On Variants of Induced Matchings

Andreas Brandstädt

University of Rostock, Germany

(joint work with Raffaele Mosca and Ragnar Nevries)

Distance-k Matchings

Let G = (V,E) be a undirected finite simple graph. An edge set $M \subseteq E$ is a *matching in G* if the edges in M are mutually vertex-disjoint. An edge set M is an *induced matching in G* [Kathie Cameron 1989] (also called *strong matching* [Golumbic, Laskar 1993]) if the mutual distance of edges in M is ≥ 2 .

Distance-k Matchings

An edge set M is a distance-k matching in G if the mutual distance of edges in M is $\geq k$ (called δ -separated matching [Stockmeyer, Vazirani 1982]).

Matchings

Matchings

For graph G = (V, E), let L(G) = (E, E') with edges

$$xy \in E' \Leftrightarrow x \cap y \neq \emptyset$$

denote the *line graph of G*.

Graph Powers

For graph G = (V, E), let $G^k = (V, E^k)$ with $xy \in E^k \Leftrightarrow \operatorname{dist}_G(x,y) \leq k$ denote the k-th power of G.

 $L(G)^2$ is the *square of the line graph* of G, i.e., the vertex set of $L(G)^2$ is E, and two edges of G are adjacent in $L(G)^2$ if they share a vertex or are connected by an edge in G.

 $L(G)^2$ is the *square of the line graph* of G, i.e., the vertex set of $L(G)^2$ is E, and two edges of G are adjacent in $L(G)^2$ if they share a vertex or are connected by an edge in G.

Fact.

Induced matchings in G = independent vertex sets in $L(G)^2$.

Maximum Matching Problem:

Find a maximum matching of largest size.

Maximum Induced Matching (MIM) Problem:

Find a max. induced matching of largest size.

NP-complete [Stockmeyer, Vazirani 1982, Kathie Cameron 1989]

The Maximum Induced Matching Problem remains NP-complete for

very restricted bipartite graphs [Ko, Shepherd 2003, Lozin 2002] and for

line graphs (and thus also for claw-free graphs) [Kobler, Rotics 2003].

- G chordal $\Rightarrow L(G)^2$ chordal [Cameron 1989].
- G circular-arc graph $\Rightarrow L(G)^2$ circular-arc graph [Golumbic, Laskar 1993]
- G cocomparability graph $\Rightarrow L(G)^2$ cocomparability graph [Golumbic, Lewenstein 2000]
- G weakly chordal $\Rightarrow L(G)^2$ weakly chordal [Cameron, Sritharan, Tang 2003]
- stronger result for AT-free graphs [J.-M. Chang 2004]

Hence: MIM in polynomial time for

- chordal graphs [Cameron 1989]
- circular-arc graphs [Golumbic, Laskar 1993]
- cocomparability and interval dimension *k* graphs [Golumbic, Lewenstein 2000]
- AT-free graphs [J.-M. Chang 2004]
- weakly chordal graphs [Cameron, Sritharan, Tang 2003]

Distance-k Matchings

 $L(G)^k$ is the *k-th power of the line graph* of G, i.e., the vertex set of $L(G)^k$ is E, and two edges of G are adjacent in $L(G)^k$ if their distance in L(G) is at most k.

Fact.

Distance-k matchings in G = independent vertex sets in $L(G)^k$.

Chordal Graphs

Graph G is *chordal* if it contains no chordless cycles of length at least four.

Chordal Graphs

Graph G is *chordal* if it contains no chordless cycles of length at least four.

Chordal graphs have many facets:

- clique separators
- clique tree
- simplicial elimination orderings
- intersection graphs of subtrees of a tree ...

Graph Powers

[Duchet, 1984]: Odd powers of chordal graphs are chordal.

But: Even powers of chordal graphs are in general not chordal.

[K. Cameron, 1989]:

 $G \text{ chordal} \Rightarrow L(G)^2 \text{ chordal}.$

[K. Cameron, 1989]:

 $G \text{ chordal} \Rightarrow L(G)^2 \text{ chordal}$

⇒ MIM problem in polynomial time on chordal graphs.

[K. Cameron, 1989]:

 $G \text{ chordal} \Rightarrow L(G)^2 \text{ chordal}$

⇒ MIM problem in polynomial time on chordal graphs.

even in linear time! [B., Hoang 2005].

