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This goes back to 1944 ...

JOURNAL OF GRAPH THEORY, VOL. I, 7-9 (1977)

A Note of Welcome

Paur TurRAN*
Budapest, Hungary

A note of welcome to the new Journal of Graph Theory might contain
all sorts of good wishes and superficial praises of the beauty and useful-
ness of graph theory in general terms. My views on the latter, supported
by facts, were given in [2]. As to the former, I can illustrate it better by
giving some indications of the enchantment and help it gave me in the
most difficalt times of my life during the war.

Tt cnnnde a hit incredilla kot it ic tviie The ctaru onsc harl ta 1040

This goes back to 1944 ...

My next encounter with graph theory in these years was of a quite
different pature. In July 1944 the danger of deportation was real in
Budapest, and a reality outside Budapest. We worked near Budapest, in a
brick factory. There were some kilns where the bricks were made and
some open storage yards where the bricks were stored. All the kilns were
connected by rail with all the storage yards. The bricks were carried on
small wheeled trucks to the storage yeards. All we had to do was to put
the bricks on the trucks at the kilns, push the trucks to the storage yards,
and unload them there. We had a reasonable piece rate for the trucks,
and the work itself was not difficult; the trouble was only at the crossings.
The trucks generally jumped the rails there, and the bricks fell out of
them; in short this caused a lot of trouble and loss of time which was
rather precious to all of us (for reasons not to be discussed here). We
were all sweating and cursing at such occasions, I too; but nolens-volens
the idea occurred to me that this loss of time could have been minimized
if the number of crossings of the rails had been minimized. But what is
the minimum number of crossings? I realized after several days that the
actual situation could have been improved, but the exact solution of the
general problem with m kilns and n storage yards seemed to be very

difficult and again I postponed my study of it to times when my fears for
my family would end. (But the problem occurred to me again not earlier
than 1952, at my first visit to Poland where I met Zarankiewicz. I
mentioned to him my “‘brick-factory”’-problem; he mentioned to me

Problem Definition and Motivation Problem Definition and Motivation

Given a graph G = (V, E), draw it in two dimensions such that
the number of crossings between its edges is minimum.

The crossing number problem
m was introduced by Turan in 1944 (for K, m)
m was shown to be NP-hard by Garey & Johnson [1983]

m is addressed heuristically in practice (planarization)
or restricted to special drawings (bilayer, linear, circular)

m is unsolved even for very regular graph classes ...

51 crossings 12 crossings 4 crossings

The crossing number cr(G) is the minimum number of such
crossings for all two-dimensional drawings.



Crossing Number of Complete Graphs

m the crossing number of K}, is unknown in general
m the drawing rule of Zarankiewicz [1953] yields

1y nyyn—1 1 n-2,1n-3
20 =lal =117 1172
crossings, hence cr(K,) < Z(n)
m it is conjectured that cr(Kj,) = Z(n)

m verified up to n = 12 by Pan & Richter [2007]
m recently, de Klerk et al. showed

cr(Kn)

. -0
nll_)moo Z(n) > 0.83

m similar situation for K m

ILP Approach (First Attempt)

Our aim is to model the crossing number problem as an ILP.

Straightforward approach:
m introduce binary variable xf for each {e, f} with e, f € E
m interpret xor = 1 as “edge e crosses edge f”
B minimize ) Xef

Problem: checking feasibility is NP-complete!

Applications

Applications for crossing minimization:

m design of a brick transport system on rails
[crossings increase risk of accidents]

m VLSI design
[crossings are expensive to realize]

m automatic graph drawing
[crossings make the drawing less readable]

51 crossings 12 crossings 4 crossings

Realizability

Problem:
Given D C E x E, decide whether D is realizable, i.e., whether
a drawing of G exists with e crossing f iff (e, f) € D.

NP-complete by Kratochvil [1991]

No hope for a useful ILP model with this choice of variables!



Realizability Crossing Restricted Drawings

To avoid this problem, consider crossing restricted drawings
Realizability depends on the order of crossings on an edge: (CR-drawings): _
allow at most one crossing per edge

However. . .
m optimum CR-drawings can have more than cr(G) crossings

Number of potential orders is exponential. . .
It's not enough to determine the crossing edge pairs.

