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Abstract

We propose a new high-availability Scalable Distributed Data Sructure (SDDS) termed LH* gs. The data storage
scheme and the search performance of LH*gs are basically these of the well-known LH* SDDS LH* rs managesin
addition the parity information to tolerate the unavailability of k 3 1 server sites. The value of k gracefully scales with
the file, to prevent the rdiability decline. The parity calculus uses the Reed-Solomon Codes. The storage and access
performance overhead to provide the high-availability are about the smallest possible. The scheme should be attractive
to data-intensive applications. The scalability, parallel/distributed access and high-availability are of utmost
importance in such environment.

1 Introduction

Multicomputers (collections of computers connected by a high-speed network) are claimed the industry
choice for the next millennium [M97], [P98]. They combine affordability and high performance, but also
demand new data structures and agorithms for multicomputer files, [CACM97]. Specifically, the need for
scalability led to the definition of Scalable Didributed Data Sructures (SDDS) [LNS96]. Among the
proposals for an SDDS [SDDS], probably the one studied most is the distributed version of Linear Hashing
[L80], caled LH*, [LNS96], [KLR96], [B994|, [K98], [R98], [SDDS]. Every SDDS dlows the creation of
very large files whose records reside in buckets at different server sites. The files support key-based
searches and parallel/distributed scans with function (query) shipping. They can be hash-partitioned, or
ordered with respect to the primary key or support multikey access.

An SDDS file is manipulated by the SDDS diat sites. Each client has its own addressing schema
caled imagethat it uses to access the correct server where the record should be. As the existing bucketsfill
up, the SDDS scheme splits them into new buckets. The clients are not made aware synchronously of the
splits. They are perhaps very many and autonomous, hence unavailable whenever they wish so. A client
may have an outdated image and address an incorrect server. An SDDS server has the built-in capability to
forward incorrect queries. The correct server sends finaly the Image Adjusment Message (IAM) to the
client. The information in an IAM does not make necessarily the image totally accurate. It avoids at least to
repeat same error twice.

These principles avoid the centralized address calculus that could become a hot spot. They allow SDDS
files to scale to thousands sites. The scaling makes however a bucket unavailability (failure) increasingly

likely. A high availahility scheme retains the accessibility of all records to the application despite failures.
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A k-availability scheme preserves the availability of al records despite up to k bucket failures. A G
availability scheme does not tolerate unavailability of any record. The LH* as well as the traditional data
structures are all C-available by this measure.

Higher values of k enhance the overall rdiability of thefile, i.e., the probability that all stored data are
available to the application, [LMR98]. Modern databases run under the 24/7 regime to support web based
access and exemplify the need for high availability schemes as well as the cost of data unavailability. The
wdl known crash of eBay in June 1999 resulted in the loss of $4B of market value and of $25M in
operations[B99]. Thefailure of atypica financia database costs $10K -$27K per minute.

The first l-available SDDS scheme was a variant of LH* called LH* y;, [LN96]. This scheme mirrors
every bucket and thus preserves full accessibility despite a 1-bucket failure. The scalable and distributed
generalizations of B+-trees introduced in [BV98] and [VBW98] aso use the replication. In both cases, the
cost is the doubling of the storage requirements. This may be prohibitive for large files. High-availability
variants of LH* with smaller storage overhead have therefore been developed. The l-availability scheme
LH* 5 stripes every data record into mstripes, then places each stripe into a different bucket and stores the
bitwise parity of the stripes in parity recordsin additional parity buckets, [L&d97. The storage overhead
for the high-availability is only about ¥mfor m stripes per record. If abucket is unavailable because of a
missing stripe, then, like in the RAID schemes, LH* s recovers the missing stripe from al the other stripes
of the bucket, including the parity stripe.

Striping produces typically meaningless record fragments. This prohibits or at best heavily impairs the
paralel scans, especially with the function shipping. Those typicaly require entire records at each site.
Efficient scans are decisive for many applications, the web servers and parallel databases especially, [R98].
Another 1-availability variant of LH* termed LH* 4 addressed this concern [LR97], [L97], [LMRS99]. The
application record, called data record, remains entire in LH*4. For the high-availability, the records are
considered as forming mmember record groups provided each with the bitwise parity record. The
resulting storage overhead is about 1/m as for the striping. The speed of searches and of parallel scans
without failures is that of generic (O-available) LH*. It is unaffected by the additional structure for the
high-availability.

As the file grows, lavailability or even k-availability for any static k is however not sufficient to
prevent the reliability decrease. One needs to dynamically increase k. The result is scalable availability
ghemes. The first scalable availability scheme was LH* g [LMR98]. LH* g retains the concept of record
grouping, making the technique more elaborated. Each data record cis a member of k or k+1 1-available
groups that only intersect in c and are each l-available. Thevalue of k progressively increases with thefile.
For any k, the LH* <, fileis k-available. The storage overhead may vary substantially depending on thefile
size. It can be close to the minimal possible for k-availability which is known to be k/m [H&a94]. But, it
can aso become over 50 %.

Below, we present an alternative scalable availability scheme termed LH*rs. Through record grouping,

it retains the LH* generic efficiency of searches and scans. Each record belongs to one group only, but



with k or k+1 (generalized) parity records. This provides the (scaable) k-availability to the file. The parity
calculus uses the Reed Solomon Codes (RS-codes). This nathematically complex tool proves simple and
efficient in practice. The unique at present advantages of LH* rs that result from are “smoother” storage
overhead always close to the minimal possible, and more efficient recovery algorithm, accessing buckets
only within one group. The capabilities of LH*rs make the scheme potentially highly attractive. The other
high-availability LH* scheme retain nevertheless some advantages. The diversity should prove attractive to
implementers.

The next section introduces the high-availability features of LH* rsscheme. We focus on our use of the
RS-coding. Section 3 presents the actual parity computations in an LH*rs file. We explain the file
manipulation in Section 4. Section 5 discusses file performance and Section 6 addresses variants to the
scheme. Section 7 presents related work, and Section 8 concludes the article. Finally, Appendix provides
some mathematical background of RS-codes, pseudo-code for some algorithms and the glossary.

2 High-Availability of LH*:s Schema

2.1  Record Grouping
We assume a basic familiarity with LH*. A LH*gs file consists of an LH* -file called data file with the

data records generated by the application in data buckets 0,1,%,M-1. The LH* data file is augmented for
the high-availability with parity buckets to store the parity records at separate servers. A data record is
identified by its key c¢ and has also some non-key part, Figure 1b. As for the generic LH*, the correct
bucket a for data record c in an LH* s file is given by the linear hashing function ;,, a =h,(©). The
parameters (,n) called file sate evolve dynamically. The client image consists also from h, but perhaps

with outdated state. Details of the address computations are not important here.
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We group successively created data buckets in bucket groups. All but perhaps the last bucket group
have the same size m= Z for some f > Bucket a belongs to the group numbered g = a divm, where div
denotes integer division. The last bucket group can contain less than mbuckets. For the parity calculus, we
formaly complement it with dummy (not really existing) buckets with dummy (zero) records. Every bucket
group is provided with k3 1 parity buckets where the parity records for the group are stored. Figure 1a
shows a bucket group with four data buckets and their data records (-) and two parity buckets and their
parity records (x). Each data record has a rank 1,2/ that reflects the position of the record in its data
bucket. A record group contains all the data records with the same rank r in the same bucket group. Thek
parity buckets contain parity records for each record group. Figure 1a shows especially the record group
with r = 3. A parity record consists first of the rank r of the record group, then of the primary keys G, ¢, ¥a
g of al the (hon-dummy) data records in the record group, and finaly of the (generalized) parity data
calculated from the data records and the number of the parity bucket. The parity data, denoted by Bin
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Figure 1b, differ among the parity records. We call the ensemble of the data records in a record group and
its parity records arecord segment and likewise, the bucket group with its parity buckets abucket segment.

