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Abstract 

We propose a new high-availability Scalable Distributed Data Structure (SDDS) termed LH*RS. The data storage 

scheme and the search performance of LH*RS are basically these of the well-known LH* SDDS. LH*RS manages in 

addition the parity information to tolerate the unavailability of k ≥ 1 server sites. The value of k gracefully scales with 

the file, to prevent the reliability decline. The parity calculus uses the Reed-Solomon Codes. The storage and access 

performance overhead to provide the high-availability are about the smallest possible. The scheme should be attractive 

to data-intensive applications. The scalability, parallel/distributed access and high-availability are of utmost 

importance in such environment.  

1 Introduction 
Multicomputers (collections of computers connected by a high-speed network) are claimed the  industry 

choice for the next millennium [M97], [P98]. They combine affordability and high performance, but also 

demand new data structures and algorithms for multicomputer files, [CACM97].  Specifically, the need for 

scalability led to the definition of Scalable Distributed Data Structures (SDDS) [LNS96].  Among the 

proposals for an SDDS [SDDS], probably the one studied most is the distributed version of Linear Hashing 

[L80], called LH*, [LNS96], [KLR96], [B99a], [K98], [R98], [SDDS].  Every SDDS allows the creation of 

very large files whose records reside in buckets at different server sites. The files support key-based 

searches and parallel/distributed scans with function (query) shipping.  They can be hash-partitioned, or 

ordered with respect to the primary key or support multikey access.  

An SDDS file is manipulated by the SDDS client sites. Each client has its own addressing schema 

called image that it uses to access the correct server where the record should be. As the existing buckets fill 

up, the SDDS scheme splits them into new buckets. The clients  are not made aware synchronously of the 

splits. They are perhaps very many and autonomous, hence unavailable whenever they wish so. A client 

may have an outdated image and address an incorrect server. An SDDS server has the built-in capability to 

forward incorrect queries. The correct server sends finally the Image Adjustment Message (IAM) to the 

client. The information in an IAM does not make necessarily the image totally accurate. It avoids at least to 

repeat same error twice.  

These principles avoid the centralized address calculus that could become a hot spot. They allow SDDS 

files to scale to thousands sites. The scaling makes however a bucket unavailability (failure) increasingly 

likely. A high availability scheme retains the accessibility of all records to the application despite failures. 

                                                                 
1 Université Paris IX (Dauphine), CERIA, Witold.Litwin@dauphine.fr 
2 Jesuit School of Theology, 1756 Leroy Avenue, Berkeley, CA 94709, USA, schwarz@scudc.scu.edu 



- 2 -  

A k-availability scheme preserves the availability of all records despite up to k bucket failures.  A 0-

availability scheme does not tolerate unavailability of any record. The LH* as well as the traditional data 

structures are all 0-available by this measure.   

Higher values of k enhance the overall reliability of the file, i.e., the probability that all stored data are 

available to the application, [LMR98].  Modern databases run under the 24/7 regime to support web based 

access and exemplify the need for high availability schemes as well as the cost of data unavailability.  The 

well-known crash of eBay in June 1999 resulted in the loss of $4B of market value and of $25M in 

operations [B99].  The failure of a typical financial database costs $10K-$27K per minute.  

The first 1-available SDDS scheme was a variant of LH* called LH* M, [LN96].  This scheme mirrors 

every bucket and thus preserves full accessibility despite a 1-bucket failure. The scalable and distributed 

generalizations of B+ -trees introduced in [BV98] and [VBW98] also use the replication.  In both cases, the 

cost is the doubling of the storage requirements.  This may be prohibitive for large files. High-availability 

variants of LH* with smaller storage overhead have therefore been developed.  The 1-availability scheme 

LH*S stripes every data record into m stripes, then places each stripe into a different bucket and stores the 

bitwise parity of the stripes in parity records in additional parity buckets, [L&al97].  The storage overhead 

for the high-availability is only about 1/m for m stripes per record. If a bucket is unavailable because of a 

missing stripe, then, like in the RAID schemes, LH* S recovers the missing stripe from all the other stripes 

of the bucket, including the parity stripe. 

Striping produces typically meaningless record fragments.  This prohibits or at best heavily impairs the 

parallel scans, especially with the function shipping. Those typically require entire records at each site. 

Efficient scans are decisive for many applications, the web servers and parallel databases especially, [R98].  

Another 1-availability variant of LH* termed LH*g addressed this concern [LR97], [L97], [LMRS99]. The 

application record, called data record, remains entire in LH*g. For the high-availability, the records are 

considered as forming m-member record groups provided each with the bitwise parity record.  The 

resulting storage overhead is about 1/m, as for the striping. The speed of searches and of parallel scans 

without failures is that of generic (0-available) LH*.  It is unaffected by the additional structure for the 

high -availability.  

As the file grows, 1-availability or even k-availability for any static k is however not sufficient to 

prevent the reliability decrease.  One needs to dynamically increase k.  The result is scalable availability 

schemes.  The first scalable availability scheme was LH*SA [LMR98].  LH*SA retains the concept of record 

grouping, making the technique more elaborated. Each data record c is a member of k or k+1 1-available 

groups that only intersect in c and are each 1-available. The value of k progressively increases with the file. 

For any k, the LH*SA file is k-available.  The storage overhead may vary substantially depending on the file 

size. It can be close to the minimal possible for k-availability which is known to be k/m, [H&al94]. But, it 

can also become over 50 %.  

Below, we present an alternative scalable availability scheme termed LH*RS.  Through record grouping, 

it retains the LH * generic efficiency of searches and scans. Each record belongs to one group only, but  
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with k or k+1 (generalized) parity records. This provides the (scalable) k-availability to the file.  The parity 

calculus uses the Reed Solomon Codes (RS-codes). This mathematically complex tool proves simple and 

efficient in practice. The unique at present advantages of LH* RS that result from are “smoother” storage 

overhead always close to the minimal possible, and more efficient recovery algorithm, accessing buckets 

only within one group. The capabilities of LH*RS make the scheme potentially highly attractive. The other 

high -availability LH*  scheme retain nevertheless some advantages.  The diversity should prove attractive to 

implementers. 

 The next section introduces the high-availability features of LH*RS scheme.  We focus on our use of the 

RS-coding. Section 3 presents the actual parity computations in an LH*RS file. We explain the file 

manipulation in Section 4.  Section 5 discusses file performance and Section 6 addresses variants to the 

scheme. Section 7 presents related work, and Section 8 concludes the article. Finally, Appendix provides 

some mathematical background of RS-codes, pseudo-code for some algorithms and the glossary. 

