
TQoS: Transactional QoS-driven Selection for Web Service
Composition

Joyce El Haddad1, Maude Manouvrier1,3, Marta Rukoz1,2,3

1LAMSADE CNRS UMR 7024, Université Paris Dauphine, Place de Lattre de Tassigny, Paris, France
2 Université Paris X-Nanterre, 200 Avenue de la République, 92001 Nanterre, France, On leave from Universidad Central Venezuela

3 WISDOM, Federation of the three database research teams, LIP6 (Université Paris 6), LAMSADE and CEDRIC (CNAM)

Abstract

Composite Web services are often long-running, loosely coupled and cross-organizational applications. For such applications, advanced
support is required to ensure quality reliable execution. This paper addresses the issue of selecting and composing Web services not
only according to their functional requirements but also to their behavioral properties (e.g. transactions) and QoS characteristics. In our
approach, Web services are selected in a way satisfying user preferences. These preferences are expressed as weights over QoS criteria
and as risk level defining semantically the transactional requirements.

keywords: Web service composition; Transactional Web service; Quality of Service.

1. Introduction

Web services have been emerging as a promising tech-
nology for business integration [4]. The creation of value-
added services by composing existing ones is gaining a sig-
nificant momentum [3]. As composite Web services are of-
ten long-running and loosely coupled, resulting from aggre-
gation of Web services offered by different organizations,
different properties supports are required to ensure the over-
all consistency of data modified by its component service.

There are three different types of properties that must be
considered when talking about services: (1) functional (i.e.
capabilities), (2) behavioral (e.g. transactions) and (3) non-
functional (i.e. QoS criteria). In this paper we discuss the
last two types of properties. As explained in [12], a realistic
Web service must meet both behavioral and non-functional
requirements of its users. Therefore it is important that a
composite Web service is augmented so that its characteris-
tics can be determined and users are bound to services that
best meet their behavioral as well as non-functional require-
ments.

More precisely, we investigate about constructing and
selecting transactional composite Web service. The ob-
tained composition maximizes the user satisfaction ex-
pressed in terms of weights over QoS criterion and satisfies

the transactional requirements set by the user and by the
structure of the composite service.

The paper is organized as follows. Section 2 presents the
system architecture and Web services by the way of their
behavioral and non-functional properties. Section 3, intro-
duce our Transactional QoS (TQoS) Web service selection
algorithm. Experimental results are shown in Section 4. In
Section 5, we discuss some related work. Section 6 con-
cludes and gives perspectives.

2. Preliminaries

In this section, we present our system architecture and
some basic concepts as Web services and how to express
their behavioral and non-functional properties.

2.1 System Architecture

The architecture of our system is presented in Figure 1.
There are three distinct components namely, a workflow, a
Web services registry and a composition manager.

1. Workflow: workflows are rule based management soft-
wares that direct, coordinate and monitor execution
of activities representing business processes. Several

Figure 1. System architecture

workflow patterns [10] have been proposed to provide
an uniform approach to describe workflow character-
istics. In [2], several relevant patterns for the Web
service composition have been identified. In our ap-
proach, we use the sequence, the parallel and sequen-
tial split (AND and XOR) and the parallel and sequen-
tial join (AND and XOR) patterns. Using these pat-
terns, we define a workflow skeleton to represent the
structure of an application in terms of activities and
temporal dependencies between them. In our system,
a workflow WF defines the execution order of a set
of n activities performed by Web services: WF =
(ai)i∈[1,n] – for the sake of simplicity, we consider that
one service executes only one activity. Thus, a com-
posite Web service can be represented by a workflow.

2. Web services registry: The ability to register, discover,
and manage services is an essential requirement for
any Service Oriented Architecture (SOA) implemen-
tation. A service registry provides the means for reg-
istering and discovering Web services, and managing
associated metadata and artifacts securely and reliably.
A Web service description contains metadata that de-
scribes the service functional properties (i.e., capa-
bilities), behavioral properties (e.g., transactions) and
non-functional properties (e.g., QoS criterion).

3. Composition manager: The service composition man-
ager is made up of a planner engine and an execution
engine. When an instance of a composite service is
initiated, the planner engine contacts the Web services
registry to search for candidate component services,
and, based on the candidate services retrieved, it gen-
erates an execution plan, i.e., an assignment of com-
ponent services to the activities in the schema of the
composite service. Based on the execution plan, the
adaptive execution engine then orchestrates the com-
ponent services to execute the instance of the compos-
ite service.