[K. Cameron, 1989]:

 $G \text{ chordal} \Rightarrow L(G)^2 \text{ chordal}$

⇒ MIM problem in polynomial time on chordal graphs

But: If G is chordal then in general, $L(G)^3$ is not chordal.

Maximum Distance-3 Matchings

Theorem.

The Maximum Distance-3 Matching Problem for chordal graphs is NP-complete.

Maximum Distance-3 Matchings

Theorem.

The Maximum Distance-3 Matching Problem for chordal graphs is NP-complete.

(Reduction from Maximum Independent Set for any graph [GT20])

Powers of strongly chordal graphs

A graph is *strongly chordal* if it is chordal and sun-free.

Theorem. [Lubiw 1982; Dahlhaus, Duchet 1987; Raychaudhuri 1992] For every $k \ge 2$: G strongly chordal $\Rightarrow G^k$ strongly chordal.

Powers of strongly chordal graphs

Recall: G chordal $\Rightarrow L(G)^2$ chordal

⇒ MIM problem in polynomial time on strongly chordal graphs.

But: If G is strongly chordal then in general, $L(G)^3$ is not strongly chordal.

$L(G)^3$ not strongly chordal

Maximum Distance-3 Matchings

Theorem.

If G is strongly chordal then $L(G)^3$ is chordal.

Maximum Distance-3 Matchings

Theorem.

If G is strongly chordal then $L(G)^3$ is chordal. Corollary.

The Maximum Distance-k Matching Problem for strongly chordal graphs is solvable in polynomial time for every $k \ge 1$.

An induced matching *M* is a *dominating induced matching* (*d.i.m.*) in *G* if *M* intersects every edge in *G*. In other words:

- M is dominating in L(G) and
- M is independent in $L(G)^2$.

Example:

Note that there are graphs (even trees) without such an edge set:

The *Dominating Induced Matching (DIM)*Problem is:

Given a graph, does it have a dominating induced matching?

Also called the *Efficient Edge Domination* (*EED*) Problem.

Theorem [Grinstead, Slater, Sherwani, Holmes 1993]

The EED problem is NP-complete in general and efficiently solvable for series-parallel graphs.

Theorem [Lu, Tang 1998]

The EED problem is NP-complete for bipartite graphs, and is efficiently solvable for bipartite permutation graphs.

Theorem [Cardozo, Lozin 2008]

The EED problem is NP-complete for (very special) bipartite graphs, and is efficiently solvable for claw-free graphs.

Theorem [B., Nevries 2009]

The EED problem is solvable in

- linear time for chordal bipartite graphs;
- polynomial time for hole-free graphs.

Proposition.

Let M be a d.i.m. Then:

(i) M contains exactly one edge of every triangle.

Proposition.

Let M be a d.i.m. Then:

- (i) M contains exactly one edge of every triangle.
- (ii) M contains no edge of any C_4 .

Proposition.

Let M be a d.i.m. Then:

- (i) M contains exactly one edge of every triangle.
- (ii) M contains no edge of any C_4 .
- (iii) Every mid-edge of a diamond is in M.
- (iv) The peripheral edges of any butterfly are in M.

Proposition.

Let M be a dim. Then:

- (i) M contains exactly one edge of every triangle.
- (ii) M contains no edge of any C_4 .
- (iii) Every mid-edge of a diamond is in M.
- (iv) The peripheral edges of any butterfly are in M.
- (v) Graphs with dim are $(K_4, \text{gem}, \text{long-antihole})$ -free.

Lemma.

Let M be a d.i.m. in a chordal bipartite graph G, and let $Q = X \cup Y$ be a 2-connected component in G. Then either M dominates all vertices in X and none in Y or vice versa.

 \Rightarrow reduction to the EED problem in a (K_4 -free) block graph G' via the following gadget:

Lemma.

A chordal bipartite graph G has a d.i.m. $M \Leftrightarrow$ the $(K_4$ -free) block graph G' has a d.i.m. M', and the weights of M and M' coincide.

Note that hole-free graphs with d.i.m. are weakly chordal (no long antiholes).

Theorem.

For hole-free graphs, the minimum weight dominating induced matching problem can be solved in polynomial time. Thank you for your attention!

Thank you for your attention!