2 High-Availability of LH*RS Schema  

2.1  Record Grouping 
We assume a basic familiarity with LH*.  A LH*RS file consists of an LH*-file called data file with the 

data records generated by the application in data buckets 0,1,…,M-1. The LH* data file is augmented for 

the high-availability with parity buckets to store the parity records at separate servers.  A data record is 

identified by its key c and has also some non-key part, Figure 1b. As for the generic LH*, the correct 

bucket a for data record c in an LH* RS file is given by the linear hashing function j,n, a = hj,n (c). The 

parameters (j,n)  called file state evolve dynamically. The client image consists also from h, but perhaps 

with outdated state.  Details of the address computations are not important here.  
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Figure 1 LH*RS file: (a)  2-available bucket group (b) Data and parity records  
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We group successively created data buckets in bucket groups. All but perhaps the last bucket group 

have the same size m = 2f for some f >1.  Bucket a belongs to the group numbered g = a div m, where div 

denotes integer division. The last bucket group can contain less than m buckets. For the parity calculus, we 

formally complement it with dummy (not really existing) buckets with dummy (zero) records. Every bucket 

group is provided with k≥1 parity buckets where the parity records for the group are stored.  Figure 1a 

shows a bucket group with four data buckets and their data records (•) and two parity buckets and their 

parity records (x). Each data record has a rank   1,2… that reflects the position of the record in its data 

bucket.  A record group contains all the data records with the same rank r in the same bucket group.  The k 

parity buckets contain parity records for each record group. Figure 1a shows especially the record group 

with r = 3. A parity record consists first of the rank r of the record group, then of the primary keys c1, c2, … 

cl of all the (non-dummy) data records in the record group, and finally of the (generalized) parity data 

calculated from the data records and the number of the parity bucket.  The parity data, denoted by B in 

Figure 1b, differ among the parity records.  We call the ensemble of the data records in a record group and 

its parity records a record segment and likewise, the bucket group with its parity buckets a bucket segment.  

Figure 2 Scalable availability of LH*RS file. (a) initial file, (b) 1st split, 
 (c) max 1-available file, (d) building 2-availability, and (e) 3-availability. 

 

2i2-1 

0 m-1 

2i1-1 

(a) 

(c) 

(d) 

(e) 

0 1 

(b) 



- 5 -  

2.2 Scalable Availability 
Figure 2 illustrates the expansion of an LH*RS file. Parity buckets are represented shaded and above the 

data file, right to the last, actual or dummy, bucket of the group they serve. Dummy buckets are delimited  

with dotted lines. The file is created with data bucket 0 and one parity bucket, Figure 2a. The first insert 

creates the first parity record, calculated from the data record  and from m-1 dummy records.  The data 

record and the parity record receive rank 1.  The file is 1-available. 

When new records are inserted into data bucket 0, new parity records are generated.  Each new data and 

parity record gets the next rank.  When data bucket 0 reaches its capacity of b records, b >> 1, it splits. 

Usually half of its records move into data bucket 1.  During the split, both the remaining and the relocated 

records receive new consecutive ranks starting with r = 1.  Since there are now (non-dummy) records with 

the same rank in both buckets, the parity records are recalculated, Figure 2b.    

The continuing growth of the file through inserts formally replaces the dummy records in the data 

buckets with actual records. The splits append new data buckets 2,3… Eventually, a split creates data 

bucket m+1.  This starts the second bucket group and its first parity bucket. 

While the file continues to scale, the probability of double failure increases. To offset the decline in 

reliability, the file availability increases gracefully to two parity buckets per group. This process starts, 

Figure 2c and Figure 2d  when the file reaches some size M = 2i1. Next bucket split is then bucket 0. We 

recall that  LH* scheme splits the buckets in the deterministic order 0,0,1…2i – 1,0… On the one hand, 

each new bucket group is from now on formed with two parity buckets. On the other hand, a second parity 

bucket is appended to each existing bucket group during the split of its 1st member. When M reaches 

M = 2i1+1, i.e., when the file has doubled in size, all groups have two parity buckets. At this point, the file is 

2-available and can survive failure of any two buckets. 

Further scaling makes  a triple failure increasingly likely. To offset the reliability decline, one has to 

further increase the availability level. This starts again when the file reaches some size M = 2i2; i2 > i1 so 

that next bucket to split is again bucket 0, Figure 2e. Each split, starting from that of bucket 0 again, creates 

then three parity buckets for the newly appended data bucket, and adds a third parity bucket to the two 

already present for the splitting data bucket. Once data bucket M = 2i2  splits in this way, all bucket groups 

are 3-available, and the file has reached 3-availability.  This process can continue towards 4-availability, 

etc., making LH* RS a scalable availability schema.  

The values of i1, i2 etc. which determine when the availability level starts to increase, are controlled by 

the LH*RS-coordinator .  Essentially, the LH* RS coordinator is the LH* coordinator provided with additional 

capabilities for the high-availability.  We recall that the LH* coordinator handles the file state parameters 

which it uses to calculate next bucket to split when some, usually another, bucket reports an insert creating 

an overload.  In addition, the LH* RS coordinator initiates the creation of parity buckets for new groups and 

the scaling up of the availability. It also manages the record and bucket recovery.    

The scheme allows for a variety of strategies in the management of availability.  The basic strategy 

starts increasing the k-availability towards (k + 1)-availability whenever the files reaches mk buckets.  In the 
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notation from above, this variant chooses 2i1 = m,  2i2 = m2 etc.  We call this strategy, as any other using 

predefined values of i, uncontrolled reliability.  We implement the reliability control strategy by 

dynamically choosing i bas ed on the file reliability as monitored by the coordinator. Whenever bucket 0 is 

next in line for a split, the scheme decides whether the reliability level would drop under some threshold 

Pmin before bucket 0 is again about to be split, and starts to create (k + 1) parity buckets if necessary.  The 

basic Pmin is the reliability of a single bucket.  Section 5.4 discusses the reliability control more in depth. 

2.3  Parity Coding 
LH*RS parity calculus uses the linear Reed Solomon codes (RS codes).  These are originally error 

correcting codes, among most efficient, since they are maximal distance separating (MDS) codes . We use 

them as erasure correcting codes recovering unknown data values.   We first recall the theory of Galois 

Fields, at the basis of the RS codes.  We use the terminology from [MS97].   

2.3.1 Galois Fields 
A Galois Field GF(N) is a set with N elements and the arithmetic operations of addition, subtraction, 

multiplication, and division.  There are two distinguished elements, a zero element, written 0, and a one 

element, written 1.  The operations over GF(N) possess the usual properties of their analogues in the real 

numbers including the properties of 0 and 1. 

For LH*RS, we only use GF(2f) for some f > 0.  We represents the elements of the field as f-bit strings. 

The byte based structure of modern computers suggests f = 4 or f = 8.  Generally, the implementation of 

multiplication consumes more resources for larger values for f , whereas a smaller value of f limits too 

much the number of parity records in a record group. 

For every f, the bit representation of zero is 0 = 00…0 and of one is 1 = 0…01. For bytes, one thus has 

0 = 0000 0000 and 1 = 0000 0001.  The addition and the subtraction of two elements are the same and 

equal to their Exclusive-Or (XOR).  The definition of multiplication and division is more cumbersome.   

Mathematically most convenient is the definition of the multiplication based on representing the elements 

of GF(2f) as polynomials of degree f over the field GF(2) = {0,1}.  The multiplication is then the 

multiplication of polynomials and the product is reduced modulo a certain generator polynomial.  These 

generator polynomials are irreducible polynomials of the appropriate degree.  The mathematical tables with 

generator polynomials for interesting field sizes are in [MS97]. 

GF multiplication via polynomial multiplication is hardly efficient.  Rather, one uses table look-up.  

Two methods are attractive: (1) a complete multiplication table supplemented by a table of multiplicative 

inverses, and (2) the logarithm and the antilogarithm tables. Method (1) is conceptually the easiest.  Its 

drawback is the size of the multiplication table.  For bytes, the multiplication table would contain 28⋅28=216 

entries or 64KB. In addition, the table is two-dimensional and calculating the address of an entry introduces 

additional overhead. 

Method (2) is based on the existence of so-called primitive elements in each field.  A primitive element 

is characterized by the property that all non-zero field elements are a power of the primitive element.   

They exist in each Galois field.  We fix such a primitive element p and determine for each element g in the 
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Galois field the power i such that pi=g.  We call the power i the logarithm of g and write i = logp(g).   