Crossing Restricted Drawings Crossing Restricted Drawings

To avoid this problem, consider crossing restricted drawings
(CR-drawings):
allow at most one crossing per edge

However. ..

m optimum CR-drawings can have more than cr(G) crossings
m for dense graphs, CR-drawings don’t even exist

Solution: replace every edge of G by a path of length |E|

Then a crossing-minimum CR-drawing of the resulting graph
m exists and has cr(G) crossings

m can be easily transformed into a drawing of G with the
same number of edge crossings




ILP Approach (Second Attempt)

Search for a crossing-minimum CR-drawing of G:
m introduce binary variable xf for each {e, f} with e,f € E
m interpret xos = 1 as “edge e crosses edge f”
B minimize > Xef
m introduce CR-constraints > ¢ g Xer < 1

Realizability?!

Realizability

Define Gp as the result of adding dummy nodes to G on every
edge pair (e, f) € D:

G:(V,E),D:{(e,f)} Gp

Construction is well-defined as D is crossing restricted!
l.e., D is realizable iff Gp is planar.

Realizability

Call aset D C E x E crossing restricted if for all e € E there is
at most one f € E with (e, f) € D.

Problem:
Given a crossing restricted set D C E x E,
decide whether D is realizable.

Can be done in linear time. ..

IP formulation ... Branch&Cut

This leads to
m an IP formulation in the x-variable space,

m a separation heuristic that essentially amounts to
Kuratowski-subgraph identification (linear time
O(|V| + |DJ)) by de Fraysseix & Ossona de Mendez
[2003Y]).

Add some bells and whistles and get a branch&cut algorithm.

Experiments show that this approach
+ works
+ can solve benchmark instances up to | V| = 40
— can’t solve dense instances
produces a huge number of variables
produces a lot of symmetry



Drawbacks of the Model Drawbacks of the Model

Replacing edges by paths. .. Replacing edges by paths. ..
m yields up to ©(|E|*) variables in total m yields up to ©(|E|*) variables in total
[only cr(G) of them are 1 in an optimal solution] [only cr(G) of them are 1 in an optimal solution]
m leads to many equivalent solutions: m leads to many equivalent solutions:

Drawbacks of the Model Drawbacks of the Model

Replacing edges by paths. .. Replacing edges by paths. ..
m yields up to ©(|E|*) variables in total m yields up to ©(|E|*) variables in total
[only cr(G) of them are 1 in an optimal solution] [only cr(G) of them are 1 in an optimal solution]
m leads to many equivalent solutions: m leads to many equivalent solutions:

Aot Hetot



Drawbacks of the Model Drawbacks of the Model

Replacing edges by paths. ..

m yields up to ©(|E|*) variables in total
[only cr(G) of them are 1 in an optimal solution]

m leads to many equivalent solutions:

Replacing edges by paths. ..

m yields up to ©(|E|*) variables in total
[only cr(G) of them are 1 in an optimal solution]

m leads to many equivalent solutions:

Solution to both problems is column generation!

Computational Results Percentage of Solved Instances

100% /9SS0 00000000000080
@
Test instances: Rome library of undirected graphs 6 %@cbg;o;v...
| © °
m standard benchmark set in automatic graph drawing o o ;’9 O(;O..O‘.
m derived from graphs arising in practical applications e ® 6y o Vghe, .
m contains graphs on 10 to 100 nodes 3 D % o
ﬁ 50% (©) © o © Co® 0 *
m graphs are sparse 2 °0 o ™ ce
40% o @ ® OO—.O
Time ||m|t 30% @ No Column Genleration, ?0 min ®%®@ ® o
30 cpu minutes on an AMD Opteron with 2.4 GHz, 32 GB 20% O Calumn Generation, 5 min 2o
@ Column Generation, 30 min L
10% O ©
0%

10 20 30 40 50 60 70
# nodes



Runtimes by Crossing Number Complete Graphs
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e meimum Using our general approach, we can solve Kg
- average A (though its crossing number is 18)
1200

Special approach for complete graphs:
use knowledge of cr(Kj) when computing cr(Kp.1)

seconds
g

600 1 ’ Using this specialized approach, we can solve Ki» . ..

