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Chordal graphs

Fundamental objects to play with

Definition

A graph is chordal iff it has no chordless cycle of length ≥ 4.

Maximal Cliques
under inclusion

Minimal Separators
A subset of vertices S is a minimal separator if G
if there exist a, b ∈ G such that a and b are not
connected in G − S .
and S is minimal for inclusion with this property .
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Chordal graphs

An example

a

b c ef

d
3 minimal separators {b} for f and a, {c} for a and e and {b, c}

for a and d .
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Chordal graphs

Maximal Clique trees

A maximal clique tree (sometimes clique tree) is a tree T that
satisfies the following three conditions :

I Vertices of T are associated with the maximal cliques of G

I Edges of T correspond to minimal separators.

I For any vertex x ∈ G , the cliques containing x yield a subtree
of T .
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Chordal graphs

Using results of Dirac 1961, Fulkerson, Gross 1965, Buneman
1974, Gavril 1974 and Rose, Tarjan and Lueker 1976 :

The following statements are equivalent and characterize
chordal graphs :

(i) G has a simplicial elimination scheme

(ii) Every minimal separator is a clique

(iii) G admits a maximal clique tree.

(iv) G is the intersection graph of subtrees in a tree.

(v) Any MNS (LexBFS, MCS) provides a simplicial
elimination scheme.
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Chordal graphs

Size of a maximal clique tree in a chordal graph

I Let G = (V ,E ) be a chordal graph.

I G admits at most |V | maximal cliques and therefore the tree
is also bounded by |V | (vertices and edges).

I But some vertices can be repeated in the cliques. If we
consider a simplicial elimination ordering the size of a given
maximal clique is bounded by the neighbourhood of the first
vertex of the maximal clique. Computing a maximum clique of
size ω(G ) is linear. Computing χ(G ) also.

I Therefore any maximal clique tree is bounded by |V |+ |E |.
Similarly the size of the minimal separators is linear.
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Reduced Clique Graph

Reduced Clique Graph

Definition

For a chordal graph G we define its Maximal cliques graph
denoted by Cr (G ) whose vertices are the maximal cliques of G and
we put an edge between two maximal cliques C ,C ′ if C ∩ C ′ is a
minimal separator.

I Note that this is a subgraph of the intersection graph of the
maximal cliques of G .

I Is Cr (G ) chordal ? What is the size of Cr (G ) in terms of n and
m ?
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Reduced Clique Graph

a

b
c

d fe

g

h

(a)

b,c,e

a,b,c

b,d,e e,g c,e,f

c,h
b,e   

   e
  c,e

   c

c

ee

b,c      
  c

(b)

b,c,e

a,b,c

b,d,e e,g c,e,f

c,h
b,e      c,e

   c
e

b,c      

(c)

b,c,e

a,b,c

b,d,e e,g c,e,f

c,h
b,e   

   e
  c,e

c

b,c      

(d)

Fig.: A chordal graph (a), its reduced clique-graph (b),
{b, d , e} ∩ {c , e, f } = {e} the edge is missing.



A Decomposition for Chordal graphs and Applications

Reduced Clique Graph

Size of Cr(G )

Considering a star on n vertices,
shows |CS(G )| ∈ O(n2)
Not linear in the size of G
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Reduced Clique Graph

Is Cr(G ) chordal ?
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Reduced Clique Graph

Cr(G ) is not chordal !
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First properties of reduced clique graphs

Combinatorial structure of Cr(G )

Lemma 1 : M.H and C. Paul 95

If C1,C2,C3 is a cycle in Cr (G ), with S12,S23 and S23 be the
associated minimal separators then two of these three separators
are equal and included in the third.

Lemma 2 : M.H. and C. Paul 95

Let C1,C2,C3 be 3 maximal cliques, if
C1 ∩ C2 = S12⊂S23 = C2 ∩ C3 then it yields a triangle in Cr (G )
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First properties of reduced clique graphs

Theorem : Blayr and Payton 93 but also Gavril 87 and Shibata
88

Maximal clique trees are exactly the maximum spanning trees of
Cr (G ).

The weight of an edge being the size of the minimal separator it
represents.

I Cr (G ) is the union of all maximal clique trees of G .

I From one maximal clique tree to another there always exists a
path of exchanges on triangles.
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First properties of reduced clique graphs

Lemma 3 : Equality case

Let C1,C2,C3 be 3 maximal cliques, if S12 = S23 then :

I either the C1 ∩ C3 = S13 is a minimal separator

I or the edges C1C2 and C2C3 cannot belong together to a
maximal clique tree of G .
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First properties of reduced clique graphs
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First properties of reduced clique graphs

Cannonical representation

I For an interval graph, its PQ-tree represents all its possible
models and can be taken as a cannonical representation of the
graph (for example for graph isomorphism)

I But even path graphs are isomorphism complete. Therefore a
canonical tree representation is not obvious for chordal graphs.