Figure 2 Scalableavailability of L H* rs file. (a) initial file, (b) 1% split,
(©) max 1-availablefile, (d) building 2-availability, and (€) 3-availability.



2.2 Scalable Availability
Figure 2illustrates the expansion of an LH* rsfile. Parity buckets are represented shaded and above the

datafile, right to the last, actual or dummy, bucket of the group they serve. Dummy buckets are delimited
with dotted lines. The file is created with data bucket 0 and one parity bucket, Figure2a. The first insert
creates the first parity record, calculated from the data record and from m1 dummy records. The data
record and the parity record receiverank 1. Thefileis1-available.

When new records are inserted into data bucket 0, new parity records are generated. Each new data and
parity record gets the next rank. When data bucket O reaches its capadity of b records, b >> 1, it splits.
Usualy half of its records move into data bucket 1. During the split, both the remaining and the relocated
records receive new consecutive ranks starting with r = 1. Since there are now (non-dummy) records with
the same rank in both buckets, the parity records are recalculated, Figure 2b.

The continuing growth of the file through inserts formally replaces the dummy records in the data

buckets with actual records. The splits append new data buckets 2,3% Eventually, a split creates data
bucket m+1. This starts the second bucket group and itsfirst parity bucket.

While the file continues to scale, the probability of double failure increases. To offset the decline in
reliability, the file availability increases gracefully to two parity buckets per group. This process starts,
Figure 2c and Figure 20 when the file reaches some size M = 21. Next bucket split is then bucket 0. We
recall that LH* scheme splits the buckets in the deterministic order 0,0,1%42 —1,0v4 On the one hand,
each new bucket group is from now on formed with two parity buckets. On the other hand, a second parity
bucket is appended to each existing bucket group during the split of its £ member. When M reaches
M=21*1 j.e. when thefile has doubled in size, all groups have two parity buckets. At this point, the fileis
2-available and can survivefailure of any two buckets.

Further scaling makes a triple failure increasingly likely. To offset the reliability decline, one has to
further increase the availability level. This starts again when the file reaches some size M = 22; i, > i; S0
that next bucket to split is again bucket 0, Figure 2e. Each split, starting from that of bucket 0 again, creates
then three parity buckets for the newly appended data bucket, and adds a third parity bucket to the two
already present for the splitting data bucket. Once data bucket M= 22 splitsin thisway, all bucket groups
are 3-available, and the file has reached 3availability. This process can continue towards 4-availability,
efc., making LH* rs a scalable availability schema

The values of iy, i, etc. which determine when the availability level starts to increase, are controlled by
the LH* rs-coordinator . Essentidly, the LH* gscoordinator is the LH* coordinator provided with additional
capabilities for the high-availability. We recall that the LH* coordinator handles the file state parameters
which it uses to calculate next bucket to split when some, usually another, bucket reports an insert creating
an overload. In addition, the LH* rs coordinator initiates the creation of parity buckets for new groups and
the scaling up of the availability. It also manages the record and bucket recovery.

The scheme alows for a variety of strategies in the management of availability. The basic strategy
starts increasing the k-availability towards (k + 1)-availability whenever the files reaches nt buckets. Inthe



notation from above, this variant chooses 2:=m, 22=nf etc. We call this strategy, as any other using
predefined vaues of i, uncontrolled rdiability. ~We implement the rdiability control strategy by
dynamically choosing i based on the file reliability as monitored by the coordinator. Whenever bucket 0 is
next in line for a split, the scheme decides whether the reliability level would drop under some threshold
Pnin before bucket 0 is again about to be split, and starts to create (k + 1) parity bucketsif necessary. The
basic Py, isthereliability of asingle bucket. Section5.4 discusses the reliability control more in depth.

2.3  Parity Coding

LH*rs parity calculus uses the linear Reed Solomon codes (RS codes). These are originally error

correcting codes, anong most efficient, since they are maximal distance separating (MDS) codes. We use
them as erasure correcting codes recovering unknown data values. We first recall the theory of Galois
Fidlds, at the basis of the RS codes. We use the terminology from [M S97].

2.3.1 Galois Fields
A Galois Field GH(N) is a set with N elements and the arithmetic operations of addition, subtraction,

multiplication, and division. There are two distinguished elements, a zero element, written 0, and a one
element, written 1. The operations over GF(N) possess the usual properties of their analogues in the real
numbers including the properties of 0 and 1.

For LH*rs, we only use GF(2") for some f > 0. We represents the elements of the field as f-bit strings.
The byte based structure of modern computers suggests f=4 or f=8. Generaly, the implementation of
multiplication consumes more resources for larger values for f , whereas a smaller value of f limits too

much the number of parity recordsin arecord group.

For every f, the bit representation of zero is 0 = 000 and of one is 1 = 0/201. For bytes, one thus has
0= 0000 0000 and 1 = 0000 0001. The addition and the subtraction of two elements are the same and
equal to their Exclusive-Or (XOR). The definition of multiplication and division is more cumbersome.
Mathematically most convenient is the definition of the multiplication based on representing the elements
of GR2) as polynomials of degree f over the field GF(2)= {0,1}. The multiplication is then the
multiplication of polynomials and the product is reduced modulo a certain generator polynomial. These
generator polynomials are irreducible polynomials of the appropriate degree. The mathematical tables with
generator polynomiasfor interesting field sizesarein [MS97].

GF multiplication via polynomia multiplication is hardly efficient. Rather, one uses table look-up.
Two methods are attractive: (1) a complete multiplication table supplemented by a table of multiplicative
inverses, and (2) the logarithm and the antilogarithm tables. Method (1) is conceptualy the easiest. Its
drawback is the size of the multiplication table. For bytes, the multiplication table would contain 252°=2"°
entries or 64KB. In addition, the tableistwo-dimensional and calculating the address of an entry introduces
additional overhead.

Method (2) is based on the existence of so-caled primitiveelements in each field. A primitive element
is characterized by the property that al ron-zero field elements are a power of the primitive element.
They exist in each Galois fidld. We fix such a primitive element p and determine for each element gin the



Gdois field the power i such that pi:g. We call the power i the logarithm of g and write i = logy(0).
Inversely, we cal g the anti-logarithm of i and write g = antilog, (). We tabulate logarithms and
antilogarithms in two single-dimensional tables each of the size of the field. We implement multiplication
and division of Galoisfield elements using these tables. For every two elements gand hT GF(?):

g>h = antilog,, (logy(g) + logy(h) ) and g/h= antilog, (logy(g) - logy(h) ),
where the addition or subtraction is executed modulo 2 -1. Recall that Z-1 is the number of non-zero
elementsinGF.

