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VINES

What on earth 1s a vine?
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NOT The Vines




VINES

NOT these vines
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OVERLAPPING PATHS

path P from z to y

. path uQw such that Q@ N P = {u, v}




OVERLAPPING PATHS

FEars uQu and v'Q"v’ on P if:

e QNQ' =0

o u=<u=<v=<v or W=<u=<v=<uv




VINES

vine on a path /7: sequence of ears Q = (Q1,Q2, . .., Q) where:

e ()1 starts at the first vertex of P
e (), ends at the last vertex of P
e consecutive ears overlap

e nonconsecutive ears do not overlap

o)) (2 Qs (24 Qs




If P 1s a path in a 2-connected graph, there is a vine on P

Proof. Induction on the length of P:
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CYCLES IN VINES

Each ear defines a cycle:
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Each ear defines a cycle:
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Each ear defines a cycle:




CYCLES IN VINES

Each ear defines a cycle:




CYCLES IN VINES

Each pair of ears defines a cycle:




CYCLES IN VINES

Each pair of ears defines a cycle:




CYCLES IN VINES

In particular, the first and last ears define a cycle C:
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CYCLES IN VINES

In particular, the first and last ears define a cycle C:




LONG CYCLES

Dirac A 2-connected graph with minimum degree d contains
either a cycle of length at least 2d or a Hamilton cycle.

Proof

P a longest path O a vine on P such that:

e | Q| is as small as possible

e subject to this condition, |V(C) NV (P)| is as large as possible



LONG CYCLES

Where are the neighbours of x7
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Where are the neighbours of x7
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LONG CYCLES

Where are the neighbours of x7
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Both x and all its neighbours lie on C.



LONG CYCLES

Where are the neighbours of x7

(T TN S0

L Y

Both x and all its neighbours lie on C'. Likewise for v.



LONG CYCLES

Where are the neighbours of x7

(T TN S0

L Y

Both x and all its neighbours lie on C'. Likewise for v.

This implies that C' has length at least 2d or is a Hamilton cycle.



LONG CYCLES

Dirac A 2-connected graph which contains a path of length [
contains a cycle of length at least 2v/1.

Proof

/” a longest path O a vine on P

Recall that each pair of ears in Q defines a cycle:




LONG CYCLES

Suppose (for simplicity) that |Q| = 2t — 1 is odd.
There are t2 such cycles which include the central ear.
These cycles cover P ¢ times and the ears a total of ¢3 times.

So their average length is
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LONG CYCLES

Best possible:
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Best possible:
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Best possible:




DISJOINT VINES

Vines Q := (Q1,Q9,...,Qr) and R := (R, Ry, ..., Rs) on a path

x Py are disjoint if:

e their ears meet only on P
e only )1 and Ry have a common first vertex (z)

e only (), and R have a common last vertex (y)




DISJOINT VINES

B+Locke If P s a path in a 3-connected graph, there are two
disjoint vines on P.

Proof. Menger’s Theorem




3-CONNECTED CUBIC GRAPHS

If P has length [, how long a cycle must there be?




3-CONNECTED CUBIC GRAPHS
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3-CONNECTED CUBIC GRAPHS

Split the subgraph into ‘modules’:
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3-CONNECTED CUBIC GRAPHS

ST
S
ST




3-CONNECTED CUBIC GRAPHS

S
S
ST
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3-CONNECTED CUBIC GRAPHS

Three cycles covering each edge of this subgraph exactly twice.
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3-CONNECTED CUBIC GRAPHS

B+Locke A 3-connected cubic graph which contains a path of
length [ contains a cycle of length at least %l.

Upper bound (based on Petersen graph): %l



3-CONNECTED GRAPHS

Dirac A 2-connected graph which contains a path of length [
contains a cycle of length at least 2v/1.

B+Locke A 3-connected graph which contains a path of length
[ contains a cycle of length at least %l.

Thomassen Upper bound: %l



k-CONNECTED GRAPHS

Locke A k-connected graph which contains a path of length [
contains a cycle of length at least (%) [.

Thomassen Upper bound: (%)l



CYCLE DOUBLE COVERS

Tarsi A 2-edge-connected graph which contains a Hamalton path
admits a double cover by six even subgraphs.

Proof by Goddyn

e reduce (by standard arguments) to 3-connected cubic graphs

e consider two disjoint vines on the Hamilton path
e the union of the vines and the path is a spanning subgraph H

e there are three cycles C1, Cy, ('3 which cover each edge of H
exactly twice



CYCLE DOUBLE COVERS
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CYCLE DOUBLE COVERS

e the remaining set of edges F' admits a partition into three subsets
F, Fy, F3, where the edges in F; are chords of C;, 7 =1,2,3

e (; U F; is either a cycle or a subdivision of a cubic graph K;
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CYCLE DOUBLE COVERS

e /; is hamiltonian, so has a 3-edge-colouring in which the edges
of F; receive one colour and the edges of the Hamilton cycle are
coloured alternately with the other two colours
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CYCLE DOUBLE COVERS

e the union of F; with each of the other colours is a 2-tfactor of K
e these two 2-factors correspond to two even subgraphs of C; U F;

e the resulting six even subgraphs constitute a double cover

G




CYCLE DOUBLE COVERS

Conjecture (Preissmann) Fwvery 2-edge-connected graph admits a
double cover by five even subgraphs.