2.2 Web service description

Web services (WS) are autonomous software systems
identified by URIs which can be accessed through messages
encoded according to XML-based standards (e.g., SOAP,
WSDL, and UDDI). Since Web services are intended to be
discovered and used by other applications, they need to be
described and understood in terms of functional capabilities
as well as behavioral properties and non-functional proper-
ties. As said above, in this article, we only discuss the last
two types of properties.

• Behavioral properties. Service discovery and com-
position techniques require both functional and behav-
ioral aspects of a Web service to be accurately speci-
fied in its description. Otherwise, the located Web ser-
vice may not actually provide the required functional-
ity. The behavioral description is about how the func-
tionality of a Web service can be achieved in terms of
interaction with the other Web services. In a compo-
sition where several component Web services interact,
unexpected behavior from a component Web service
may, not only lead to its failure, but also may bring
negative impact on all the participants to the compo-
sition. As for all cross-organizational collaborative
systems, the execution of composite Web services re-
quires Transactional Properties (TP) so that the over-
all consistency is ensured. Within behavioral prop-
erties, we distinguish between transactional and non-
transactional behavior. A transactional Web service is
a Web service that emphasizes transactional behavior
for its characterization and correct usage. However,
Web services may provide dissimilar transactional be-
havior. With the main transactional properties [6],
pivot (p) and compensatable (c), we have the following
definitions:

Definition 1 Pivot. A service is said to be pivot if its
behavior supports atomic transactions. In other word,
a service is pivot if once it successfully completes, its
effects remains forever and cannot be semantically un-
done. On one hand, there is no guarantee that this type
of service can be executed successfully and if it fails it
has no effect at all. On the other hand, a completed
pivot service cannot be rolled back.

Definition 2 Compensatable. A service is said to be
compensatable if its behavior supports compensatable
transactions. In other words, a service is compensat-
able if it is able to offer compensation policies to se-
mantically undo the original activity.

Next, among behavioral properties of a Web service
other than transaction, let us consider the behavioral
property called retriable (r). We have the following
definition:

2

Figure 2. Service state diagrams according to
their transactional properties

Definition 3 Retriable. A service is retriable if it guar-
antees a successfully termination after a finite number
of invocations. In other words, a service with this prop-
erty is able to offer forward recovery.

Naturally, a service can combine behavioral prop-
erties and the set of all possible combinations is
{p, c, pr, cr}.

In order to model the internal behavior of a service,
we adopt the states/transitions model. A service has
a minimal set of states (initial, active, abort, fail and
complete). Figure 2.(a) shows the internal state dia-
gram of a pivot service. When a service is instantiated,
the state of the instance is initial. Then this instance
can be either aborted or activated. Once it is active,
the instance can normally continues its execution. In
this case, it can achieve its objective and successfully
completes or it can fail. The requested transactional
properties can be expressed by extending the service
states and transitions. For instance, for a compensa-
table service, a new state compensate is introduced –
see in Figure 2.(b). Figures 2.(c) and 2.(d) illustrate
the states diagram of services combining transactional
and retriable behavior properties.

• Non-functional properties. When several function-
ally and transactionally equivalent Web services are
available to perform the same activity, their QoS prop-
erties such as price, availability, reliability and repu-
tation become important in the selection process. In
order to reason about QoS properties in Web services,
a model is needed which captures the descriptions of
these properties from a user perspective. Such model
must take into account the fact that QoS involves mul-
tiple dimensions. In this paper, we consider the fol-
lowing five generic quality criteria for a Web service:

1. Execution price (qep(s)): which is the fee that

a requester has to pay for invoking of the Web
service s.

2. Execution duration (qed(s)): that measures the
expected delay time between the moment when
a Web service s is invoked and when the results
are received.

3. Reputation (qr(s)): which is a measure of trust-
worthiness of service s, generally this measure is
defined as the average ranking given to the ser-
vice by end users.

4. Successful execution rate (qsr(s)): that is the
probability that service s responds correctly to
the user request.

5. Availability (qa(s)): which is the probability that
service s is accessible.

The following section presents how to compose Web ser-
vices having the properties defined above.

2.3 Composite Web service specification

A Composite Web Service (CWS) is a conglomeration
of existing Web services interacting together to offer a new
value-added service. It coordinates a set of Web services
as a cohesive unit of work to achieve common goals. Cur-
rently, lots of process modeling languages including BPEL
have been proposed to capture the logic of a composite Web
service, and some of them are still evolving.