In fact, we can avoid the calculus modulo 2-1 and thus increase the speed of thismethod. The addition
or subtraction only calculates an entry in the anti4ogarithm table. We replicate the anti-logarithm table
once above and once below the original table in contiguous memory location. Normal unsigned number
operations then find the correct table entry. The costs of a multiplication and division is reduced to four
integer additions and subtractions only. This comes at the expense of doubling the table size. In this
version, the combined tables have 4*2 entries. For example, multiplication and division in GF(2)
requires only 512 B or 1 KB for the streamlined version. The necessary parameters to implement these
tablesare in [LC93].

2.3.2 Example

Consider GH(16) so f = 4. There are different implementations of this field, but the definition of the
logarithms given in Table 1 implements a valid field structure. Each field element can be represented as a
bit string, an integer, and as a hexadecimal digit. The primitive element is 2, the zero element is 0, and the
oneelementisl.

string int hex log
(0000 0 0 ¥
0001 1 1 0
0010 2 2 1
0011 3 3 4
0100 4 4 2
0101 5 5 8
0110 6 6 5
o1 7 7 10
1000 8 8 3
1001 9 9 14
1010 10 A 9
1011 11 B 7
1100 12 C 6
1101 13 D 13
1110 14 E 11
1 15 F 12

Table 1. Basic logarithm tablefor the multiplication in GF (16).



Addition remains the XOR operation as given by the » operator in C, C++, and Java. Asan example of
arithmetic, we calculate the sum, product, and quotient of the two field elements A and B. For the sum, we
caculate A+B = 1010 ~ 1011 = 0001 = 1 For the product, we take the logarithms of A and B, namely 9
and 7, add them up modulo 15 — because there are 15 non-zero elements —to obtain 1. The number with
logarithm 1 is 2, hence A*B = 2. To caculate A/B, we subtract the two logarithms, by taking the
remainder modulo 15 we change the difference to a number between 0 and 15, and then we take the
antilogarithm. Since log(A) — logB)= -2 ° 13 and since artilog(13) = D, we have A/B=D. In the faster
version of method (2), we use the offset —2 into the extended anti-logarithm table.

2.3.3 Parity Encoding
We use n for the maxima segment size, m for the record group size, and k for the number of parity

buckets. Thus, n=m+k, and the group isk-available.

For the parity calculus, we identify the data record with its non-key field and the parity record with its
parity fiddd B. Since the data record key is replicated in the parity records, it becomes part of the parity
calculus. We assume that data records in a record group are of the same length. Otherwise we pad the
shorter records with O bits to obtain the same length. We treat any record as a bit string. We break each
string into symboals of length f. If fdoes not divide the length of the string, we again pad with 0 bits. If we
choose f =4, 8, this padding should not be necessary. We identify the set of all possible symbolswith the
edementsin GF(i).

We generate each parity record for the record group from the data records one symbol at atime. For
the sake of presentation, we assume that all parity records are generated at the same time.  Similarly, we
assume that all data records in the record group are inserted into the file smultaneously. We show the
actual operationsin Section 3. Finaly, we assume the coding calculus to be centralized, while —aswewill
see - it isdistributed in the LH* R scheme.

We ae thus given m data records, each of which is a string of symbols. We calculate now the first
symbol in all the parity records simultaneously. Subsequent symbols are calculated in precisely the same
manner. First, we form the vector a = (a,&,as,....@n) Where a is the symbol from the " record in the
group. We collect the first symbol in al records (data and parity) in the vector u = (ag,@,...8n,8m+1y--3n),
to which we refer as a code word. The first mcoordinates of u are the coordinates of a The remaining k
coordinates of u are the newly generated parity bucket symbols.

We obtain u from a by multiplying a from the right with a generator matrix G of the linear (systematic)
RS-code; namely u = a G. G has mrows and n columns. G is systerstic, that is, G consists of two
concatenated sub matrices; namely G = I|P. Matrix | is a mxmidentity matrix, hence al =a That is why
first m coordinates of u form a. Only the columns of the parity matrix P operationally contribute to the k
parity symbols. Each parity symbol within i™" parity record is produced by the vector multiplication of aby
the i column of P. The entire record corresponds to the iteration of this multiplication over all the data

symbols.



Matrix G is generated algorithmically through appropriate elementary row transformations from m xn
matrix V that is a Vandermonde matrix (either smple or extended) [MS97]. The agorithm is in
Appendix A. Different values of k lead to different elements in P, despite same n. In practice, there are
only the k columns p of P present in the file. Each parity bucket contains only one p. This suffices as the
parity symbol isthe result of the product of u with the columnp.

The maximum number of columns of G is 2 +1, e.g. 257 for byte sized symbols. The number of parity
records for a record group is limited by this bound, which however appears to be sufficient for byte sized
symbols. We know a way to overcome this bound dynamically that is however beyond the scope of this
paper.

2.3.4 Example

For the sake of simplicity, we continue with GH16). The maxima segment size supported by GF(16)
isn=17. We set the bucket group sizeto m = 4. Our file availability level can scae to 13-availability.
There is away to allow even higher availability through dynamic switch to the field GH256), athough we
will not present it. We calculate agenerator matrix Gasin Appendix A to be

2 0008 F 177 93C2AET7T70
G_gOlOOF87l97C3A27E7:
¢ 01017 8 F 3C79EZ72AT7H
00017 1F 8C3977EA?2T7g,

The left four columns of G form the identity matrix. Any four different columns of G form an
invertible matrix. The multiplication of four-dimensiona vector a by G leads to 17-dimensional vector.
Because of the 4 x 4 identity submatrix of G, the first four coordinates of the vector replicate a. The other

13 coordinates are symbolsfor successive parity records.

Assume the following four data records. “En arche ...”, “Dans le ...”, “Am Anfang ...”, “In the

beginning¥s”. The bit strings in GF corresponding to the ASCII encoding for our four records are (in
hexadecima notation): “45 6E 20 41 72 Y4”, “41 6D 20 41 6E V4", “44 61 6E 73 20 ¥4”, “49 6E 20 70
744", To caculate the first symbols in each parity record we form the vector a = (4,4,4,4) and multiply it
by G. The product is vector u = (4,4,4,4,4,4,44,4,44,4, 44,44,4,0). For the second symbol in each parity
bucket, we form the vector a = (5149 and multiply by G to obtain code word u =
(5149F8A4B,1127E99A). Notice that the first four coordinates of u aways replicate the
coordinates of a We do not have to calculate dl coordinates of u at once, but can calculate them
individually instead. For example, to calculate the fifth coordinate of u, we multiply vector a with the fifth
column of G. Expressing this more conveniently using the dot product, we calculate (using GF instead of
integer operations)

ax(8F17=(5149x81F7) =58+1F+44+9¥=E+F+4+A=F.
The matrix notation merely combinesall 17 dot product calculations. In this manner, we obtain “4F 63 6E
E4Y4” for thefirst parity record, “48 6E DCEE Y4” for the second parity record, and “4A 66 49 DD %4”
for thethird.