Inversely, we call g the anti-logarithm of i and write g = antilogp (i).  We tabulate logarithms and 

antilogarithms in two single -dimensional tables each of the size of the field.  We implement multiplication 

and division of Galois field elements using these tables.  For every two elements  g and h ∈ GF(2f):   

g⋅ h = antilogp ( logp(g) + logp(h) )   and   g/h = antilogp ( logp(g) - logp(h) ), 

where the addition or subtraction is executed modulo 2f -1.  Recall that 2f-1 is the number of non-zero 

elements in GF.   

In fact, we can avoid the calculus modulo 2f-1 and thus increase the speed of this method.  The addition 

or subtraction only calculates an entry in the anti-logarithm table.  We replicate the anti-logarithm table 

once above and once below the original table in contiguous memory location.  Normal unsigned number 

operations then find the correct table entry. The costs of a multiplication and division is reduced to four 

integer additions and subtractions only.  This comes at the expense of doubling the table size.  In this 

version, the combined tables have 4*2f entries.  For example, multiplication and division in GF(28)  

requires only  512 B or 1 KB for the streamlined version.  The necessary parameters to implement these 

tables are in [LC93]. 

2.3.2 Example 
Consider GF(16) so f = 4.  There are different implementations of this field, but the definition of the 

logarithms given in Table 1 implements a valid field structure.  Each field element can be represented as a 

bit string, an integer, and as a hexadecimal digit.  The primitive element is 2, the zero element is 0, and the 

one element is 1.   

 
string int hex log 
0000 0 0 -∞∞ 
0001 1 1 0 
0010 2 2 1 
0011 3 3 4 
0100 4 4 2 
0101 5 5 8 
0110 6 6 5 
0111 7 7 10 
1000 8 8 3 
1001 9 9 14 
1010 10 A 9 
1011 11 B 7 
1100 12 C 6 
1101 13 D 13 
1110 14 E 11 
1111 15 F 12 

 

Table 1. Basic logarithm table for the multiplication in GF (16). 
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Addition remains the XOR operation as given by the ^ operator in C, C++, and Java.  As an example of 

arithmetic, we calculate the sum, product, and quotient of the two field elements A and B.  For the sum, we 

calculate A+B = 1010 ^ 1011 = 0001 = 1.  For the product, we take the logarithms of A and B, namely 9 

and 7, add them up modulo 15 – because there are 15 non-zero elements – to obtain 1.  The number with 

logarithm 1 is 2, hence A*B = 2.  To calculate A/B, we subtract the two logarithms, by taking the 

remainder modulo 15 we change the difference to a number between 0 and 15, and then we take the 

antilogarithm.  Since log(A) – log(B)= -2 ≡ 13, and since antilog(13) = D, we have A/B=D.  In the faster 

version of method (2), we use the offset –2 into the extended anti-logarithm table. 

2.3.3 Parity Encoding 
We use n for the maximal segment size, m for the record group size, and k for the number of parity 

buckets.  Thus, n = m + k, and the group is k-available. 

For the parity calculus, we identify the data record with its non-key field and the parity record with its 

parity field B.  Since the data record key is replicated in the parity records, it becomes part of the parity 

calculus.  We assume that data records in a record group are of the same length.  Otherwise we pad the 

shorter records with 0 bits to obtain the same length.  We treat any record as a bit string.  We break each 

string into symbols of length f.  If f does not divide the length of the string, we again pad with 0 bits.  If we 

choose f = 4, 8, this padding should not be necessary.  We identify the set of all possible symbols with the 

elements in GF(2f). 

We generate each parity record for the record group from the data records one symbol at a time.  For 

the sake of presentation, we assume that all parity records are generated at the same time.  Similarly, we 

assume that all data records in the record group are inserted into the file simultaneously.  We show the 

actual operations in Section 3.  Finally, we assume the coding calculus to be centralized, while – as we will 

see - it is distributed in the LH*RS scheme. 

We are thus given m data records, each of which is a string of symbols.  We calculate now the first 

symbol in all the parity records simultaneously.  Subsequent symbols are calculated in precisely the same 

manner.  First, we form the vector a = (a1,a2,a3,...,am) where ai is the symbol from the ith record in the 

group. We collect the first symbol in all records (data and parity) in the vector u = (a1,a2,...,am,am+1,...,an), 

to which we refer as a code word.  The first m coordinates of u are the coordinates of a.  The remaining k 

coordinates of u are the newly generated parity bucket symbols. 

We obtain u from a by multiplying a from the right with a generator matrix G of the linear (systematic) 

RS-code; namely u = a G.   G has m rows and n columns.  G is systematic, that is, G consists of two 

concatenated sub matrices; namely G = I|P. Matrix I is a m x m identity matrix, hence a I = a. That is why 

first m coordinates of u form a. Only the columns of the parity matrix P operationally contribute to the k 

parity symbols. Each parity symbol within ith parity record is produced by the vector multiplication of a by 

the ith column of P. The entire record corresponds to the iteration of this multiplication over all the data 

symbols. 
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Matrix G is generated algorithmically through appropriate elementary row transformations from m x n 

matrix V that is a Vandermonde matrix (either simple or extended) [MS97]. The algorithm is in 

Appendix A.  Different values of k lead to different elements in P, despite same n. In practice, there are 

only the k columns p of P present in the file. Each parity bucket contains only one p.  This suffices as the 

parity symbol is the result of the product of u with the column p. 

The maximum number of columns of G is 2f +1, e.g. 257 for byte sized symbols.  The number of parity 

records for a record group is limited by this bound, which however appears to be sufficient for byte sized 

symbols.  We know a way to overcome this bound dynamically that is however beyond the scope of this 

paper. 

2.3.4 Example 
For the sake of simplicity, we continue with GF(16).  The maximal segment size supported by GF(16)   

is n = 17.  We set the bucket group size to  m = 4.  Our file availability level can scale to 13-availability.  

There is a way to allow even higher availability through dynamic switch to the field GF(256), although we 

will not present it.  We calculate a generator matrix G as in Appendix A to be 

G = 



















7277938171000

7279738710100

7723791780010

7723977180001

AECF
AECF

EACF
EACF

. 

The left four columns of G form the identity matrix.  Any four different columns of G  form an 

invertible matrix.  The multiplication of four-dimensional vector a by G leads to 17-dimensional vector.  

Because of the 4 x 4 identity submatrix of G, the first four coordinates of the vector replicate a.  The other 

13 coordinates are symbols for  successive parity records. 

Assume the following four data records: “En arche ...”, “Dans le ...”, “Am Anfang ...”, “In the 

beginning…”.  The bit strings in GF corresponding to the ASCII encoding for our four records are (in 

hexadecimal notation): “45 6E 20 41 72 …”, “41 6D 20 41 6E …”, “44 61 6E 73 20 …”, “49 6E 20 70 

74…”.  To calculate the first symbols in each parity record we form the vector a = (4,4,4,4) and multiply it 

by G.  The product is vector u = (4,4,4,4,4,4,4,4,4,4,4,4, 4,4,4,4,4,0).   For the second symbol in each parity 

bucket, we form the vector a = (5,1,4,9) and multiply by G to obtain code word u = 

(5,1,4,9,F,8,A,4,B,1,1,2,7,E,9,9,A).  Notice that the first four coordinates of u always replicate the 

coordinates of a.  We do not have to calculate all coordinates of u at once, but can calculate them 

individually instead.  For example, to calculate the fifth coordinate of u, we multiply vector a with the fifth 

column of G.  Expressing this more conveniently using the dot product, we calculate (using GF instead of 

integer operations) 

a ⋅ (8,F,1,7) = (5,1,4,9) ⋅ (8,1,F,7)  = 5⋅8 + 1⋅F + 4⋅1 + 9 ⋅7 = E + F + 4 + A = F . 