Rather than choosing a particular modeling language, we
adopt workflows model to describe the composition. In a
Web services environment, a workflow represents a com-
posite Web service, and an activity of a workflow is imple-
mented by a component Web service. These terms may be
used interchangeably in the following discussion. Next, we
describe composite Web services in terms of transactional
(i.e., behavioral) and quality (i.e., non-functional) models.

2.3.1 Composite transactional model

It is time to analyze the behavioral property of a compos-
ite Web service with the presence of component Web ser-
vices within behavioral properties in {p, c, pr, cr}. We are
interested in properly assigning component Web services
in order to have a Transactional Composite Web Service
(TCWS). A TCWS is a composite Web service that em-
phasizes transactional behavioral properties for composi-
tion and synchronization of component Web services. It
takes advantage of component service behavioral properties
to specify mechanisms for failure handling and recovery.

A TCWS defines component services orchestration by
specifying dependencies between them. Theses dependen-
cies are defined by the workflow patterns that specify how

3

services are coupled and how the behavior of certain ser-
vice(s) influence the behavior of other service(s). The be-
havioral properties of a TCWS highly depends on the prop-
erties of individual services and on the structure of the
workflow. The composition manager exploits a combina-
tion of Web services by treating the execution of them as an
unit of work.

In order to give a precise definition of a composite Web
service with transactional behavioral property, we need to
define retriable, atomic and compensatable workflows:

Definition 4 Retriable workflow. An workflow is retri-
able when all its activities (component Web services) are
retriable. In the following, r is used to represent a retriable
workflow.

Definition 5 Atomic workflow. A workflow is atomic if
it can be treated as an unit of work. In other words, if
all the activities (component Web services) of the workflow
completes successfully then their effect remain forever and
cannot be semantically undone. On the other hand, if one
activity does not complete successfully then all previously
successful activities have to be compensated. In the follow-
ing, ~a is used to indicate that the transactional property of
a workflow is atomic while ã is non-atomic.

Definition 6 Compensatable workflow. A workflow is
compensatable if all its activities can be compensated. In
the following, c is used to represent a compensatable work-
flow.

Now, we can specify a transactional composite Web ser-
vice as:

Definition 7 Transactional Composite Web Service. A
TCWS is a worklfow that can be atomic or that can be
compensated. In other words, the transactional behavioral
property of a TCWS is in {~a,~ar, c, cr}.

Inspired by [4], we focus on the description of a work-
flow as an execution from the start point to the end point.
Thus, we derive below the different behavioral properties
for a TCWS with the sequential and concurrent patterns, as
shown in Table 1.

• Sequential execution: (t1; t2) where t1, t2 ∈
{p, c, pr, cr} represents a sequential invocation of two
activities a1 followed by a2 with respectively trans-
actional properties t1 and t2. The derived transac-
tional property of this sequential execution is shown
in Table 1. There are 12 sequential invocations
leading to a transactional property : (p; pr), (p; cr),
(c; p), (c; c), (c; pr), (c; cr), (pr; pr), (pr; cr), (cr; p),
(cr; c), (cr; pr) and (cr; cr) – see lines 3 to 8, 11 to 16
of Table 1.

For example, (p; pr) is atomic because if both activi-
ties complete successfully then the result cannot be se-
mantically undone and if the first activity (p) does not
complete successfully, then the second one is not exe-

cuted. (c; p) is also atomic: if the first activity and the
second one complete successfully, then the result can-
not be semantically undone and if the last activity (p)
does not completes successfully, the first one can be
compensated. On the other hand, (p; c) is not atomic:
if the last activity (c) does not complete successfully,
the first one (p) cannot be undone. (pr; pr), (pr; cr)
and (cr; pr) are atomic retriable because all the com-
ponent web services are retriable. (c; c), (c; cr) and
(cr; c) are compensatable because all the component
web services are compensatable, and (cr; cr) is com-
pensatable retriable because all the component web
services are compensatable retriable.

• Concurrent execution: (t1//t2) where t1, t2 ∈
{p, c, pr, cr} represents the invocation of two activi-
ties a1 and a2 simultaneously with respectively trans-
actional properties t1 and t2. The derived transactional
property of this concurrent execution is shown in Ta-
ble 1. A concurrent execution is defined such that
the involved activities can be executed independently.
There are 9 concurrent invocations leading to a trans-
actional property: (p//cr), (c//c), (c//cr), (pr//pr),
(pr//cr), (cr//p), (cr//c), (cr//pr) and (cr//cr) –
see 4, 6, 8, 11 to 16 of Table 1.