2.3.5 Record Recovery
Assume that LH* rsfinds at most k data or parity records of arecord segment to be unavailable. Collect

any mavailable records of the segment. Also, concatenate the corresponding columns of G into themxm
marix H. By virtue of the Vandermonde matrix, any mx m submatrix of G is invertible. Using for
example Gaussian dimination, we compute H™. Collect the symbols with the same offset from the m
records into avector b. By definition, aH = b implying b4 =a Hence, multiply bby H? to recover
the missing symbols with the same offset. Using the same H™, iterate through the entire available records,
to produce al missing records.
2.3.6 Example

Consider that first three data records above became unavailable, i.e., only the fourth data record and the

first, second and third parity records are available. Weform H from the columns 3to 6:

8@ 8 F 1o

H:go F 8 7?

G0 1 7 8%

7 1 Fg

Inversion of Hyields:

8@ F A 1%

H-l:GC 4 2 oj

¢4 7 D 0

gz D 4 04

The first vector b formed from the first symbols of the three remaining records is b = (4,4,4,4). Hence,
b= (4,4,4,4). The next symbols lead to b= (9,F,8A) and b- H'= (5,1,4,9) etc. The first coordinates of
b vectors provide the first missing data record “45...”, the second coordinates the second data record
“41...”, thethird coordinates the third data record “44%4", and the fourth coordinates merely reproduce the
fourth datarecord “49...”

3 Actual Parity Coding
The basic operations on a data record are that of insertion, deletion, or update. For the parity calculus,

the update is the generic operation, the inserts and deletes are seen as specia cases. An update basically
changes only the nonkey data, and related parity records. An update to the key is dealt with as adeletion
followed by an insert into usually a new location. An insert is formally an update of a dummy record into
the actual one. Vice versa, adeletion is an update into the dummy record.
3.1 Updates

We consider an update to the i data record in its group. Let abe the vector with symbols with the
same offset of the data records in the record group before the update and & the vector formed similarly
after the update. Vectorsa’ and adiffer inthe it positiononly. Leuand u’ bethe resulting code words.
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Thus u=a G u =a' Gand ther differenceis D=u-u =(a-a)G. We have a-a’' =(0....,0,03,0....,0)
where D, is the difference between the same offset symbols in the old and in the new record. We recall that
ina GF the subtraction equals to the XOR operation, as the addition. To calculate D we only need the it
row of G. Since U’ =u + D one can calculate the new parity values by calculating Dfirst and then XOR
this to the current u value that is the content of B field of each parity record. In other words, with G being
the i row of G:

3D U =axG=(@t+a-a) G=aG+ (a-a)G=u+DG.

In particular, the new symbol U’ in bucket j is calculated from the old symbol u;, the difference D between
the new and the old symbol in the updated record, and the coefficient of G located in thei” row and ™"
column as

32 uj=u + Dg,.

We cal D-record the string obtained as the XOR of the new and the old symbols with the same offset
within the updated record.

To implement an update operation without key change, LH*rs sends the D-record together with the
bucket number i and the rank r (to identify the record group) to all parity sites. Each parity site calculates
the Bfidd (or parity record proper) according to equation (3.1). Coefficient g is stored with the parity
bucket as part of the " column of G,

3.2 Inserts and deletions

An insert formally replaces a dummy record with an actual data record. At the data bucket, the key
fidd c and the non-key data field are updated. Through the insertion, the new record obtainsarank r. The
data bucket then sends the rank r, the key ¢, the bucket number i, and the non-key data as the Drecord to all
parity buckets. The rank identifies the parity record in need of change. If the parity record with this rank
does not yet exist, we create it. The field ¢ of this parity record changestoc. We calculate field Bin the
parity record by XORing the Drecord with the current contents of B, just as for an update. The
justification liesin the fact that the implicit dummy record has been changed to the new record.

Likewise, a data record deletion is an update to a dummy record. The operation proceeds by first
finding the data record and removing it from the data bucket. Rank r, bucket number i, and the record itself
as Drecord are send to all the parity buckets. Rank r identifies the parity record, the field G is set to zero,
and field Bis XORed with the Drrecord. If the data record wasthe last in the group, then all key fields g in
the parity record are now zero. Thefield Biszero aswell. We can then delete the parity record aswell.

3.3 Example

Continuing with the running example, assume that we have four data buckets 0/23 with two parity
buckets for this group, all buckets being empty. Weinsert, and update records into successive buckets and
a the same rank, disregarding, for the sake of the example, the actual LH* addressing rules. First, we
insert record “En arche ...” into data bucket 0. This becomes the Drecord, since the previous content isa
dummy record, so XORing the symbols in the string “En arche ...” with the zero symbols yields of course
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the string “En arche ...”. The Drecord isthen sent to the parity buckets, together with its bucket number 0
and rank 1. In hexadecimal notation, the Drecord is“45 6E 20 41 72 ...". Thefirst parity bucket is bucket
4, hence it carries G4. There, the symbols of the Drecord get multiplied by 8, the first row coefficient in
G4. The result is the string “6E 59 30 68 ...” which becomes the field B of the first parity record with rank
1. Formally, the string resulting the multiplication is XORed to the old content of B to become the actual
B. As the old B happens to contain only zero symbols, there is no need to actually perform the XOR.
Similarly, the second parity bucket multiplies the Drecord with F, the coefficient in the first row of Gs,
yidding “96 45 DO 9F ..." in the parity field B.

Now, we insert the second record “Dansle ...” or “41 6D 20 41 6E ...” into bucket 1. Thisstring is sent
to both parity buckets as the Drecord. It multiplies there respectively F and 8, which are the coefficient in
the second rows of G, and of Gs. The results are “9F 47 DO 9F ...” and “68 53 30 68 ...” respectively.
These are XORed to the strings in each B that are the above “6E 59 30 68 ...” and “96 45 DO 9F ...". This
yieldsto“F11IEEQF7...” and“FE 17 EO F7 ..." asthe contents of the B-fields in buckets 4 and 5.

We insert the other two data records in the same manner. The final parity record fields B become “4F
63 6E E4 V4" and “48 6E DC EE ¥4". Assume now that one changes the 1% data record from “En arche
%" to “Ininitio ¥". In hexadecimal notation, the change is from “45 6E 20 41 72 ¥4” to “49 6E 20 69 V4",
We XOR these two strings obtaining the D-record “0C 0000 28/, shipped to the parity buckets. ThisD-
record is shipped from bucket 0 to both parity buckets. At the first parity bucket, we first multiply it by the
coefficient in the first row of G4. We obtain “0A 00 00 3C ¥4” We form the XOR with the existing B that
is“4F 63 6E E4v4”. Theresult is“45 63 6E D8 ¥4”. The calculation at the second parity bucket proceeds
in the same manner, except that we use of the coefficient in the first row of Gs, namely F. The
multiplication of the Drecord by F yields “08 00 00 D1 v,”. The final XOR to the old content of Bgives
“45636ED8Y4” asthe new value.