The matrix notation merely combines all 17 dot product calculations.  In this manner, we obtain “4F 63 6E 

E4 …” for the first parity record, “48 6E DC EE …” for the second parity record, and “4A 66 49 DD …” 

for the third. 
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2.3.5 Record Recovery 
Assume that LH* RS finds at most k data or parity records of a record segment to be unavailable. Collect 

any m available records of the segment. Also, concatenate the corresponding columns of G into the m x m 

matrix  H.  By virtue of the Vandermonde matrix, any m x m submatrix of G is invertible. Using for 

example Gaussian elimination, we compute H-1.  Collect the symbols with the same offset from the m 

records into a vector b.  By definition,  a⋅H = b  implying  b⋅H-1 = a.  Hence, multiply b by H-1 to recover 

the missing symbols with the same offset.  Using the same H-1, iterate through the entire available records, 

to produce all missing records.   

2.3.6 Example 
Consider that first three data records above became unavailable, i.e., only the fourth data record and the 

first, second and third parity records are available.  We form H from the columns 3 to 6: 

.

171

8710
780
180



















=

F

F
F

H  

Inversion of H yields: 

.

042
074
024
1

1



















=−

D
D

C
AFB

H  

The first vector b formed from the first symbols of the three remaining records is b = (4,4,4,4).  Hence,   

b⋅⋅ H-1 = (4,4,4,4).  The next symbols lead to b = (9,F,8,A) and b· H-1= (5,1,4,9) etc. The first coordinates of 

b vectors provide the first missing data record “45...”, the second coordinates the second data record 

“41...”,  the third coordinates the third data record “44…”, and the fourth coordinates merely reproduce the 

fourth data record “49...”   

3 Actual Parity Coding 
The basic operations on a data record are that of insertion, deletion, or update.  For the parity calculus, 

the update is the generic operation, the inserts and deletes are seen as special cases. An update basically 

changes only the non-key data, and related parity records. An update to the key is dealt with as a deletion 

followed by an insert into usually a new location.  An insert is formally an update of a dummy record into 

the actual one. Vice versa, a deletion is an update into the dummy record. 

3.1 Updates  
We consider an update to the ith data record in its group.  Let a be the vector with symbols with the 

same offset of the data records in the record group before the update and a’ the vector formed similarly 

after the update. Vectors a’ and a differ in the ith position only.   Le u and u’ be the resulting code words.   
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Thus  u = a G, u’ = a’ G and their difference is ∆∆ = u - u’ = (a - a’) G.  We have a - a’ = (0,...,0,∆i,0,...,0) 

where ∆i is the difference between the same offset symbols in the old and in the new record. We recall that 

in a GF the subtraction equals to the XOR operation, as the addition. To calculate ∆∆, we only need the ith 

row of G.  Since u’ = u + ∆∆, one can calculate the new parity values by calculating ∆∆ first and then XOR 

this to the current u value that is the content of B field of each parity record.  In other words, with Gi being 

the ith row of G: 

(3.1)     u’  = a’⋅G = (a+(a’-a)) G = a G +  (a - a’) G = u + ∆i Gi. 

In particular, the new symbol u’j in bucket j is calculated from the old symbol uj, the difference ∆i between 

the new and the old symbol in the updated record, and the coefficient of G located in the ith row and jth 

column as  

(3.2)     u’j = uj + ∆i gi,j. 

We call ∆∆-record the string obtained as the XOR of the new and the old symbols with the same offset 

within the updated record.   

To implement an update operation without key change, LH*RS sends the ∆∆ -record together with the 

bucket number i and the rank r (to identify the record group) to all parity sites.  Each parity site calculates 

the B field (or parity record proper) according to equation (3.1).  Coefficient gij is stored with the parity 

bucket as part of the jth column of G. 

3.2 Inserts and deletions 
An insert formally replaces a dummy record with an actual data record.  At the data bucket, the key 

field c and the non-key data field are updated.  Through the insertion, the new record obtains a rank r. The 

data bucket then sends the rank r, the key c, the bucket number i, and the non-key data as the ∆∆-record to all 

parity buckets.  The rank identifies the parity record in need of change.  If the parity record with this rank 

does not yet exist, we create it.  The field ci of this parity record changes to c.  We calculate field B in the 

parity record by XORing the ∆∆-record with the current contents of B, just as for an update.  The 

justification lies in the fact that the implicit dummy record has been changed to the new record. 

Likewise, a data record deletion is an update to a dummy record.  The operation proceeds by first 

finding the data record and removing it from the data bucket.  Rank r, bucket number i, and the record itself 

as ∆∆-record are send to all the parity buckets.  Rank r identifies the parity record, the field ci is set to zero, 

and field B is XORed with the ∆∆-record.  If the data record was the last in the group, then all key fields cj in 

the parity record are now zero.  The field B is zero as well.  We can then delete the parity record as well.  

3.3 Example 
Continuing with the running example, assume that we have four data buckets 0…3 with two parity 

buckets for this group, all buckets being empty.  We insert, and update records into successive buckets and 

at the same rank, disregarding, for the sake of the example, the actual LH* addressing rules.  First, we 

insert record “En arche ...” into data bucket 0.   This becomes the ∆∆-record, since the previous content is a 

dummy record, so XORing the symbols in the string “En arche ...” with the zero symbols yields of course 
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the string “En arche ...”.  The ∆∆-record is then sent to the parity buckets, together with its bucket number 0 

and rank 1.  In hexadecimal notation, the ∆∆-record is “45 6E 20 41 72 ...”.  The first parity bucket is bucket 

4, hence it carries G4. There, the symbols of the ∆∆-record get multiplied by 8, the first row coefficient in 

G4.  The result is the string “6E 59 30 68 ...” which becomes the field B of the first parity record with rank 

1. Formally,  the string resulting the multiplication is XORed to the old content of B to become the actual 

B. As the old B happens to contain only zero symbols, there is no need to actually perform the XOR.  

Similarly, the second parity bucket multiplies the ∆∆-record with F, the coefficient in the first row of G5, 

yielding “96 45 D0 9F ...” in the parity field B.   

Now, we insert the second record “Dans le ...” or “41 6D 20 41 6E ...” into bucket 1.  This string is sent 

to both parity buckets as the ∆∆-record. It multiplies there respectively F and 8, which are the coefficient in 

the second rows of G4 and of G5.  The results are “9F 47 D0 9F ...” and “68 53 30 68 ...” respectively.  

These are XORed to the strings in each B that are the above “6E 59 30 68 ...” and “96 45 DO 9F ...”. This 

yields to “F1 1E E0 F7...” and “FE 17 E0 F7 ...” as the contents of the B-fields in buckets 4 and 5. 

We insert the other two data records in the same manner.  The final parity record fields B become “4F 

63 6E E4 …” and “48 6E DC EE …”.  Assume now that one changes the 1st  data record from “En arche 

…” to “In initio …”. In hexadecimal notation, the change is from “45 6E 20 41 72 …” to “49 6E 20 69 …”.  