I Cr(G ) is a Pretty Structure to study chordal
graphs.
To prove structural properties of all maximal clique trees of a
given chordal graph.
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First properties of reduced clique graphs

First example

Theorem : Lévêque, Maffray, Preissmann 2008

There always exists a maximal clique tree with a leaf labelled by a
maximal minimal separator.
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First properties of reduced clique graphs

Proof

1. Compute a maximal clique tree T

2. Sort the minimal separators according to their size

3. Consider an edge ab ∈ T labelled by S of maximum size

4. Either in Tb all edges adjacent to b are labelled with
separators included or equal to S

5. Or recurse on S ′ a minimal separator Tb incomparable with S
and of maximal size.
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First properties of reduced clique graphs

At step 4, consider an edge bc labelled with a minimal separator U

I if U⊂S .
Using lemmas 1,2 exchange bc with ac.

I If U = S ,
Using lemma 3 exchange bd with ad .

I Then ab become an pending edge.
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First properties of reduced clique graphs

Algorithm

a

b
c

d fe

g

h
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b,c,e

a,b,c

b,d,e e,g c,e,f

c,h
b,e   

   e
  c,e

   c
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ee

b,c      
  c

(f)

b,c,e

a,b,c

b,d,e e,g c,e,f

c,h
b,e      c,e

   c
e

b,c      
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First properties of reduced clique graphs

Complexity

This tree can be linearly computed.

Consequences

It always exists a simplicial elimination scheme following a linear
extension of the containment ordering of the minimal separators.

I Notice that not all linear extensions are available.

I These schemes are interesting for the structure of path graphs

I Can these linear extensions be computed linearly, using for
example some search on G ?
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Decomposition and split minors

Any Cr(G ) graph can be decomposed using multipartite
split operations

I Each clique tree uses exactly k − 1 edges of the multipartite
split

I A clique tree of G is connected in each component Ci
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Decomposition and split minors

Split minors

An edge e in Cr (G ) is permissive, if in all triangles containing e the
two other edges have the same label.

3 reduction rules

L1 If v is an isolated vertex, remove v

L2 If e is a permissible edge contract e

L3 If all the edges of the split X ∪ Y have the same
label, delete edges between X and Y

Definition

H is a split-minor of Cr (G ), if H can be obtained from Cr (G ) using
L1, L2 and L3.
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Decomposition and split minors

Theorem

Every Cr (G ) is totally decomposable with the operations L1, L2
and L3.
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Asteroidal number

Asteroidal number

Definition

For a graph G , a set A of vertices is asteroidal, if for each v ∈ A,
A− v belongs to one connected component of G − N(v).
The asteroidal number a(G ) is the size of the maximum asteroidal
set in G .

Computing a(G ) is NP-hard for planar graphs but polynomial for
HDD-free graphs Kloks, Krastch, Muller 1997.
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Asteroidal number

Theorem M.H., J. Stacho 2009

For a chordal graph a(G ) < k iff no labeled k-star is a split-minor
of Cr (G )

G is interval iff no labeled claw is a split-minor of Cr (G )
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Leafage

Leafage

Definition (Lin, McKee, West 1998)

For a chordal graph G , the leafage l(G ) is the minimum number of
leaves in a maximal clique tree of G .

Known results

l(G ) = 2 iff G is interval
Polynomial to check if l(G ) = 3 Prisner 1992

Applications

If l(G ) = k, an optimal model provides a good implicit
representation.
Max clique, coloration, . . . in O(k.n).
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Leafage

Theorem M.H., J. Stacho 2009

l(G ) can be polynomially computed in O(n3) using Cr (G ).

1. Use tokens in the multipartite splits (corresponding to half
edges) and propagate them

2. Construct augmenting paths in an associated directed graph
preserving the degrees of the tree.
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Leafage

Results so far on Cr(G ) as a labelled graph

Maximum w. Hamilton Path Leafage

G arbitrary NP-complete NP-complete

Labelled Cr (G ) linear polynomial
Interval graph recognition O(n3)
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Two algorithmic problems :

1. Can we compute in linear time the leafage of a chordal graph ?

2. Since it is linear to check if the vertex leafage of a chordal
graph is 2 (i.e. the recognition of path graphs).
Is it polynomial to compute the vertex leafage of a chordal
graph ?
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Jack’s possible question :

There must be a min-max theorem for the leafage ?
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Thank you for your attention !

Happy Birthday Jack !
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