4  File Manipulation

To create an LH* s file, the application provides the group size m. The GH4) or GH(8) are chosen
accordingly, and the coordinator computes the generator matrix G. It aso initializes bucket 0 and the first
parity bucket, where it stores the first column of parity matrix P. All other file creation operations are asfor
the generic LH*.

Further manipulation is in normal mode if it executes as generic LH* operations, except perhaps for
additional operations on the parity buckets, assumed all accessible. An operation enters the degraded mode
if it cannot access a record in normal mode. This happens for an unavailable or digolaced bucket. The
displaced bucket case occurs when a query is sent to the bucket that in the meantime was recovered.
Hence, it is elsawhere at the server that was spare at the time. The originator of the query may be unaware
of new location. It gets then the correct address if the query terminates successfully in a dedicated |AM.
The addressis not necessarily of that spare that could itself become unavailable in the meantime.



The operations in degraded mode are handed to the coordinator. From the file state, it may locate the
displaced buckets. If a recovery should occur, the coordinator attempts to recover the entire bucket at a
spare, or only the searched record. If there are less than mavailable records for a group, which makes the
recovery calculus as defined above impossible, the coordinator enters the catastrophic mode. Case specific
algorithms are then used. Some records may be unrecoverable, but there may be good cases. We will not
discuss this mode in depth. An example of agood caseisin Section7.

We now overview the LH*Rs file manipulations focusing on differences to generic LH*. We start with
record and bucket recovery. Recall that the number of data buckets in a bucket group is mand call the
number of parity buckets in a given bucket group k. The number of buckets in a segment of a k-available
fileisn=m+ k', where K=k or K =k+1.

4.1 Record Recovery

To recover arecord with key ¢, the coordinator probes the k' parity buckets in some order, sending an
unicast message with key ¢, the unavailable data bucket address a, and the address of the client. If no
parity bucket is available, then the failure is catastrophic. Otherwise, the first parity bucket p that replies
takes the control of the recovery, to avoid turning the coordinator into a bottleneck for recovery. Bucket p
searches for the parity record with c among its keys. The rank r of the record cannot be determined from ¢
hence one uses a sequentia scan, or the parity bucket maintains a hash table with entries of the form (c r).
If cis not found, then the search for the key cis unsuccessful, i.e., the record with key cwas not in thefile.
Notice that this constitutes also a successful recovery.

Otherwise, the parity record r found contains key c only or with x £ (k'-1) other keys. If record r
contains only ¢, then all the other records in its record group are dummy. One trivially computes offseti of
¢ within its group using a and aeates H from dl columns of I, but column i, and from its column of P.
Afterwards, one performsthe recovery calculus using the RS-decoding, as described.

If record r contains several keys, the bucket searches for every data record with keyc * cinrecordr. If
al are found, and x = (k’-1), then the bucket orders them along their offsets, producesH from al columns
of | but i and from its own parity column and performs the recovery calculus. If x< k', but al the records
arefound, then therecords at the other offsets are assumed dummy.

If however |>0 records among x revea unavailable, and | < K, then bucket p probes other parity
buckets. Each probe requests parity record r and column of P stored at the bucket. If | 3 k', then thefailure
is again catastrophic. Idem, if less than | parity buckets respond to the probe. Otherwise, bucket p produces
the columns of H from | according to the offsets of the k' -1 data records found, completes with the
columns of P received and performs the RS-decoding.

Bucket p sends to the client the recovered record c or the information that key cis not in the file. It
alerts the coordinator otherwise.
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4.2  Bucket Recovery
Both data and parity buckets can be recovered using RS-decoding, aslong as there are mbucketsin the

segment. Parity records can be aso recovered from the data buckets through RSencoding. Record
recovery can be performed concurrently with bucket recovery, asthe latter isamore involved operation.

Unavailable buckets are recovered at spare servers. To start, the coordinator probes the segment with
the bucket to recover for the availability of the other buckets. 1f mor more reply, then recovery proceeds,
otherwise the case is catastrophic. The coordinator passes their addresses and further control of the
operation to one of the spare servers. If there are data records to recover, the spare collects columns of
parity matrix P at the parity buckets, and forms and inverts matrix H. It then calculate the missing data
records consecutively, storesthem or sends to the spares where they should be. Thekey fields are from the
parity records. The non-key fields are calculated from H?, from the non-key fields of other data records in
the group, and from the B-fiel ds of the parity records.

Once data records are recovered, the remaining parity buckets to recover, if any, are produced in turn,
usng matrix G. If only parity buckets should be recovered, then one skips the reconstruction of data
buckets. In afinal step, the spare notifies perhaps the originator of the query of new locations through
IAMs.

4.3 Key search

Normally, the LH* rs key search for key c isthe LH* key search. The degraded mode is triggered by the
client or the forwarding server. The coordinator uses the LH* file state parameters to calculate the address
of the correct bucket. If this addressis not the one of the unavailable or displaced bucket, it forwardscto
the correct bucket. If that bucket is available, it replies to the LH* rs client, including the IAM. If the
coordinator finds the correct bucket unavailable, it attempts the record recovery. Likewise, it initiates the
recovery of any unavailable forwarding bucket.

4.4 Scan

In the normal mode the scan proceeds as a LH* scan. We recall, that the client starts with a series of
unicast messages or a multicast message. The request specifies whether the scan has deterministic or
probabilistic termination. In both cases, buckets that have relevant records send them to the client. For the
probabilistic termination, then only these buckets reply. Otherwise, every bucket in the file replies at least
with the bucket number. The LH* deterministic termination protocol detects whether every bucket had
replied, even if the client image was outdated.

The degraded mode occurs only if the unicast messages are used to deliver the request or if the
deterministic termination isrequested. The coordinator attempts the corresponding bucket recovery and the
successful termination of the scan.

4.5 Insert
In norma mode, a LH* gs client performs the insert like a LH* client. The correct data bucket resends

the record as D-record to all the parity buckets of the group. Their addresses arein its header.
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The degraded mode is triggered by the client or the forwarding server or the correct data bucket that
finds an unavailable or displaced bucket. The finder sends the record to the coordinator. For the client, the
operation is then successfully terminated. The coordinator determines the correct bucket for the insertion.
If it is unavailable, then it attempts the bucket recovery, with the record to be inserted. As for the key
search, it also recovers any unavailable forwarding bucket.

4.6 Split

As in the generic LH*, an insert to an overflowing bucket is reported to the coordinator. This usually
triggers a split of the bucket pointed out by the split pointer n which is one of the file state parameters.
Bucket nistypicaly different from that receiving the insert. After the split, n:= n+ 1 mod 2 and, if n:=0,
thenj =j+1. Initidly,n=j =0.

In normal mode the coordinator assigns new ranks to all the records, whether they remain in the parent
bucket or end up in the new bucket. The move of arecord either within the parent bucket (unless by chance
the new and the old rank coincide) or to new bucket is formally a deletion followed by an insert. Existing
parity buckets are updated accordingly. In practice, it should be more efficient to recreate them.