We XOR these two strings obtaining the ∆∆ -record  “0C 00 00 28…”,  shipped to the parity buckets. This ∆∆-

record is shipped from bucket 0 to both parity buckets. At the first parity bucket, we first multiply it by the 

coefficient in the first row of G4.  We obtain “0A 00 00 3C …” We form the XOR with the existing B that 

is “4F 63 6E E4…”.  The result is “45 63 6E D8 …”.  The calculation at the second parity bucket proceeds 

in the same manner, except that we use of the coefficient in the first row of G5, namely F.  The 

multiplication of the ∆∆-record by F yields “08 00 00 D1 …”. The final XOR to the old content of B gives 

“45 63 6E D8 …” as the new value. 

4  File Manipulation 
To create an LH*RS file, the application provides the group size m. The GF(4) or GF(8) are chosen 

accordingly, and the coordinator computes the generator matrix G. It also initializes bucket 0 and the first 

parity bucket, where it stores the first column of parity matrix P. All other file creation operations are as for 

the generic LH*. 

Further manipulation is in normal mode if it executes as generic LH* operations, except perhaps for 

additional operations on the parity buckets, assumed all accessible. An operation enters the degraded mode 

if it cannot access a record in normal mode. This happens for an unavailable or displaced bucket. The 

displaced bucket case occurs when a query is sent to the bucket  that in the meantime was recovered. 

Hence, it is elsewhere at the server that was spare at the time. The originator of the query may be unaware 

of new location. It gets then the correct address if the query terminates successfully in a dedicated IAM. 

The address is not necessarily of that spare that could itself become unavailable in the meantime. 
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The operations in degraded mode are handed to the coordinator. From the file state, it may locate the 

displaced buckets. If a recovery should occur, the coordinator attempts to recover the entire bucket at a 

spare, or only the searched record. If there are less than m available records for a group, which makes the 

recovery calculus as defined above impossible, the coordinator enters the catastrophic mode . Case specific 

algorithms are then used. Some records may be unrecoverable, but there may be good cases. We will not 

discuss this mode in depth. An example of a good case is in Section 7. 

We now overview  the LH*RS file manipulations focusing on differences to generic LH*.  We start with 

record and bucket recovery. Recall that the number of data buckets in a bucket group is m and call the 

number of parity buckets in a given bucket group k’. The number of buckets in a segment of a k-available  

file is n = m+ k’, where k’=k  or k’=k+1. 

4.1 Record Recovery 
To recover a record with key c, the coordinator probes the k’ parity buckets in some order, sending an 

unicast message with key c, the unavailable data bucket address a, and the address of the client.  If no 

parity bucket is available, then the failure is catastrophic.  Otherwise, the first parity bucket p that replies 

takes the control of the recovery, to avoid turning the coordinator into a bottleneck for recovery.  Bucket p 

searches for the parity record with c among its keys.  The rank r of the record cannot be determined from c, 

hence one uses a sequential scan, or the parity bucket maintains a hash table with entries of the form (c,r).  

If c is not found, then the search for the key c is unsuccessful, i.e., the record with key c was not in the file.  

Notice that this constitutes also a successful recovery. 

Otherwise, the parity record r found contains key c only or with x ≤ (k’-1)  other keys. If record r 

contains only c,  then all the other records in its record group are dummy. One trivially computes offset i of 

c within its group using a and  creates H from all columns of I, but column i, and from its column of P. 

Afterwards, one performs the recovery calculus using the RS-decoding, as described. 

If record r contains several keys, the bucket searches for every data record with key c’ ≠ c in record r. If 

all are found, and x = (k’-1), then the bucket orders them along their offsets, produces H from all columns 

of I but i and from its own parity column and performs the recovery calculus. If x < k’, but all the records 

are found, then the records at the other offsets are assumed dummy. 

If however l > 0 records among x reveal unavailable, and l < k’, then bucket p probes other parity 

buckets. Each probe requests parity record r and column of P stored at the bucket.  If l ≥ k’, then the failure 

is again catastrophic. Idem, if less than l parity buckets respond to the probe. Otherwise, bucket p produces 

the columns of H from I according to the offsets of the k’ - l data records found, completes with the 

columns of P received  and performs the RS-decoding. 

Bucket p sends to the client the recovered record c or the information that key c is not in the file. It 

alerts the coordinator otherwise. 
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4.2  Bucket Recovery 
Both data and parity buckets can be recovered using RS-decoding, as long as there are m buckets in  the 

segment. Parity records can be also recovered from the data buckets through RS-encoding.  Record 

recovery can be performed concurrently with bucket recovery, as the latter is a more involved operation.  

Unavailable buckets are recovered at spare servers.  To start, the coordinator probes the segment with 

the bucket to recover for the availability of the other buckets.  If m or more reply, then recovery proceeds, 

otherwise the case is catastrophic.  The coordinator passes their addresses and further control of the 

operation to one of the spare servers. If there are data records to recover, the spare collects columns of 

parity matrix P at the parity buckets, and forms and inverts matrix H.  It then calculate the missing data 

records consecutively, stores them or sends to the spares where they should be.  The key fields are from the 

parity records. The non-key fields are calculated from H-1, from the non-key fields of other data records in 

the group, and from the B-fields of the parity records.   

Once data records are recovered, the remaining parity buckets to recover, if any, are produced in turn, 

using matrix G.  If only parity buckets should be recovered, then one skips the reconstruction of data 

buckets.  In a final step, the spare notifies perhaps the originator of the query of new locations through 

IAMs. 

4.3 Key search 
Normally, the LH*RS key search for key c is the LH* key search. The degraded mode is triggered by the 

client or the forwarding server.  The coordinator uses the LH* file state parameters to calculate the address 

of the correct bucket.  If this address is not the one of the unavailable or displaced bucket, it forwards c to 

the correct bucket.  If that bucket is available, it replies to the LH* RS client, including the IAM.  If the 

coordinator finds the correct bucket unavailable, it attempts the record recovery. Likewise, it initiates the 

recovery of any unavailable forwarding bucket. 

4.4 Scan 
In the normal mode the scan proceeds as a LH* scan. We recall, that the client starts with a series of 

unicast messages or a multicast message. The request specifies whether the scan has deterministic or 

probabilistic termination. In both cases, buckets that have relevant records send them to the client. For the 

probabilistic termination, then only these buckets reply.  Otherwise, every bucket in the file replies at least 

with the bucket number.  The LH* deterministic termination protocol detects whether every bucket had 

replied, even if the client image was outdated.  

The degraded mode occurs only if the unicast messages are used to deliver the request or if the 

deterministic termination is requested.  The coordinator attempts the corresponding bucket recovery and the 

successful termination of the scan. 

4.5  Insert 
In normal mode, a LH* RS client performs the insert like a LH* client. The correct data bucket resends 

the record as ∆∆ -record to all the parity buckets of the group. Their addresses are in its header. 
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The degraded mode is triggered by the client or the forwarding server or the correct data bucket that 

finds an unavailable or displaced bucket.  The finder sends the record to the coordinator.  For the client, the 

operation is then successfully terminated.  The coordinator determines the correct bucket for the insertion.  

If it is unavailable, then it attempts the bucket recovery, with the record to be inserted. As for the key 

search, it also recovers any unavailable forwarding bucket.  

4.6 Split 
As in the generic LH*, an insert to an overflowing bucket is reported to the coordinator. This usually 

triggers a split of the bucket pointed out by the split pointer n which is one of the file state parameters. 

Bucket n is typically different from that receiving the insert. After the split, n := n + 1 mod 2j and, if n := 0, 

then j = j+1. Initially, n = j = 0.  