0 1 2 3 4 5 6 7

o
©

10 11 12
# crossings

Bonn 1978

Gerd Reinelt and me students of CS and OR in Bonn. ..

JOURNAL OF RESEARCH of the National Bureau of dards—B h and Math al Physics
Vol. 71B, No. 4, October—December 1967

Systems of Distinct Representatives and Linear Algebra*

Jack Edmonds

(] (]
Instis for Basic § dards, National Bureau of Standards, Washington, D.C. 20234
eminiscences

Some purposes of this paper are: (1) To take seriously the term, “term rank.” (2) To make an issue
of not “rearranging rows and columns’ by not “arranging” them in the first place. (3) To promote the
numerical use of Cramer’s rule. (4) To illustrate that the relevance of “number of steps” to “amount
of work” depends on the amount of work in a step. (5) To call attention to the computational aspect
of SDR’s, an aspect where the subject differs from being an instance of familiar linear algebra. (6) To
describe an SDR instance of a theory on extremal combinatorics that uses linear algebra in very dif-
ferent ways than does totally unimodular theory. (The preceding paper, Optimum Branchings, de-
scribes another instance of that theory.)

Key Words: Algorithms, combinatorics, indeterminates, linear algebra, matroids, systems of
distinct representatives, term rank.

1. Introduction However, here the word “transversal” will be used
differently.)
The well-known concept of term rank [5, 6], is
shown here to be a special case of linear-algebra rank. 3. Matrices of Zeros and Ones
This observation is used to provide a simple linear- ) o .
algebra proof of the well-known SDR theorem. Except The subject of SDR’s is frequently treated in the

for familiar linear algebra, the paper is self-contained. ~ context of matrices of 0’s and 1’s. The incidence
Incidentally to SDR’ lgorithm is presented for ~ matrix of the family Q of subsets of E is the matrix
eSS S A N it N
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Bonn 1978 Bonn ISMP 1982

Cohkkhkkkkkhkkhkkkkkkkkkkkkkkhkkkkkhhkkkhkkkkkkhkkkk Ak kkkkxkkkhxxkkxxxkkxx%xx 00000010
Cxx%%* EDMOND SUBPR. 15/06/78 VS. 2 JUENGER/REINELT **xxx%x***xxxx*x%x%x**x00000020

Cohkkhkkkkkkkkkkkkkkkhhkkhkkkhkhkhkhk kA hkk kA hkkkkkkhkkkkkkkkkkkkkkkxkxxx*xxxxx*x00000030

Cx *00000040
Cx TESTCLASS : 2 *00000050
Cx *00000060
Cx COMPUTER : IBM 370/168 *00000070
Cx *00000080
C+ PROGRAM CATHEGORY : 9 (LINEAR ALGEBRAIC METHODS) *00000090
Cx *00000100
C+ PROGRAM TITLE : EDMOND *00000110
Cx *00000120
Cx AUTHORS : G. REINELT / M. JUENGER *00000130
Cx *00000140
C+ CONTRIBUTOR : A. BACHEM *00000150
Cx *00000160
C+ PURPOSE : THIS FORTRAN-SUBROUTINE PERFORMS THE ALGORITHM OF JACK *00000170
Cx EDMONDS WHICH COMPUTES RANK AND DETERMINANT OF ANY IN- *00000180
Cx TEGER-MATRIX USING INTEGER-ARITHMETIC IN ORDER TO OBTAIN x00000190
Cx EXACT RESULTS *00000200
Cx VARIABLE NAMES : *00000490
Cx IROW, IROWNR : I%4 : ROW COUNTERS *00000500
Cx ICOL, ICOLNR : I%4 : COLUMN COUNTERS *00000510
Cx ISTEP : Ix4 : STEP COUNTER *00000520
Cx JACK : Ix4 : SPECIAL MATRIX ELEMENT TO BE CHOSEN BY THE *00000530
Cx ALGORITHM IN EACH STEP *00000540
Cx IDIVR : Ix4 : SPECIAL DIVISOR USED FOR THE COMPUTATIONS ON x00000550
Cx THE MATRIX ENTRIES IN EACH STEP *00000560
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Augsburg 1989 Luminy, Summer 1990: Kathie, Jack & Alex

Aussois 2001: Jack preaching Aussois 2002: Jack enjoying




Cologne 2004: Jack & Kathie with Pauline & Paul Cologne 2004: Me and the Major

The Major
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Two more early Jack Edmonds publications — the 1*

PATHS, TREES, AND FLOWERS
JACK EDMONDS

1. Introduction. A graph G for purposes here is a finite set of elements
called wertices and a finite set of elements called edges such that each edge
meets exactly two vertices, called the end-points of the edge. An edge is said
to join its end-points.

