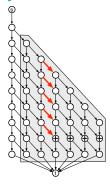


- ▶ For each $(x,y) \in P$: $\langle c, (x,y) \rangle \leq \langle \tilde{c}, (\mathbf{0},y) \rangle$
- ► For each *s*-*t*-path *y* there is a 0/1 *x* with $(x,y) \in P$ and $\langle c, (x,y) \rangle = \langle \tilde{c}, (\mathbf{0},y) \rangle$
- ► Thus, *P* is integral.

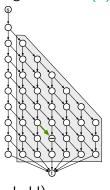
- ► For each $(x,y) \in P$: $\langle c, (x,y) \rangle \leq \langle \tilde{c}, (\mathbf{0},y) \rangle$
- ► For each *s*-*t*-path *y* there is a 0/1 *x* with $(x,y) \in P$ and $\langle c,(x,y) \rangle = \langle \tilde{c},(\mathbf{0},y) \rangle$
- ► Thus, *P* is integral.
- ► (From this, the theorem follows easily.)

A linear transformation


A very compact formulation

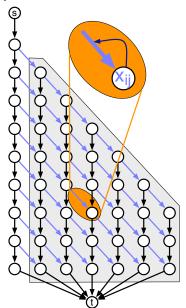

Theorem (Faenza & K 08) The following inequalities give an extended formulation for $O_{p,q}^{\leq}$: $(\approx 2pq \text{ variables}, 4pq \text{ constraints}, 10pq \text{ nonzeroes})$

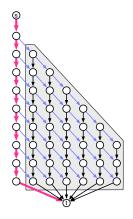
1. For $x \ge \mathbf{0}$ with $x(row_i) \le 1$ (for all i) define a canonical lifting $\Lambda(x) = (x, y)$.

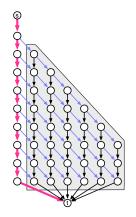

- 1. For $x \ge \mathbf{0}$ with $x(\mathsf{row}_i) \le 1$ (for all i) define a canonical lifting $\Lambda(x) = (x, y)$.
- 2. Find inequalities for x that

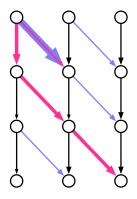
- 1. For $x \ge \mathbf{0}$ with $x(\mathsf{row}_i) \le 1$ (for all i) define a canonical lifting $\Lambda(x) = (x, y)$.
- 2. Find inequalities for x that
 - guarantee $\Lambda(x) \in P$ (i.e., y feasible flow and

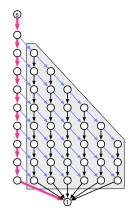
- 1. For $x \ge 0$ with $x(row_i) \le 1$ (for all i) define a canonical lifting $\Lambda(x) = (x, y)$.
- 2. Find inequalities for x that
 - guarantee $\Lambda(x) \in P$ (i.e., y feasible flow and

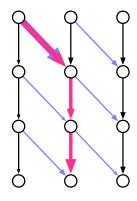


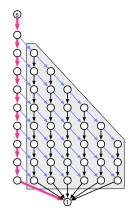

hold)

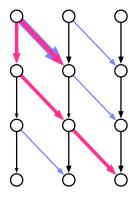

 \blacktriangleright and are valid for $O_{p,q}^{\leq}$.

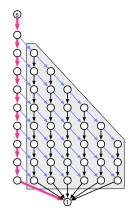


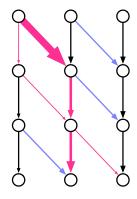

Obtaining capacities from x

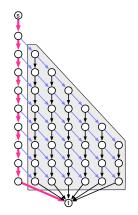


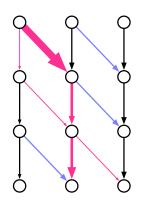


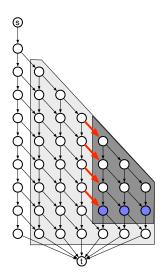


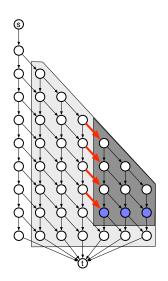


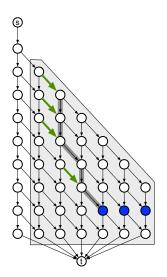


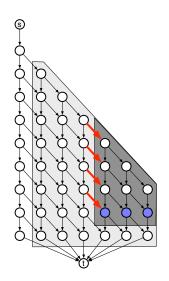


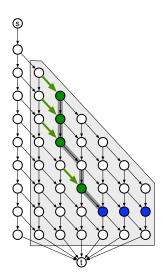


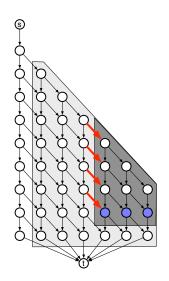


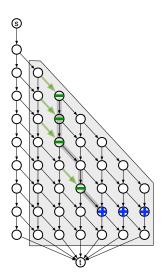


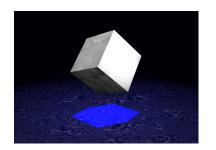


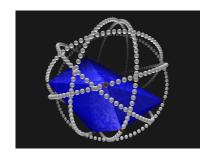

Canonical lifting of x

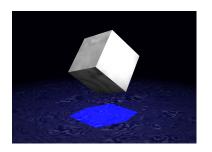

Vector (x, y) with *the* right-most feasible flow y.



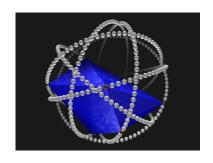


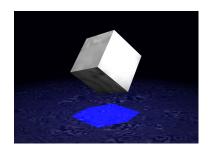


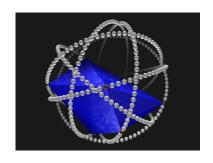




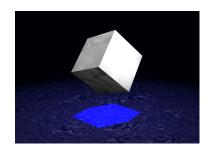
Extended formulations can ...

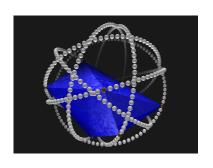



Extended formulations can ...

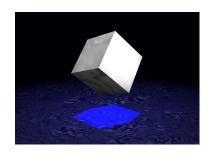


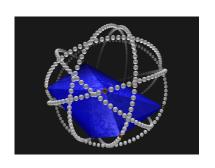
▶ ... be very simple


Extended formulations can . . .



- ▶ ... be very simple
- ▶ ... be easier to obtain


Extended formulations can . . .



- ▶ ... be very simple
- ▶ ... be easier to obtain
- ▶ ...shorten proofs

Extended formulations can ...

- ▶ ... be very simple
- ▶ ... be easier to obtain
- ▶ ...shorten proofs
- ▶ ... yield more insight