If new bucket starts a group, then the coordinator creates new parity buckets and their records. If the
number of parity buckets per segment is being upgraded, the split operation appends in addition a new
bucket to the group of the parent bucket.

The degraded mode consists basically of the recovery of the bucket, combined in the implementation
dependent way with its split.

4.7 Update

In the normal mode, the client performs the update as for LH*. At the correct bucket, the update does
not change the rank r of the record, unless a split occurs between the time the client reads the record and
the time of the return of the update. In the former case, the bucket calcul ates the D-record and sends it with
itsrank r to the parity buckets. These buckets recalculate their parity recordsr. Inthelatter case, the parent
bucket gets the updated record anyhow and computes whether should migrate or stay. In both case the rank
r typically changes. The update by definition concerns only non-key data otherwiseit isarecord deletions
and the insert to, usualy, different location. If the updated record moves, there is no more parity records
concerning it in its parent segment. It suffices thus that whether the record moves or not, only the bucket
that finally storesit computesthe D-record and sendsit out.

The degraded mode may start during the search for the record to update or when the client sends back
the update or when the servers sends out Drecord. If the correct bucket is available, the coordinator
resends the record there. Otherwise, the coordinator updates the record in the recovered bucket. If the
forwarding bucket was unavailable, the coordinator initiates the recovery of this bucket. The originator of
the degraded mode gets the address of the recovered or displaced bucket in the lAM.
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4.8 Deletion
In the norma mode, the client performs the deletion of record ¢ as for LH*. The correct bucket in

addition sends its address and record c with its rank r, to the parity buckets. Each bucket removes key ¢
fromits parity recordr. If cisthelast key, record r is deleted. Otherwise, its parity field Bis adjusted.

In the degraded mode, if the data bucket is unavailable or displaced, the coordinator localizes the correct
data bucket. It recovers it without the record to be deleted, as well as, perhaps, the unavailable forwarding
or parity buckets.

4.9 Merge

Deletions may trigger a bucket merge that is the inverse to a split. In the normal mode, it moves the
records of the last data bucket back into its parent bucket and removes the last bucket. The moved records
receive new ranks in the parent bucket. The parity buckets of both groups are updated accordingly. If the
removed bucket was the only one in its group, then the parity buckets for this group are deleted. The
number of parity buckets in the segment might also decrease. In the degraded mode, first al unavailable
buckets arerecovered.

5 Performance
Detailed performance analysis is lengthy and complex. It would exceed the limits of this paper and is

the subject of a dedicated work. We only evaluate the typical values summarized in Table2. Theseare
easy to derive and intended as guidelines for the file design. The actual costs may be larger than the typical
ones, or noticeably smaller.

Mode Normal Degraded
Typica Max Overhead
Succ. key search 2 4 0 I1+R
Unsucc. key search 2 4 0 4
Scan (determ. term.) | 1+M n/a 0 T+M+yB
Insert T+k 3+k+D) Kk I+R
Update 2+k 6+k+D) K 1+ R+B
Delete T+k 3+K+D k I+k+B
Spiit 0.35b+0.70k | n/a 0.7k 0.3%+0.70k +B
Merge o+2ok n/a 2kbk ko+2k +B
Typical Max
Exist. record rec. (R) 1+2m 2+2mHK
Bucket Rec. (B) 0.70(m+x-1) | n/a
Storage overhead k'm k+D)/m

Table2 LH* rs data access and high-availability performance
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5.1 File Manipulation
As usual, we measure access performance with the number of messages, as the metric independent of

network speed and topology. A message contains at most one record. Table 2 shows the typical and the
worst costs of various operations. For convenience, we explicitly show also the typical overhead of high-
availahility. The worst case of an operation accessing parity records is computed for a (k+1) available
group in a k-available file. The worst cost beyond the practical sense is omitted (n/a). For instance, very
unlucky hashing could skyrocket the split or merge cost. The typical file has bucket capacity b>>1, size
M >>m, i.e. has several groups, and the load factor of data buckets of 0.7. It uses unicast messages, except
for starting the parallel scans.

The performance of key search in normal mode is that of LH* . It is independent of M and does not
carry any high-availability overhead. The degraded mode cost includes the record recovery cost R The
successful search cost typically depends on m, but, perhaps surprisingly, not the unsuccessful one. The
degraded node increases the successful search time typically (mt+1) times. Notice that this performance is
a so independent of Mand about best possible.

The scan aso performs as for LH* and does not carry the high-availability overhead. The degraded
mode carries the bucket recovery cost B, times the number y of unavailable buckets encountered in
different groups.

An insert, update or delete in normal mode carries the overhead of typicaly k messages to parity
buckets. This is the theoretical minimum for any k-available schema. The actual overhead may be aso
k + 1 when the availahility starts to scale. Thisis also the minimal price for the scalable availability. The
costs of degraded mode includesBat |east.

The split and merge costs in Table 2 are easy to derive. Factor bdenotes the data buckets |oad factor
low enough to trigger merges.

Record recovery cost R in Table 2 results directly from the algorithm. The recovery starts with 1
message to the coordinator. Then, there is typically one message to a parity bucket of the failed bucket. If
the searched key is not found at this bucket, there is only 1 more message to the client. Otherwise the
bucket sends out typically m1 messages to data buckets. Finally the recovered record is sent to the client.

The worst case corresponds to k+1 unavailable buckets probed in vain. Notice from the agorithm that
there are also other cases. An group maybe incomplete, with | < mactual datarecords, hence the degraded
successful search cost can be substantially under the typical one, reaching even only 4 messages. More
precise estimates of Rtaking to the account the likelihood of each case, and of X-bucket unavailability
remains to be done.

The bucket recovery cost B estimates in Table 2 result directly from the algorithm. It considers the
typical bucket load of 0.7b records, and presence of x3 1 failures. Notice the efficiency for x>1 due to the
simultaneous recovery of dl the unavailable buckets. The worst case obviously does not make sense in
practice.
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Finer estimates remain to be determined. The presence of incomplete groups, likely for groups towards
tops of the buckets, decreases the cost. In contrast, a parity bucket to recover should often have more
records than atypical data bucket, hence a higher recovery cost. It hasindeed as many records as the most
loaded data bucket in the group. The deviation should obviously increase with m It becomes more likely
that some data bucket in the group has more records than the average load. The LH* file with 70% load is
however known to have only a few overflow records. Hence, regardless of m, a parity bucket with more
than brecordsin such fileisunlikely aswell.

Notice finally that Table 2 proves globally an excellent scalability the LH* rs file manipulations. The
costs are either independent of the file size M, or typically increase about as little as possible, basically
through the necessary increase to k. We recall from Section O that to scale k with M is mandatory for the
reliability. Section 5.4 analyzesit more in depth.