In normal mode, the coordinator assigns new ranks to all the records, whether they remain in the parent 

bucket or end up in the new bucket. The move of a record either within the parent bucket (unless by chance 

the new and the old rank coincide) or to new bucket is formally a deletion followed by an insert. Existing 

parity buckets are updated accordingly.  In practice, it should be more efficient to recreate them.  

If new bucket starts a group, then the coordinator creates new parity buckets and their records.  If the 

number of parity buckets per segment is being upgraded, the split operation appends in addition a new 

bucket to the group of the parent bucket.   

The degraded mode consists basically of the recovery of the bucket, combined in the implementation 

dependent way with its split. 

4.7 Update 
In the normal mode, the client performs the update as for LH*. At the correct bucket, the update does 

not change the rank r of the record, unless a split occurs between the time the client reads the record and 

the time of the return of the update. In the former case, the bucket calculates the ∆∆-record and sends it with 

its rank r to the parity buckets. These buckets recalculate their parity records r.  In the latter case, the parent 

bucket gets the updated record anyhow and computes whether should  migrate or stay. In both case the rank 

r typically changes. The update by definition concerns only non-key data otherwise it is a record deletions 

and the insert to, usually, different location. If the updated record moves, there is no more parity records 

concerning it in its parent segment. It suffices thus that whether the record moves or not, only the bucket 

that finally stores it computes the ∆∆-record and sends it out.  

The degraded mode may start during the search for the record to update or when the client sends back 

the update or when the servers sends out ∆∆-record. If  the correct bucket is available, the coordinator 

resends the record there.  Otherwise, the coordinator updates the record in the recovered bucket.  If the 

forwarding bucket was unavailable, the coordinator initiates the recovery of this bucket. The originator of 

the degraded mode gets the address of the recovered or displaced bucket in the IAM. 
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4.8 Deletion 
In the normal mode, the client performs the deletion of record c as for LH*. The correct bucket in 

addition sends its address and record c with its rank r, to the parity buckets. Each bucket removes key c 

from its parity record r. If c is the last key, record r is deleted. Otherwise, its parity field B is adjusted. 

In the degraded mode, if the data bucket is unavailable or displaced, the coordinator localizes the correct 

data bucket. It recovers it without the record to be deleted, as well as, perhaps, the unavailable forwarding 

or parity buckets. 

4.9 Merge 
Deletions may trigger a bucket merge that is the inverse to a split. In the normal mode, it moves the 

records of the last data bucket back into its parent bucket and removes the last bucket.  The moved records 

receive new ranks in the parent bucket. The parity buckets of both groups are updated accordingly. If the 

removed bucket was the only one in its group, then the parity buckets for this group are deleted.  The 

number of parity buckets in the segment might also decrease.  In the degraded mode, first all unavailable 

buckets are recovered.  

5 Performance 
Detailed performance analysis is lengthy and complex. It would exceed the limits of this paper and is 

the subject of a dedicated work.   We only evaluate the typical values summarized in Table 2.  These are 

easy to derive and intended as guidelines for the file design. The actual costs may be larger than the typical 

ones, or noticeably smaller. 

Mode  Normal  Degraded  

 Typical Max  Overhead  

Succ. key search  2 4 0 1 + R 

Unsucc. key search 2 4 0 4 

Scan (determ.  term.) 1+M n/a 0 1+M+yB 

Insert  1+k 3+(k+1) k  1+R 

Update 2+k 6+(k+1) k 1+ R +B 

Delete 1+k 3+(k+1) k 1+k+B 

Split  0.35b+0.7bk n/a 0.7bk 0.35b+0.7bk +B 

Merge βb+2βbk n/a 2βbk βb+2βbk +B 

 Typical Max   

Exist. record rec. (R) 1+2m 2+2m+k     

Bucket Rec. (B) 0.7b (m+x-1) n/a   

Storage overhead k/m (k+1)/ m   

 

Table 2 LH*RS data access and high-availability performance 
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5.1 File Manipulation 
As usual, we measure access performance with the number of messages, as the metric independent of 

network speed and topology. A message contains at most one record. Table 2 shows the typical and the 

worst costs of various operations. For convenience, we explicitly show also the typical overhead of high-

availability. The worst case of an operation accessing parity records is computed for a (k+1) available 

group in a k-available file. The worst cost beyond the practical sense is omitted (n/a). For instance, very 

unlucky hashing could skyrocket the split or merge cost. The typical file has bucket capacity b >> 1, size 

M >> m, i.e. has several groups, and the load factor of data buckets of 0.7.  It uses unicast messages, except 

for starting the parallel scans. 

The performance of key search in normal mode is that of LH* .  It is independent of M and does not 

carry any high-availability overhead. The degraded mode cost includes the record recovery cost R. The  

successful search cost typically depends on m, but, perhaps surprisingly, not the unsuccessful one. The 

degraded mode increases the successful search time typically (m+1) times. Notice that this performance is 

also independent of M and about best possible. 

The scan also performs as for LH* and does not carry the high-availability overhead. The degraded 

mode carries the bucket recovery cost B, times the number y of unavailable buckets encountered in 

different groups. 

An insert, update or delete in normal mode carries the overhead of typically k messages to parity 

buckets. This is the theoretical minimum for any k-available schema. The actual overhead may be also 

k + 1 when the availability starts to scale.  This is also the minimal price for the scalable availability. The 

costs of degraded mode includes B at least. 

The split and merge costs in Table 2 are easy to derive. Factor  β denotes the data buckets load factor 

low enough to  trigger merges.   

Record recovery cost R in Table 2 results directly from the algorithm. The recovery starts with 1 

message to the coordinator. Then, there is typically one message to a parity bucket of the failed bucket. If 

the searched key is not found at this bucket, there is only 1 more message to the client. Otherwise the 

bucket sends out typically m-1 messages to data buckets. Finally the recovered record is sent to the client. 

The worst case corresponds to k+1 unavailable buckets probed in vain. Notice from the algorithm that 

there are also other cases. An group maybe incomplete, with l < m actual data records, hence the degraded 

successful search cost can be substantially under the typical one, reaching even only 4 messages.  More 

precise estimates of R taking to the account the likelihood of each case, and of x-bucket unavailability  

remains to be done. 

The bucket recovery cost B estimates in Table 2 result directly from the algorithm. It considers the 

typical bucket load of 0.7b records, and presence of x ≥1 failures. Notice the efficiency for x > 1 due to the 

simultaneous recovery of all the unavailable buckets.  The worst case obviously does not make sense in 

practice.   
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Finer estimates remain to be determined. The presence of incomplete groups, likely for groups towards 

tops of the buckets, decreases the cost. In contrast, a parity bucket to recover should often have more 

records than a typical data bucket, hence a higher recovery cost. It has indeed as many records as the most 

loaded data bucket in the group. The deviation should obviously increase with m. It becomes more likely 

that some data bucket in the group has more records than the average load. The LH* file with 70% load is 

however known to have only a  few overflow records. Hence, regardless of m, a parity bucket with more 

than b records in such file is unlikely as well. 

Notice finally that Table 2 proves globally an excellent scalability the LH*RS file manipulations. The 

costs are either independent of the file size M, or typically increase about as little as possible, basically 

through the necessary increase to k. We recall from Section 0 that to scale k with M is mandatory for the 

reliability. Section 5.4 analyzes it more in depth. 