Indeed, (p//cr) and symmetrically (cr//p) are atomic
because, if both activities complete successfully, then
the result cannot be semantically undone and if the
activity p does not complete successfully, then the
other activity (cr) can be compensated. (pr//pr),
(pr//cr), (cr//pr) and (cr//cr) are atomic retriable
because all the component web services are retriable.
(c//c), (c//cr), (cr//c) are compensatable because
all the component web services are compensatable,
and (cr//cr) is compensatable retriable because all the
component web services are compensatable retriable.

Above we have presented the composition between two
component WS. Next, we present the composition between
a TCWS and a component WS before presenting the com-
position of two TCWS.

Table 2 presents the transactional behavioral property of
sequential and concurrent execution of an atomic TCWS
(retriable or not) with a component Web service. For com-
pensatable TCWS (property in {c, cr}) the composition re-
sult is the same as lines 5 to 8 and 13 to 16 of Table 1.

For example, the parallel or sequential composition be-
tween an atomic TCWS (~a) and a compensatable retriable
Web service (cr) is atomic because if both components
complete successfully then the result cannot be semanti-
cally undone. Moreover, for (~a//cr), if the atomic TCWS
(~a) does not complete successfully, then the compensatable
retriable component (cr) can be compensated. This is not
the case with (~a//c): if the second component (c) does not

4

t1 t2 t1; t2 t1//t2

(1) p p ã ã
(2) p c ã ã
(3) p pr ~a ã
(4) p cr ~a ~a

(5) c p ~a ã
(6) c c c c
(7) c pr ~a ã
(8) c cr c c
(9) pr p ã ã

(10) pr c ã ã
(11) pr pr ~ar ~ar
(12) pr cr ~ar ~ar

(13) cr p ~a ~a
(14) cr c c c
(15) cr pr ~ar ãr
(16) cr cr cr cr

Table 1. Transaction property of sequential
and concurrent execution of component WS

complete successfully, the first one (~a) cannot be compen-
sated.

Table 3 presents the transactional behavioral property of
sequential and concurrent execution of two TCWS (retri-
able or not).

2.3.2 Composite quality model

In the composite Web service specification previously pre-
sented, Web services will be grouped together according to
their functionality and behavioral properties. To differen-
tiate the members of a set, quality properties must be con-
sidered. In this section we analyze the QoS of a composite

WF t WF ; t WF//t

(1) ~a p ã ã
(2) ~a pr ~a ã
(3) ~a c ã ã
(4) ~a cr ~a ~a

(5) ~ar p ã ã
(6) ~ar pr ~ar ~ar
(7) ~ar c ã ã
(8) ~ar cr ~ar ~ar

Table 2. Transaction property of sequential
and concurrent execution of an atomic or
atomic retriable TCWS with a component
Web service

WF1 WF2 WF1; WF2 WF1//WF2

(1) ~a ~a ã ã
(2) ~a ~ar ~a ã
(3) ~ar ~a ã ã
(4) ~ar ~ar ~ar ~ar
(5) c ~a ~a ã
(6) c ~ar ~a ã
(7) cr ~a ~a ã
(8) cr ~ar ~ar ~ar

Table 3. Transaction property of sequential
and concurrent execution of two TCWS

Criteria Aggregation function

Price qep(CWS) =
∑n

i=1 qep(si)

Duration qed(CWS) =
∑n

i=1 qed(si)

Reputation qr(CWS) = 1
n

∑n
i=1 qr(si)

Success rate qsr(CWS) =
∏n

i=1 qsr(si)

Availability qa(CWS) =
∏n

i=1 qa(si)

Table 4. Aggregation functions

Web service.
A composite Web service has the same quality proper-

ties as a Web service, i.e. execution price, execution dura-
tion, reputation and successful execution rate. When a user
wants to execute a composite Web service, it indicates, be-
tween other things, the quality of the wished result. This
one is expressed as weight in each of the quality criterion.
In this paper we use a local optimization selection algorithm
as follows: according to the transactional requirements for
each activity, a set of transactional Web services is selected
(see Section 2.3.1), then a QoS-driven service selection, as
defined in [13], is executed. For the Web service selection
in each activity, the system uses the classical Multiple Cri-
teria Decision Making (MCDM) approach. This selection
is based on the weight assigned by the user to each qual-
ity criterion. A simple additive weighting technique is used
to assign a quality score to each Web service as follows:
Score(si) =

∑
wjqij , where wj ∈ [0, 1] is the weight

assigned by the user to the quality criterion j such that∑
wj = 1 and qij is the value of criterion j for the ser-

vice si. The Web service with maximal score is selected
to execute the activity ai. If there are several services with
maximal score, one of them is selected randomly.