5.2 Storage

Each bucket group carries typicaly k or sometimes k+1 parity buckets and bucket is the storage
alocation unit for both data and parity records. Thefile storage overhead, isthustypically k/m Thisis the
minimal overhead for any k-available file, regardless of the parity calculus method used [H&a94]. The
additional overhead of up to 1/mconstitutes the price for the scalable availability. Thisis aso the minimal
cost of this capability.

The overhead storage at each parity bucket server for RS calculus specific datais in practice negligible.
One needs stable storage basically only for the melement single column of P, and for the 2 or 3+2
elements of the log multiplication table. The inversion of the matrix H requires only 2% elements of
temporary storage.

5.3 Parity Calculus Time

Parity encoding and decoding speed depend on the network and CPU performance. The decoding also
strongly depend on the choice of the group size mwhose larger values benefit the storage overhead but
make the recovery costs higher in turn. Easy but lengthy evaluations that we skip here show that on arather
typical ste with 200 MHZ CPU, and 100 Mb/s network the resulting times should remain acceptable. For
quite large m= 32, the record recovery time of 1KB records stored in RAM buckets is in the order of
milliseconds. Assuming for instance the data bucket capacity of b = 3000 records, the bucket recovery
should take less than a minute. For similar disk buckets, the time for record recovery is about a second and
bucket recovery takes afew minutes.
5.4 Reliability

The rdiability is the probability that al the data are available, i.e., there is no catastrophic failure. It
depends on b, m, k, M and the probability p that a single bucket is unavailable. One can estimate the
reliability of an LH* gs file through formulae using these parameters developed for LH* s, [LMR98]. Both
schemes use record grouping. Their differences influence the storage overhead and other performance
factors but not the basic calculation of reliability. Same parameterslead to the same estimate.
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Figure 3 shows two simulated curves of the reliability P for an LH* gs file with uncontrolled reliability
obtained in this way. The values of p chosen seem conservatively realistic. They mean that a site is
unavailable on the average for 3-5 days per month. Each minimum of Pisthesize m that starts next scali ng
up of k, i.e., the (k+1yavailability level starts to built up. Each maximum is the size 2ni when the (entire)
file becomes k+1)available and k:=k+1. The files scale to M=1024 buckets, i.e,, somewhere between
1+100 Thyte. In both cases, without the scalable availability, Pwould start continuously decreasing from
M = 8, instead of remaining above the value close to the reliability of a single bucket, respectively, above
92% and 82%. For p=0.15 the successive minima of P have the tendency to remain about the same, while
for p = 0.1 they increase progressively. This tendency would be even stronger for lower p. One may then
delay the increase of the availability level k with respect to the basic schema, through some reliability
control, as discussed in Section 0. The threshold By, on P value could be here P, = 0.9, i.e, asit was
suggested the reliability 1-p of asingle bucket. Lower costs of parity management would result from, see
Table2.

Alternatively, one may choose larger group size m. The storage overhead for the same availability level
decreases, but the recovery costs increase. The curve for p = 0.15 shows in contrast that the reliability
evolution is close to optimal. The minimal vaue of P stays automatically about 0.85. Therefore, for even

higher p, and same m, the uncontrolled reliability would not suffice and the curve would decrease.
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Figure 3 Uncontrolled reiability of an LH* rsfile

Both curves show that, the reliability control is useful for a multicomputer with sites characterized by
p£ 0.1 For less reliable sites with p>0.15, it appears in practice necessary, as m < 4 seems the smallest
practical choice. Curvesin [LMR98], for related choices of p and various m> 4, confirm this conclusion.
While not only higher p but also alarger m may make the reliability control necessary, these results show
nevertheless that for p << 0.1, the uncontrolled reliability may suffice for a quite large m. For instance for
p= 0.01, one may choose m=16 and for p = 0.005, even m = 32 suffices to keep P 3 99% up to M= 32K.
Notice that m3 32 requires GF (256). The storage overhead for such m decreases with respect to m=4 a
least 8 times for the same availability level k, while the recovery cost increases similarly. Vice versa, the
same storage overhead allowsfor eight times greater k.
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6 Variants
An application may benefit from selected performance tuning. Specific variants of the basic schema

may be designed to address this concern. First, there are numerous variants of LH* schema known, their
choice impacts the performance of the LH* rs data file. They differ by the internal structure of buckets, the
split algorithm, the strategy for the load factor control/a Some variants do not even have the coordinator.

There are aso issues specific to the parity management. The implementation choices for GF
multiplication, including the data structures for the tables, impact the calculus speed. Other algorithmsare
known for matrix inversion and to generate matrix G. The internal structure of a parity bucket obviously
influences its access and storage performance. The bucket recovery calculus can be made parallel between
the participated buckets. The algorithms recovering from specific catastrophic failures can be added

The storage of parity buckets allows for interesting optimizations. The basic scheme stores parity
buckets at a dedicated servers. This overhead to the number of servers may itself bother an application.
Next, while the searches in normal mode do not concern the parity servers, a parity bucket is involved in
every update of a data bucket in the group. The processing load from data modification at a parity server is
hence about mtimes larger than at a data server. An application with a large amount of data modifications
could see the parity servers becoming bottlenecks.

The correctness of the parity calculus does not depend on parity buckets being stored at separate servers.
It merely requires that no server contains two buckets in the same segment. To better balance the |oad, one
may replace then a single parity bucket with mbuckets storing b/mrecords each, stored the different pieces
a different servers. The mbuckets can form a simple hash subfile. This variant equalizes the load from of
the data modifications. On the negative side, it requires more parity servers and sees more messaging
during splits and reconstructions.

To decrease the number of parity servers, one may share a server between a data and a parity bucket.
One simple rule locates the i parity bucket of group j with the i data bucket of group j+1. Figure2 may
be seen asiillustrating this rule. It guarantees that all buckets in a segment are stored at different server. It
can be easily extended to the above discussed parity subfiles. In this scheme, every server carries at most
one data bucket and zero, or some parity buckets. The servers carrying data for the first group will never
have parity data. In turn, some servers to serve the data buckets of the next group to be generated carry only
parity buckets, but not yet data buckets. The “dark size of the Moon™ is obviously increased storage use at
each server and processing load.

Finally, one can have the servers for data of group O temporarily carrying the parity buckets for the last
existing group. If the file expands further, these buckets move to the adequate locations, being replaced by
new last buckets. This simple loop-back strategy eliminates the additional parity servers entirely. It
minimizes the number of servers for the file to M, required anyway for the data buckets. Notice the
potential interest of this variant to the users of the current parallel DBMSs. Their currently O-available hash
or even range-partitioning methods, could be enhanced to the high-availability at no additional hardware
Ccost.



Finally, the Reed Solomon Codes used are not the only possibility. Some other codes are potentially
attractive aswell, [ABC97], [H&a94], [BFT98].

7 Related work
There were countless high-availability schemes for a single site, usually l-available and using some

RAID-like striping. A few schemes appeared for the (static) k> 1 k-availability in this context, [BM93],
[BBMO3], [H&a94], and [ABC97] recently. There were also studies for the distributed environment, e.g.
[SG90] showing the inefficiency of any trivial striping. Deeper discussion of al these schemes, including
SDDS schemes with mirroring or replication mentioned in the Introduction, is in [LMR98]. However,
besides the LH* gs, the only schemes known to satisfy all our goals, including the moderate storage
overhead for the high-availability, are the other LH* schemes using the record grouping mentioned in the
Introduction. Their mutual comparison appears as follows [LS99].

