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Plan for the next 30 minutes

15 minutes on crossing minimization
05 minutes of fun with reminiscences
10 minutes of fun with geometric duality

Crossing Minimization

A very early J. R. Edmonds publication

A combinatorial representation for polyhedral surfaces, Notices
American Mathematical Society 7 (1960), 643.
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A combinatorial representation for polyhedral surfaces, Notices
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I’ll tell you a little bit about Paul Turán

Paul Turán 1910–1976



This goes back to 1944 . . . This goes back to 1944 . . .

Problem Definition and Motivation

Given a graph G = (V , E), draw it in two dimensions such that
the number of crossings between its edges is minimum.

51 crossings 12 crossings 4 crossings

The crossing number cr(G) is the minimum number of such
crossings for all two-dimensional drawings.

Problem Definition and Motivation

The crossing number problem
was introduced by Turán in 1944 (for Kn,m)
was shown to be NP-hard by Garey & Johnson [1983]
is addressed heuristically in practice (planarization)
or restricted to special drawings (bilayer, linear, circular)
is unsolved even for very regular graph classes . . .



Crossing Number of Complete Graphs

the crossing number of Kn is unknown in general
the drawing rule of Zarankiewicz [1953] yields
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crossings, hence cr(Kn) ≤ Z (n)

it is conjectured that cr(Kn) = Z (n)

verified up to n = 12 by Pan & Richter [2007]
recently, de Klerk et al. showed

lim
n→∞

cr(Kn)

Z (n)
≥ 0.83

similar situation for Kn,m

Applications

Applications for crossing minimization:
design of a brick transport system on rails
[crossings increase risk of accidents]
VLSI design
[crossings are expensive to realize]
automatic graph drawing
[crossings make the drawing less readable]

51 crossings 12 crossings 4 crossings

ILP Approach (First Attempt)

Our aim is to model the crossing number problem as an ILP.

Straightforward approach:
introduce binary variable xef for each {e, f} with e, f ∈ E
interpret xef = 1 as “edge e crosses edge f ”
minimize

∑
xef

Problem: checking feasibility is NP-complete!

Realizability

Problem:
Given D ⊆ E × E , decide whether D is realizable, i.e., whether
a drawing of G exists with e crossing f iff (e, f ) ∈ D.

NP-complete by Kratochvı́l [1991]

No hope for a useful ILP model with this choice of variables!



Realizability

Realizability depends on the order of crossings on an edge:

Number of potential orders is exponential. . .
It’s not enough to determine the crossing edge pairs.

Crossing Restricted Drawings

To avoid this problem, consider crossing restricted drawings
(CR-drawings):
allow at most one crossing per edge

However. . .
optimum CR-drawings can have more than cr(G) crossings

Crossing Restricted Drawings
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Crossing Restricted Drawings

To avoid this problem, consider crossing restricted drawings
(CR-drawings):
allow at most one crossing per edge

However. . .
optimum CR-drawings can have more than cr(G) crossings
for dense graphs, CR-drawings don’t even exist

Solution: replace every edge of G by a path of length |E |

Then a crossing-minimum CR-drawing of the resulting graph
exists and has cr(G) crossings
can be easily transformed into a drawing of G with the
same number of edge crossings



ILP Approach (Second Attempt)

Search for a crossing-minimum CR-drawing of G:
introduce binary variable xef for each {e, f} with e, f ∈ E
interpret xef = 1 as “edge e crosses edge f ”
minimize

∑
xef

introduce CR-constraints
∑

f∈E xef ≤ 1

Realizability?!

Realizability

Call a set D ⊆ E × E crossing restricted if for all e ∈ E there is
at most one f ∈ E with (e, f ) ∈ D.

Problem:
Given a crossing restricted set D ⊆ E × E ,
decide whether D is realizable.

Can be done in linear time. . .

Realizability

Define GD as the result of adding dummy nodes to G on every
edge pair (e, f ) ∈ D:

   e

  f

   e

  f

G = (V , E), D = {(e, f )} GD

Construction is well-defined as D is crossing restricted!
I.e., D is realizable iff GD is planar.

IP formulation . . . Branch&Cut

This leads to
an IP formulation in the xef -variable space,
a separation heuristic that essentially amounts to
Kuratowski-subgraph identification (linear time
O(|V |+ |D|)) by de Fraysseix & Ossona de Mendez
[2003]).

Add some bells and whistles and get a branch&cut algorithm.