In order to evaluate the QoS of a composite Web ser-
vice, it is necessary to look into workflow composition con-
structs such as AND-split and XOR-split. A split construct
produces several execution paths. Each one of them is com-
posed of one or more activities. Similarly a join construct

5

transforms several execution paths in one path. The QoS
evaluation of a CWS is realized by using the aggregation
functions defined in Table 4 in such a way that activities in
all execution paths between AND-split and AND-join con-
structs are considered and activities in only one execution
path between XOR-split and XOR-join constructs is con-
sidered. In [3] the most frequently used path is considered
in the aggregation functions for the XOR-split. In this work
we select the path that has the Web service with the maximal
score in its first activity, according to the previous selection
algorithm. If there are several paths with the maximal score
in its first activity one of them is selected randomly.

3 TQoS-driven WS selection

3.1 Definition of risk

We assume that the execution price of a compensatable
service is more expensive than a pivot service. Indeed, the
former provides additional operation in order to guarantee
that the result can be undone. Similarly, we believe that
a retriable service has an execution duration higher than
a non-retriable service. Indeed, the former provides ad-
ditional operation in order to guarantee that it successfully
finishes after a finite number of invocations.

Under theses hypotheses and in order to explain the ser-
vices selection process, it is necessary to establish how the
user can express their transactional criteria. Although, ex-
pressing its transactional criteria is significant for the user,
the risk or possibility that a transaction will be unsuccess-
ful have a more significant effect on its decision. The im-
portance of the uncertainty of transaction completion and
recovery is semantically expressed under a factor (criteria)
called the risk. Under this notion, the set {~a,~ar, c, cr} of
the behavioral properties of composite Web service can be
divided into two subsets {~a,~ar} and {c, cr} each one of
them representing a level of risk. For instance, in terms of
the transactional properties, we believe that properties~a and
~ar are riskier than c and cr but cost less than properties c
and cr. Indeed, properties ~a and ~ar mean that once a ser-
vice has been executed it can not be rolled back. By the
other way, to have a composite Web service with property c
or cr we have to select only component Web services with
properties c or cr (see Section 2.3.1). In both cases, as we
mentioned above, this will have either a higher execution
price or a higher execution duration. Therefore, we define
two notions of risk of execution in a transactional system
like:

• Risk 0: the system guarantees that if the execution is
successful, the obtained results can be compensated by
the user.

• Risk 1: the system does not guarantee the successful
execution but if it achieves the results cannot be com-
pensated by the user.

In the following section, we present the service selec-
tion algorithm used by the composition manager for service
composition with risk and QoS preferences.

3.2 Service selection algorithm

In this paper, we use a local optimization selection algo-
rithm. For each activity ai, we select a Web service taking
only into account the properties of the Web services able to
execute ai. Moreover, when ai−1 exists, we also take into
account the transactional properties of the selected Web ser-
vice for the previous activity of ai.

In the local optimization approach, the service selection
process is done for each activity individually. Although ser-
vice selection is locally optimized, the global quality of the
compose Web service may be suboptimal. In this article, we
would like to enforce constraints over the composite Web
service execution such as: “the risk level of the composite
service execution should be 0” or “the risk level of the com-
posite service execution should be at most 1”.

To find the optimal assignment, we assign a service to
each workflow activity based on an iterative process. De-
pending on the risk level (i.e., transactional requirement)
and the QoS of the services available for each activity, dif-
ferent scenarios can occur:

• Risk = 0: select for each activity the best QoS avail-
able service with transactional property in {c, cr}.

• Risk = 1: to select the optimal service, the algorithm
must compute different combinations. That is the as-
signment must take place by considering the current
activity, its predecessor and the workflow pattern.