5.2 Storage 
Each bucket group carries typically k or sometimes k+1 parity buckets and bucket is the storage 

allocation unit for both data and parity records.  The file storage overhead, is thus typically  k/m. This is  the 

minimal overhead for any k-available file, regardless of the parity calculus method used  [H&a94]. The 

additional overhead  of up to 1/m constitutes the price for the scalable availability. This is also the minimal 

cost of this capability. 

The overhead storage at each parity bucket server for RS calculus specific data is in practice negligible. 

One needs stable storage basically only for the m-element single column of P,  and for the 2f or 3*2f 

elements of the log multiplication table. The inversion of the matrix H requires only 2m2 elements of 

temporary storage.   

5.3 Parity Calculus Time 
 Parity encoding and decoding speed depend on the network and CPU performance. The decoding also 

strongly depend on the choice of the group size m whose larger values benefit the storage overhead but 

make the recovery costs higher in turn. Easy but lengthy evaluations that we skip here show that on a rather 

typical site with 200 MHZ CPU, and 100 Mb/s network the resulting times should remain acceptable. For 

quite large m = 32, the record recovery time of 1KB records stored in RAM buckets is in the order of 

milliseconds. Assuming for instance the data bucket capacity of b = 3000 records,  the bucket recovery 

should take less than a minute. For similar disk buckets, the time for record recovery is about a second and 

bucket recovery takes a few minutes.  

5.4 Reliability 
The reliability is the probability that all the data are available, i.e., there is no catastrophic failure. It 

depends on b, m, k, M and the probability p that a single bucket is unavailable. One can estimate the 

reliability of an LH*RS file through formulae using these parameters developed for LH*SA, [LMR98]. Both 

schemes use record grouping. Their differences influence the storage overhead and other performance 

factors but not the basic calculation of reliability.   Same parameters lead to the same estimate.  
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Figure 3 shows two simulated curves of the reliability P for an LH* RS file with uncontrolled reliability 

obtained in this way. The values of p chosen seem conservatively realistic. They mean that a site is 

unavailable on the average for 3-5 days per month. Each minimum of P is the size mi that starts next scaling 

up of k, i.e., the (k+1)-availability level starts to built up.  Each maximum is the size 2mi when the (entire) 

file becomes (k+1)-available and k := k+1. The files scale to M=1024 buckets, i.e., somewhere between 

1÷100 Tbyte. In both cases, without the scalable availability, P would start continuously decreasing from 

M = 8, instead of remaining above the value close to the reliability of a single bucket, respectively, above 

92% and 82%.  For p = 0.15 the successive minima of P have the tendency to remain about the same, while 

for p = 0.1 they increase progressively. This tendency would be even stronger for lower p. One may then 

delay the increase of the availability level k with respect to the basic schema, through some reliability 

control, as discussed in Section 0. The threshold Pmin on P value could be here Pmin = 0.9, i.e., as it was 

suggested the reliability 1-p of a single bucket.  Lower costs of parity management would result from, see 

Table 2.  

Alternatively, one may choose larger group size m. The storage overhead for the same availability level 

decreases, but the recovery costs increase. The curve for p = 0.15 shows in contrast that the reliability 

evolution is close to optimal. The minimal value of P stays automatically about 0.85. Therefore, for even 

higher p, and same m, the uncontrolled reliability would not suffice and the curve would decrease.  
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Figure 3 Uncontrolled reliability of an LH*RS file 

Both curves show that, the reliability control is useful for a multicomputer with sites characterized by 

p ≤ 0.1. For less reliable sites with p > 0.15, it appears in practice necessary, as m < 4 seems the smallest 

practical choice.  Curves in [LMR98], for related choices of p and various m > 4, confirm this conclusion. 

While not only higher p but also a larger m may make the reliability control necessary, these  results show 

nevertheless that for p << 0.1, the uncontrolled reliability may suffice for a quite large m. For instance for 

p = 0.01, one may choose m = 16 and for p = 0.005, even m = 32 suffices to keep P ≥ 99% up to M = 32K.  

Notice that m ≥ 32 requires GF (256). The storage overhead for such m decreases with respect to m = 4 at 

least 8 times for the same availability level k, while the recovery cost increases similarly. Vice versa,  the 

same storage overhead allows for eight times greater k. 
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6 Variants 
An application may benefit from selected performance tuning. Specific variants of the basic schema 

may be designed to address this concern. First, there are numerous variants of LH* schema known, their 

choice impacts the performance of the LH*RS data file. They differ by the internal structure of buckets, the 

split algorithm, the strategy for the load factor control… Some variants do not even have the coordinator.  

There are also issues specific to the parity management. The implementation choices for GF 

multiplication, including the data structures for the tables, impact the calculus speed.  Other algorithms are 

known for matrix inversion and to generate matrix G.  The internal structure of a parity bucket obviously 

influences its access and storage performance.  The bucket recovery calculus can be made parallel between 

the participated buckets.  The algorithms recovering from specific catastrophic failures can be added…  

The storage of parity buckets allows for interesting optimizations.  The basic scheme stores parity 

buckets at a dedicated servers. This overhead to the number of servers may itself bother an application. 

Next, while the searches in normal mode do not concern the parity servers, a parity bucket is involved in 

every update of a data bucket in the group.  The processing load from data modification at a parity server is 

hence about m times larger than at a data server. An application with a large amount of data modifications 

could see the parity servers becoming bottlenecks.  

The correctness of the parity calculus does not depend on parity buckets being stored at separate servers.  

It merely requires that no server contains two buckets in the same segment.  To better balance the load, one 

may replace then a single parity bucket with  m buckets storing b/m records each, stored the different pieces 

at different servers.  The m buckets can form a simple hash subfile.  This variant equalizes the load from of 

the data modifications.  On the negative side, it requires more parity servers and sees more messaging 

during splits and reconstructions. 

To decrease the number of parity servers, one may share a server between a data and a parity bucket.  

One simple rule locates the ith parity bucket of group j with the ith data bucket of group j+1.  Figure 2 may 

be seen as illustrating this rule. It guarantees that all buckets in a segment are stored at different server.  It 

can be easily extended to the above discussed parity subfiles. In this scheme, every server carries at most 

one data bucket and zero, or some parity buckets.  The servers carrying data for the first group will never 

have parity data. In turn, some servers to serve the data buckets of the next group to be generated carry only 

parity buckets, but not yet data buckets.  The “dark size of the Moon” is obviously increased storage use at 

each server and processing load. 

Finally, one can have the servers for data of group 0 temporarily carrying  the parity buckets for the last 

existing group. If the file expands further, these buckets move to the adequate locations, being replaced b y 

new last buckets. This simple loop-back strategy eliminates the additional parity servers entirely. It 

minimizes the number of servers for the file to M, required anyway for the data buckets. Notice the 

potential interest of this variant to the users of the current parallel DBMSs. Their currently 0-available hash 

or even range-partitioning methods, could be enhanced to the high-availability at no additional hardware 

cost.  
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Finally, the Reed Solomon Codes used are not the only possibility.  Some other codes are potentially 

attractive as well, [ABC97], [H&a94], [BFT98].  

7 Related work 
There were countless high-availability schemes for a single site, usually 1-available and using some 

RAID-like striping.  A few schemes appeared  for the (static) k > 1 k-availability in this context, [BM93], 

[BBM93], [H&a94],  and [ABC97] recently. There were also studies for the distributed environment, e.g. 

[SG90] showing the inefficiency of any trivial striping. Deeper discussion of all these schemes, including 

SDDS schemes with mirroring or replication mentioned in the Introduction, is in [LMR98]. However, 

besides the LH* RS, the only schemes known to satisfy all our goals, including the moderate storage 

overhead for the high -availability, are the other LH* schemes using the record grouping mentioned in the 

Introduction. Their mutual comparison appears as follows [LS99].   