Experiments show that this approach
+ works
+ can solve benchmark instances up to |V | = 40
− can’t solve dense instances
− produces a huge number of variables
− produces a lot of symmetry



Drawbacks of the Model

Replacing edges by paths. . .
yields up to Θ(|E |4) variables in total
[only cr(G) of them are 1 in an optimal solution]
leads to many equivalent solutions:
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Drawbacks of the Model

Replacing edges by paths. . .
yields up to Θ(|E |4) variables in total
[only cr(G) of them are 1 in an optimal solution]
leads to many equivalent solutions:

Solution to both problems is column generation!

Computational Results

Test instances: Rome library of undirected graphs

standard benchmark set in automatic graph drawing
derived from graphs arising in practical applications
contains graphs on 10 to 100 nodes
graphs are sparse

Time limit:
30 cpu minutes on an AMD Opteron with 2.4 GHz, 32 GB
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Runtimes by Crossing Number
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Complete Graphs

Using our general approach, we can solve K8
(though its crossing number is 18)

Special approach for complete graphs:
use knowledge of cr(Kn) when computing cr(Kn+1)

Using this specialized approach, we can solve K12 . . .

Reminiscences

Bonn 1978

Gerd Reinelt and me students of CS and OR in Bonn. . .



Bonn 1978

C***********************************************************************00000010
C***** EDMOND SUBPR. 15/06/78 VS. 2 JUENGER/REINELT ******************00000020
C***********************************************************************00000030
C* *00000040
C* TESTCLASS : 2 *00000050
C* *00000060
C* COMPUTER : IBM 370/168 *00000070
C* *00000080
C* PROGRAM CATHEGORY : 9 (LINEAR ALGEBRAIC METHODS) *00000090
C* *00000100
C* PROGRAM TITLE : EDMOND *00000110
C* *00000120
C* AUTHORS : G. REINELT / M. JUENGER *00000130
C* *00000140
C* CONTRIBUTOR : A. BACHEM *00000150
C* *00000160
C* PURPOSE : THIS FORTRAN-SUBROUTINE PERFORMS THE ALGORITHM OF JACK *00000170
C* EDMONDS WHICH COMPUTES RANK AND DETERMINANT OF ANY IN- *00000180
C* TEGER-MATRIX USING INTEGER-ARITHMETIC IN ORDER TO OBTAIN *00000190
C* EXACT RESULTS *00000200

.

.

.

C* VARIABLE NAMES : *00000490
C* IROW, IROWNR : I*4 : ROW COUNTERS *00000500
C* ICOL, ICOLNR : I*4 : COLUMN COUNTERS *00000510
C* ISTEP : I*4 : STEP COUNTER *00000520
C* JACK : I*4 : SPECIAL MATRIX ELEMENT TO BE CHOSEN BY THE *00000530
C* ALGORITHM IN EACH STEP *00000540
C* IDIVR : I*4 : SPECIAL DIVISOR USED FOR THE COMPUTATIONS ON *00000550
C* THE MATRIX ENTRIES IN EACH STEP *00000560

.

.

.

Bonn ISMP 1982

Southern Ontario Blues Association 1985 Southern Ontario Blues Association 1985



Augsburg 1989 Luminy, Summer 1990: Kathie, Jack & Alex

Aussois 2001: Jack preaching Aussois 2002: Jack enjoying



Cologne 2004: Jack & Kathie with Pauline & Paul Cologne 2004: Me and the Major

The Major

Movie Fun with Geometric Duality



Two more early Jack Edmonds publications – the 1st Two more early Jack Edmonds publications – the 2nd

Written at the same time?

Movie

Prove that this perfect matching is not shortest . . .



Show a shorter perfect matching! Show that this is a shortest perfect matching . . .

Grow a disk packing . . . Maximize sum of radii.



Doesn’t work here . . . Introduce moats . . .

Jack’s results =⇒ This always works! Jack’s results =⇒ This always works!

Primal LP

maximize
X
p∈P

rp +
X

S⊂P, |S| odd and 3≤|S|≤ n
2

wS

rp + rq +
X

|S∩{p,q}|=1

wS ≤ dpq for all p, q ∈ P, q 6= p,

rp ≥ 0 for all p ∈ P,

wS ≥ 0 for all S ⊂ P, |S| odd and 3 ≤ |S| ≤
n

2
.

Dual LP

minimize
X

p,q∈P, q 6=p

dpqxpq

X
q∈P, q 6=p

xpq ≥ 1 for all p ∈ P,

X
|S∩{p,q}|=1

xpq ≥ 1 for all S ⊂ P, |S| odd and 3 ≤ |S| ≤
n

2
,

xpq ≥ 0 for all p, q ∈ P, q 6= p.



We (and others) had software in the early nineties. This is brand new:

. . . and I’ll give you a software demo now.
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