According to Definition 7 and Table 1 presented above,
the transactional property for a TCWS is in {~a,~ar, c, cr}.
Figure 3 represents the automaton modeling the TQoS Web
service selection algorithm. It contains five states. State
I is the initial one. The final states c, cr,~a and ~ar corre-
spond to the transactional properties of a TCWS. When one
of the final states is reached, a TCWS is obtained. The al-
phabet of the language accepted by the automaton is { ′p′
, ′c′ , ′cr′ , ′pr′ , ′; p′ , ′//p′ , ′; pr′ , ′//pr′ , ′; c′ , ′//c′ ,
′; cr′ , ′//cr′, ′;~a′, ′;~ar′, ′//~ar′ } representing the transac-
tional properties of components (activities or TCWS) exe-
cuted in sequence (;) or in parallel (//). For example, using
a transition ′p′ from the initial state, the following state is
~a. Indeed, any sequential execution beginning by a pivot
service can be atomic, but will never be able to be compen-
sated. The next state could be again ~a using a transition
′//cr′,′; cr′,′; pr′ or ′;~ar′, meaning that an atomic TCWS

6

ac cr

I

pc cr pr

ar //ar

;ar

;a

;ar

;ar ;a //ar;ar
//c

;c

;cr
//cr

;c
//c

;cr
;pr //cr ;cr

//cr

;pr
//pr ;cr

//cr

;pr;pr ;p ;p //p //pr

Figure 3. Automaton modeling the TQoS Web service selection algorithm

can be composed with a retriable component. When one of
the final states ~a or ~ar is reached then we obtain a TCWS
with risk=1. When one of the final states c or cr is reached
then we obtain a TCWS with risk=0.

4. Experimentation

In order to evaluate the behavior of the proposed service
selection approach, experiments were conducted by using
the TQoS algorithm proposed. We use the workflow WF
presented in Figure 4 as a composite Web service. A ran-
domly generation of different services that can implement
the activities of WF was realized as follows:

For each activity we uniformly generate 15 web services
implementing it. For each generated service its transac-
tional property was randomly pick up in the set {p, c, pr, cr}
and each one of its QoS criterion was randomly generated.
Table 5 shows the different set of values considered for each
QoS criterion depending on transactional properties.

For the generated environment we apply our selection
algorithm for the two level of risk. In our experiments, the
sum of price and duration weights represents 60% of the
weights assigned by the user. With this condition we exe-
cute the selection process for the weight distribution showed
in table 6. This experiment was realized 10 times. Figure 5a
shows the obtained score results for both levels of risk and
for different weights over the execution price criteria. Fig-
ure 5b shows the obtained score results for both levels of
risk and for different weights over the execution duration
criteria. As depicted is Figure 5, the more the price criteria
is important to the user, the better is a composition with risk
1 compared to a composition with risk 0. By the other way,
the more the duration criteria is important to the user, the
better is a composition with risk 0 compared to a composi-

T1
A
N
D

T2

T3

T4

T5

T6

X
O
R

A
N
D

X
O
R

T7

Figure 4. Input workflow WF

tion with risk 1.
The following section presents the approaches related to

our.

5. Related work

There are several contributions addressing the composi-
tion of Web services.

By one hand, a number of QoS-aware Web services se-
lection mechanisms have been developed. These mecha-
nisms focus on performance improvement in order to fa-
cilitate Web service composition in an open and dynamic
environment [7, 2, 13]. Menasce [7] studies the QoS of
component Web services in terms of cost and execution
time. The author employs probability techniques to mea-
sure the cost and execution time of component Web ser-
vices by considering different execution scenarios such as
parallel, sequential, fastest-predecessor-triggered and syn-
chronization. This study helps in selecting appropriate com-
ponent Web services for Web service composition. Jaeger
et al. [2] propose a mechanism for composite Web services
with pattern-based QoS aggregation. The QoS aggregation
is used to verify that a set of services satisfies the QoS re-
quirement for the selected composite Web services. In the
same year, Zeng et al. [13] propose two QoS-driven ser-

7

0,00

1,00

2,00

3,00

4,00

5,00

6,00

0 10 20 30 40 50 60

Execution Price

S
c

o
re R0

R1 (a)

0,00

1,00

2,00

3,00

4,00

5,00

6,00

0 10 20 30 40 50 60

Execution Duration

S
co

re R0

R1 (b) Figure 5. Experimental results for risk 0 and risk 1 varying the price weight and the duration weight