LH*RS may offer substantially lower overhead than LH*SA. The reason is that the number k of parity 

records to make a group k-available is always exactly the theoretical minimum k/m. This is a remote 

consequence of the MDS property of RS-codes, [MS97].  

LH*RS record recovery cost should typically be lower than that of LH* g. It may be higher or lower than 

that of LH* SA. This is due to more complex parity calculus of LH*RS on the one hand, or to possibly more 

messages for LH* SA to explore multiple groups, on the other hand. 

Variants minimizing the number of the file servers through sharing of data and parity buckets are known 

only for LH*RS.  Such variant seem at best more difficult to design for the two other  schemes.   

If 1-availability suffices, then LH*g has the smallest split cost. Its record groups are location 

independent and there is no need to recalculate the parity data during splits. Generalizing the parity calculus 

to RS-codes allows perhaps for a k-available  variant of LH*g retaining that property [LMRS99]. 

Finally, LH*SA may often recover from l-bucket failure where l > k which would be catastrophic for 

LH*RS. The difference may be quite substantial. For instance, a 2-available LH*SA file may recover records 

from any l >> 2 unavailable buckets in the same group.  LH* RS can accommodate at most 3 unavailable 

buckets per group in a 2-available file, and only, provided it started to build the 3-availability.  Notice that 

LH*RS also has good cases, although the overall balance seems in favor of LH* SA. For instance, in our 

example file with record group size m = 4, made 2-available, we can recover from the unavailability of 

buckets 0,1,4, and 5. This failure is unrecoverable in  a 2-available  LH*SA file with the same groups.   

8 Conclusion 
LH*RS schema uses the concept of record grouping and the Reed-Salomon codes to provide scalable, 

distributed and high-availability files, badly needed by modern applications. It should prove attractive by 

its numerous interesting properties, including the scalable availability and near-optimal access performance 

and storage use efficiency. It offers distinct advantages over the other high-availability schemes known.  

Among potential applications, there are modern database systems, needing continuously larger scalable 

databases, and for which the parallel access is already a must [FBW97], [B&al95], [IBM99]. Many of the 

existing databases or warehouses grow very rapidly. The well-known UPS multidatabase passed from 4 to 
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13 TB between 97 and 98, and many other similar examples are known. The multimedia servers also start 

using multicomputers and the success may make them scaling big [B&al95], [H96]. In the Web arena, 

more and more systems maintain TB of data on large multicomputers. This is the case of the 166–site 

multicomputer of Inktomi at Santa Clara, CA, and of the 100-site of Yahoo in Vienna, VA, which is also 

built by Inktomi, [I98]. An implementation of SDDSs is under study for such applications [G99]. For all 

these needs, both scalability and 24/7 availability are critical. The already mentioned mishap of E-Bay is 

here to stay as the reminder.  

Future work should include the prototype implementation and deeper analysis of various design issues, 

and performance factors discussed in the related sections. This applies also to the variants. The basic ideas 

in LH*RS should be also ported to other SDDS schemes, e.g., RP*. 
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Appendix A 
Let n be the maximal segment size and m the maximal group size. We recall that the generator matrix G 

of an RS-code has m rows and n columns. The left m by m submatrix of G is the identity matrix I, since we 

use a systematic RS code. Any square submatrix formed from any m different columns of G is invertible. 

We derive matrix G as follows from a Vandermonde matrix V.  V has m rows and n columns, these we 

index by the n elements gj ∈ GF(n), j = 0, ..., n-1. We number the columns and rows from 0 and order the 

field elements so that g0 = 0 and g1 = 1.   Coefficient vi,j located in the ith row and the jth column of V is 

then defined to be the jth element of the Galois Field raised to the ith power that is: 
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vi,j = gj
i. 

Thus,  

V=























OMMMM

K

K

K

K

3
3

3
2

2
3

2
2

32

10

10
10

1111

gg
gg
gg

. 

Row 0 contains only ones since for every j, gj
0 = 1. Since g0 = 0, the first column contains otherwise 

zeroes. Since g1 = 1, the 2nd column contains only 1’s.  Vandermonde showed the determinant of any 

square submatrix of V consisting of m columns generated by elements gi to be  

det V = )( j
ji

i gg −∏
<

≠ 0. 

It follows that any square m by m submatrix of V is invertible.  This property holds also for the extended 

V with last column 0, 0,  ... 0, 1 that we used to generate our example G in Section 2.3.4.    

We now give the details of our transformation of V into  G = I|P where I is the identity matrix. We 

denote m[i,j], i,j ≥ 0, the coefficient of matrix m in row i and column j.  We denote the jth row of the current 

matrix with mj.  We use elementary row transformation [MM, I.3.2].  These are multiplying a row by a 

scalar, exchanging two rows, and adding a multiple of one row to another.  We denote these 

transformations by mj ⇐ amj, mj ⇔ mi, mj ⇐ mj + ami, a ∈ GF(2f) respectively.  Our algorithm uses up to 

m row transformations to transform a column into a unit vector.  The first column is already the first unit 

vector.  The second column has already the one in position [1,1], and we add the second row to all the other 

rows resulting in the second unit vector for the second column.  This operation retains the form of the first 

column.  We now change the third column into the unit vector.  The diagonal element m[2,2] there is 

obviously non-zero. We multiply the third row with the inverse of this element, so that the coefficient 

m[2,2] is now 1.  Then we generate zeroes in the third column by adding m[i,2]m2 to all other rows mi.  

This operation does not change the first and second column.  Continuing in this manner, we transform m 

left columns of V into unit vectors, i.e. the I submatrix.  We give pseudo-code, à la [PTVF92], in Figure 4. 

 Initialize m = V; 

for all columns i = 0, ..., m-1 do 

 { 

 (4) mi ⇐ m[i,i]-1mi; 

  for all rows j = 0, ..., m-1, but j≠i, do 

   mj ⇐ mj − m[j,i] mi; 

 } 

Figure 4  Pseudo-code to transform V into generator matrix G. 
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Our inversion algorithm proceeds in a similar manner.  Assume that we are given a square m x m matrix 

H (which we know to be invertible).  We form the m x 2m matrix H|I by appending the identity matrix to 

H. We then use the same algorithm as the one presented in Figure 4, with one exception. It is no longer 

guaranteed that the diagonal element m[i,i] in line (4) is always non-zero.  We therefore replace line (4) 

with the following lines: 

(4a)   if m[i,i] = = 0 do 

(4b)   { 

(4c)    find a j > i such that m[j,i] ≠ 0; 

(4d)    mj ⇔ mi; 

(4e)   } 

(4f)   mi ⇐ m[i,i]-1mi; 

After the algorithm has run, matrix H|I has been transformed into a matrix I|R.  Matrix R is the inverse of 

H, i.e. is H-1. 

Glossary 
• a –dataword 
• b – bucket capacity 
• B – parity bits field 
• c – data record key 
• f – parity symbol length  
• g – element of G 
• GF – Galois Field 
• G – generator matrix 
• I – identity matrix 
• k – availability level of a record group & its number of parity records 
• M – number of data buckets in the file 
• m – record group size 
• n – segment size (n = m + k) 
• N – size of GF used, N = (2f) for LH*RS  
• p - probability that a single bucket is unavailable 
• P – file reliability (probability that all re cords are available) 
• P – parity matrix 
• V – Vandermonde matrix 
• u – codeword  
 


