for Jack on his 75th birthday

Adrian Bondy

WITH

STEPHEN LOCKE

What on earth is a vine?

NOT The Vines

NOT these vines

NOT these vines

these vines:

these vines:

OVERLAPPING PATHS

xPy: path P from x to y

ear of P: path uQv such that $Q \cap P = \{u, v\}$

OVERLAPPING PATHS

Ears uQv and u'Q'v' overlap on P if:

- $Q \cap Q' = \emptyset$
- $u \prec u' \prec v \prec v'$ or $u' \prec u \prec v' \prec v$

vine on a path P: sequence of ears $Q := (Q_1, Q_2, \dots, Q_r)$ where:

- Q_1 starts at the first vertex of P
- \bullet Q_r ends at the last vertex of P
- consecutive ears overlap
- nonconsecutive ears do not overlap

If P is a path in a 2-connected graph, there is a vine on P

Proof. Induction on the length of P:

Each pair of ears defines a cycle:

Each pair of ears defines a cycle:

In particular, the first and last ears define a cycle C:

In particular, the first and last ears define a cycle C:

Dirac A 2-connected graph with minimum degree d contains either a cycle of length at least 2d or a Hamilton cycle.

Proof

P a longest path Q a vine on P such that:

- |Q| is as small as possible
- subject to this condition, $|V(C) \cap V(P)|$ is as large as possible

Where are the neighbours of x?

Both x and all its neighbours lie on C.

Where are the neighbours of x?

Both x and all its neighbours lie on C. Likewise for y.

Where are the neighbours of x?

Both x and all its neighbours lie on C. Likewise for y.

This implies that C has length at least 2d or is a Hamilton cycle.

Dirac A 2-connected graph which contains a path of length l contains a cycle of length at least $2\sqrt{l}$.

Proof

P a longest path Q a vine on P

Recall that each pair of ears in Q defines a cycle:

Suppose (for simplicity) that $|\mathcal{Q}| = 2t - 1$ is odd.

There are t^2 such cycles which include the central ear.

These cycles cover P t times and the ears a total of t^3 times.

So their average length is

$$\frac{lt+t^3}{t^2} = \frac{l}{t} + t \ge 2\sqrt{l}$$

Best possible:

Best possible:

Best possible:

DISJOINT VINES

Vines $Q := (Q_1, Q_2, \dots, Q_r)$ and $\mathcal{R} := (R_1, R_2, \dots, R_s)$ on a path xPy are disjoint if:

- their ears meet only on P
- only Q_1 and R_1 have a common first vertex (x)
- only Q_r and R_s have a common last vertex (y)

DISJOINT VINES

B+Locke If P is a path in a 3-connected graph, there are two disjoint vines on P.

<u>Proof.</u> Menger's Theorem

If P has length l, how long a cycle must there be?

Split the subgraph into 'modules':

Three cycles covering each edge of this subgraph exactly twice.

B+Locke A 3-connected cubic graph which contains a path of length l contains a cycle of length at least $\frac{2}{3}l$.

Upper bound (based on Petersen graph): $\frac{7}{8}l$

3-CONNECTED GRAPHS

Dirac A 2-connected graph which contains a path of length l contains a cycle of length at least $2\sqrt{l}$.

B+Locke A 3-connected graph which contains a path of length l contains a cycle of length at least $\frac{2}{5}l$.

Thomassen Upper bound: $\frac{1}{2}l$

k-CONNECTED GRAPHS

Locke A k-connected graph which contains a path of length l contains a cycle of length at least $\left(\frac{2k-4}{3k-4}\right)l$.

Thomassen Upper bound: $\left(\frac{k-2}{k-1}\right)l$

Tarsi A 2-edge-connected graph which contains a Hamilton path admits a double cover by six even subgraphs.

<u>Proof</u> by Goddyn

- reduce (by standard arguments) to 3-connected cubic graphs
- consider two disjoint vines on the Hamilton path
- the union of the vines and the path is a spanning subgraph H
- there are three cycles C_1, C_2, C_3 which cover each edge of H exactly twice

- the remaining set of edges F admits a partition into three subsets F_1, F_2, F_3 , where the edges in F_i are chords of C_i , i = 1, 2, 3
- $C_i \cup F_i$ is either a cycle or a subdivision of a cubic graph K_i

• K_i is hamiltonian, so has a 3-edge-colouring in which the edges of F_i receive one colour and the edges of the Hamilton cycle are coloured alternately with the other two colours

- the union of F_i with each of the other colours is a 2-factor of K_i
- these two 2-factors correspond to two even subgraphs of $C_i \cup F_i$
- the resulting six even subgraphs constitute a double cover

Conjecture (Preissmann) Every 2-edge-connected graph admits a double cover by five even subgraphs.