LH*rs may offer substantially lower overhead than LH*gs. The reason is that the number k of parity
records to make a group k-available is aways exactly the theoretical minimum k/m This is a remote
conseguence of the MDS property of RS-codes, [MS97].

LH*rs record recovery cost should typically be lower than that of LH* 4. It may be higher or lower than
that of LH* g5. This is due to more complex parity calculus of LH*gs on the one hand, or to possibly more
messages for LH* sa to explore multiple groups, on the other hand.

Variants minimizing the number of the file servers through sharing of data and parity buckets are known
only for LH* gs. Such variant seem at best more difficult to design for the two other schemes.

If l-availability suffices, then LH*y has the smallest split cost. Its record groups are location
independent and there is no need to recal cul ate the parity data during splits. Generalizing the parity calculus
to RS-codes allows perhaps for a k-available variant of LH* ¢ retaining that property [LMRS99].

Findly, LH* sa may often recover from I|-bucket failure where | > k which would be catastrophic for
LH*rs The difference may be quite substantial. For instance, a 2-available LH* s file may recover records
from any |>> 2 unavailable buckets in the same group. LH* rs can accommodate at most 3 unavailable
buckets per group in a 2-available file, and only, provided it started to build the 3-availability. Notice that
LH*rs a@so has good cases, athough the overall balance seems in favor of LH* sa. For instance, in our
example file with record group size m = 4, made 2available, we can recover from the unavailability of

buckets 0,1,4, and 5. Thisfailure is unrecoverablein a2-available LH* s file with the same groups.

8 Conclusion
LH*rs schema uses the concept of record grouping and the Reed-Salomon codes to provide scalable,

distributed and high-availahility files, badly needed by modern applications It should prove attractive by
its numerous interesting properties, including the scalable availability and near-optimal access performance
and storage use efficiency. It offers distinct advantages over the other high-availability schemes known.
Among potential applications, there are modern database systems, needing continuously larger scalable
databases, and for which the parallel access is aready a must [FBW97], [B&al95], [IBM99]. Many of the
existing databases or warehouses grow very rapidly. The well-known UPS multidatabase passed from 4 to
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13 TB between 97 and 98, and many other similar examples are known. The multimedia servers aso start
using multicomputers and the success may make them scaling big [B&a95], [H96]. In the Web arena,
more and more systems maintain TB of data on large multicomputers. This is the case of the 166-site
multicomputer of Inktomi a Santa Clara, CA, and of the 100-site of Yahoo in Vienna, VA, which is aso
built by Inktomi, [198]. An implementation of SDDSs is under study for such applications [G99]. For dl
these needs, both scalability and 24/7 availability are critical. The already mentioned mishap of E-Bay is
hereto stay asthe reminder.

Future work should include the prototype implementation and deeper analysis of various design issues,
and performance factors discussed in the related sections. This applies also to the variants. The basic ideas
in LH* gs should be also ported to other SDDS schemes, e.g., RP*.
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Appendix A
Let n be the maxima segment size and m the maximal group size. We recdll that the generator matrix G

of an RS-code has mrows and n columns. The left mby msubmatrix of Gistheidentity matrix |, sincewe
use a sydematic RS code. Any sguare submatrix formed from any mdifferent columnsof Gisinvertible.
We derive matrix G as follows from a Vandermonde matrix V. V has mrows and n columns, these we

index by the n elements g T GF(n), j =0, ..., 1. We number the columns and rows from 0 and order the
field elements so that gy = O and g; = 1 Coefficient v;; located in the i row and the j" column of V is
then defined to be the [ element of the Galois Field raised to the i power that is:
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Thus,
831 1 1 1 9
¢c0O 1 g9, g, e
v:go 1 ¢ o .o
¢0 1 g3 g .7

Row O contains only ones since for every j, g° = 1. Since go = 0, the first column contains otherwise
zeroes. Since g = 1, the 2" column contains only 1's. Vandermonde showed the determinant of any
sguare submatrix of V consisting of mcolumns generated by elementsg to be

det V :Q (9 -9)*0
i<j

It follows that any sguare m by m submatrix of V isinvertible. This property holds also for the extended
V withlast column 0, O, ... O, 1 that we used to generate our example G in Section 2.34.

We now give the details of our transformation of V into G = I|Pwhere | is the identity matrix. We
denote m[i,j], i,j 3 0, the coefficient of matrix minrow i and column j. We denote the jth row of the current
matrix with m;  We use dementary row transformetion [MM, 1.3.2]. These are multiplying a row by a
scalar, exchanging two rows, and adding a multiple of one row to another. We denote these
transformations by my U amy, mj O mi,m; U m; +ami, al GH?) respectively. Our algorithm uses up to
m row transformations to transform a column into a unit vector. The first column is aready the first unit
vector. The second column has aready the onein position [1,1], and we add the second row to all the other
rows resulting in the second unit vector for the second column. This operation retains the form of the first
column. We now change the third column into the unit vector. The diagonal element m2,2] there is
obviously non-zero. We multiply the third row with the inverse of this element, so that the coefficient
m[2,2] is now 1. Then we generate zeroes in the third column by adding m[i,2Jm, to al other rows m.
This operation does not change the first and second column. Continuing in this manner, we transform m

left columns of V into unit vectors, i.e. the | submatrix. We give pseudo-code, ala [PTVF92], inFigure 4.

Initilizem =V,
for al columnsi =0, ..., m1 do
{
@) mi U m[i,i]*m.
fordl rowsj =0, ..., m1, butji,do

m U m- m[,i] m;

Figure4 Psaudo-codetotransform V into generator matrix G.
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Our inversion algorithm proceeds in a similar manner. Assume that we are given a square m x mmatrix
H (which we know to be invertible). We form the m x 2Znmatrix H|l by appending the identity matrix to
H. We then use the same agorithm as the one presented in Figure4, with one exception. It is no longer
guaranteed that the diagonal element mi,i] in line (4) is dways non-zero. We therefore replace line (4)

with the following lines:

(49) ifm[i,]j==0do

(4b) {

(4c) findaj >isuchthatm[j,ijt C;
(4d) m; U m;

(4e) }

(49 m U miii]™m,

After the algorithm has run, matrix H|l has been transformed into a matrix 1|R. Matrix R is the inverse of
H,i.e isH™.

Glossary

a—dataword

b— bucket capacity

B— parity bitsfield

c—datarecord key

f— parity symbol length

g-element of G

GF- GdoisFidd

G- generator matrix

| — identity matrix

k— availability level of arecord group & its number of parity records
M- number of data bucketsin thefile

m-— record group size

n—segment size (n= m+ k)

N-— size of GFused, N = (2) for LH* rs

p- probability that a single bucket is unavailable

P— filerdiability (probability that all records are available)
P — parity matrix

V — Vandermonde matrix

u— codeword
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