A matching in G is a subset of its edges such that no two meet the same
vertex. We describe an efficient algorithm for finding in a given graph a match-
ing of maximum cardinality. This problem was posed and partly solved by
C. Berge; see Sections 3.7 and 3.8.

AMaximum matching is an aspect of a topic, treated in books on graph
theory, which has developed during the last 75 years through the work of
about a dozen authors. In particular, W. T. Tutte (8) characterized graphs
which do not contain a perfect matching, or I-factor as he calls it—that is a
set of edges with exactly one member meeting each vertex. His theorem
prompted attempts at finding an efficient construction for perfect matchings.

JOURNAL OF RESEARCH of the National Bureau of

Two more early Jack Edmonds publications — the 2

dards—B. Matk and M 1 Physics

Vol. 69B, Nos. 1 and 2, January-June 1965

Maximum Matching and a Polyhedron With O,1-Vertices'

Jack Edmonds

(December 1, 1964)

A matching in a graph G is a subset of edges in G such that no two mect the same node in G.
The convex polyhedron C is characterized, where the extreme points of C correspond to the matchings
in G. Where each edge of G carries a real numerical weight, an efficient algorithm is described for
finding a matching in G with maximum weight-sum.

Section 1

An algorithm is described for optimally pairing a
finite set of objects. That is, given a real numerical
weight for each unordered pair of objects in a set
Y, to select a family of mutually disjoint pairs the sum
of whose weights is maximum. The wellknown
optimum assignment problem [5]? is the special case
where Y partitions into two sets 4 and B such that

inequalities. In particular, we prove a theorem
analogous to one of G. Birkhoff [1] and J. von Neuman
[5] which says that the extreme points of the convex
set of doubly stochastic matrices (order n by n) are
the permutation matrices (order n by n). That
theorem and the Hungarian method are based on
Konig’s theorem about matchings in bipartite graphs.
E:)i" work is related to results on graphs due to Tutte
4].

Written at the same time?

Prove that this perfect matching is not shortest ...

Movie \ \ \



Show a shorter perfect matching! Show that this is a shortest perfect matching ...

Grow a disk packing ...

=
°

Maximize sum of radii.

=




Doesn’t work here ... Introduce moats ...

Jack’s results = This always works! Jack’s results = This always works!

Primal LP

maximize > rp + > Ws

pEP SCP, |S| odd and 3<|S| < 5

IN

o +rq+ > ws
|Sn{p,q}|=1
o

Opg forallp,g € P, q#p,

0 forallp € P,

vV IV

wg 0 forallSC P, |S|oddand3 < |S] < —.

2
Dual LP

minimize > dogXpg
P,gEP, q#p

> xq > 1 foralpePp,
q€EP, qg#p

n
Xpg > 1 forallSC P, |S|oddand3 < |S| < >
|Sn{p.q}|=1

Xpg = 0 forallp,qg € P, g #p.



We (and others) had software in the early nineties. This is brand new:

Sow, e

Fun with Geometric Duality

Michael Jiinger Michael Schulz Wojciech Zychowicz

Dedicated to Jack Edmonds on the occasion of his 75** birthday
on April 5, 2009

Abstract

We present GEODUAL, a software for creating and solving geometric
instances of the Minimum Spanning Tree problem, the Perfect Matching

problem, and the Traveling Salesman problem, along with visual proofs
of optimality.

... and I'll give you a software demo now.

A\

Fun with Geometric Duality

Michael Jiinger Michael Schulz Wojciech Zychowicz

Dedicated to Jack Edmonds on the occasion of his 75" birthday
on April 5, 2009

Abstract

We present GEODUAL, a software for creating and solving geometric
instances of the Minimum Spanning Tree problem, the Perfect Matching
problem, and the Traveling Salesman problem, along with visual proofs
of optimality.
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