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What is an orbitope?
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What makes up the orbits?
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What are the representatives?
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Why?

» Symmetry breaking in certain integer programs

» Nice polytopes
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Most Simple: Orbisacks

» Special Knapsack:

binary expansion first column
>

binary expansion second column

» Optimization in polynomial time
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GBE inequalities
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Theorem (K & Loos 07)

The exponentially many GBE inequalities and trivial
inequalities form ideal descriptions of orbisacks.
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Inequalities for the extension
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Extended formulation for orbisacks n

Theorem (K & Loos 08)

These inequalities (and bounds) yield extended
formulations for Orbisacks with:

v

4p variables

v

3p constraints

v

Constraint matrix is totally unimodular.

v

Projections of integer points satisfying the
formulation are the orbisack vertices.



General full orbitopes
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General full orbitopes

1111
Convex hulls of 0000
0/1-matrices with 1100
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sorted  columns (1) 8 :II (1)
(non-increasing). 0101
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» Optimization in polynomial time
(K & Loos 08)
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What polymake says
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For instance
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Theorem (K & Loos 08)

Compact extended formulation for full orbitopes.

» Based on paths in a directed hypergraph.
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Packing- /partitioning orbitopes
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Ol;,q and Op?q

Convex hull of all 0/1-matrices with at most/exactly
one 1 per row and lexicographically sorted columns.
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» Complete description with exponentially many
shifted column inequalities (K & Pfetsch 05)
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Extending matrices by paths

\?\@[}\ » feasible flow: s-t-flow

%&%&@E\ of value one

Susyes

A\ @ 6%

» x: node variables
(matrix entries)

» y: arc variables

70707070 00+

P




Extending matrices by paths

\?\@[}\ » feasible flow: s-t-flow
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The path formulation n
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Theorem (Faenza & K 08)

The convex hull of the path-extensions (x, y) of the

vertices x of O is the polytope P described by

1. the flow constraints on y and
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Proof: Show integrality of P

v

For objective function (c, (x, y)) modify ¢ to ¢:

o O O O

add max add

v

For each (x,y) € P: (c,(x.y)) < (¢,(0,y)) &
For each s-t-path y there is a 0/1 x with

(x,y) € P and (c,(x,y)) = (¢, (0,y))
Thus, P is integral.

v
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(From this, the theorem follows easily.)
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A linear transformation




A very compact formulation
Theorem (Faenza & K 08)

The following inequalities give an extended
formulation for Oi o
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Deriving a description in the original space

1. For x > 0 with x(row;) < 1 (for all /) define a
canonical lifting \(x) = (x, y).
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Deriving a description in the original space

1. For x > 0 with x(row;) < 1 (for all /) define a
canonical lifting A\(x) = (x, y).
2. Find inequalities for x that
» guarantee \(x) € P (i.e., y feasible flow and

hold)
» and are valid for Oﬁq.



O+ OO+ O+0+0~+0~+0~0

@

Obtaining capacities from x
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Constructing the right-most flow
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Canonical lifting of x

Vector (x, y) with the right-most feasible flow y.
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Extended formulations can . ..
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» ...be very simple
» ...be easier to obtain
» ...shorten proofs
» ...yield more insight