TP Price Duration Reputation Availability Successfullrate

cr 0.20− 0.30 0.20− 0.30 0− 5 0.00− 1.00 0.00− 1.00

c 0.20− 0.30 0.01− 0.10 0− 5 0.00− 1.00 0.00− 1.00

pr 0.00− 0.10 0.20− 0.30 0− 5 0.00− 1.00 0.00− 1.00

p 0.00− 0.10 0.01− 0.10 0− 5 0.00− 1.00 0.00− 1.00

Table 5. Set values considered for each QoS criterion

Combination Price Duration Reputation Availability Sucessfullrate

1 0 60 10 15 15

2 10 50 10 15 15

3 20 40 10 15 15

4 30 30 10 15 15

5 40 20 10 15 15

6 50 10 10 15 15

7 60 0 10 15 15

Table 6. Weight distribution

8

vice selection approaches: local optimization and global
planning. In the former, the selection of the Web service
that will execute a given task of a composite service is done
without taking into account the other tasks involved in the
composition. In this way, service selection is locally opti-
mized, but the global quality of the execution may be subop-
timal. The latter considers Web service selection as a global
optimization problem and linear programming is used to
find the solution representing the service composition. Re-
cently, Kokash [9] modifies the Zeng et al. method in or-
der to consider the probability of component web service
failures, their response time and the execution cost along
with the structure of composite graph. In [14], the authors
propose a solution for Web service selection taking into ac-
count one or many global constraints set by users. In [11],
the authors use an approach allowing service selection with
best results with slow selection time, by using dynamic pro-
gramming or good enough results with fast selection time.
However, none of these approaches takes into account the
transactional behavior of the composite Web service.

By the other hand, several transactional composition
mechanism have been proposed to ensure the overall con-
sistency of data modified by complex service resulting
from aggregation of Web services offered by different
organizations[1, 8]. In [1], Bhiri et al. present an approach
specifying relaxed atomicity requirements for compos-
ite Web services based on Acceptable Termination States
(ATS) model and transactional rules to validate a given
composite service with respect to defined Transactional Re-
quirements (TR). In [8], Montagut et Molva propose a se-
lection mechanism enabling the automatic design of trans-
actional composite Web service by using the ATS model.
The drawback of these approaches is the definition of all the
ATS by the user, which is not simple. Moreover, the mech-
anism does not take into account any QoS criterion in the
selection process. In [4], the transactional behavior of com-
posite Web services in presence of transactional component
Web service are studied but without taking into account the
QoS. Moreover, the authors do no specify the behavior of
retriable Web services in case of compensation or abortion
of a part of the workflow. Liu et al. [5] propose several
transactional composition operators for Web services and
evaluate the QoS of the composite Web service, consider-
ing the abortion cases. They only analyze the transactional
effects on QoS, without ensuring the optimal QoS require-
ment. In our approach, we propose a model for the selection
of transactional Web services with the best QoS. Thus, our
approach not only fulfills the global transactional require-
ment but also guarantees locally the best QoS component
Web service.

6. Conclusion

In this article, we have presented TQoS, a Web ser-
vice selection approach supporting transactional and qual-
ity driven Web service compositions. In this approach the
transactional properties of a composite Web service are es-
tablished based on the transactional properties of its compo-
nent Web services. The selection is realized depending on
transactional and QoS user requirements. The former are
established using a risk notion that indicates if the user can
or cannot compensate the result. The latter are expressed as
weight over each QoS criterion.

Our contribution is double. Firstly, we have expressed
the Web service composition selection taking into account
the user preferences in terms of transactional and QoS cri-
teria. Secondly, we have defined formally a Transactional
Composite Web Service (TCWS). We have derived the
transactional behavioral property of the composition of two
component Web services. Then, we have established the
transactional behavioral property of the composition of a
TCWS with a component Web service before generalizing
to the composition of two TCWS. Our experimentation has
been done using one input workflow composed of patterns
with non composite WS. For this instance, we have sup-
posed an environnement with a specific set of values for the
QoS criteria and a specific weight for the execution price
and the duration. Our approach has been validated by the
experimental results.

More experiment should be done with more complex
workflows and different environements and variations in
weights for the quality criteria. Currently, we are studying
different approaches to replan the selection of Web services
in order to take into account dynamic changes that may oc-
cur, e.g., a component Web service becomes unavailable or
the QoS of one of the component services changes signifi-
cantly.

Acknowledgement

We would like to thank Guillermo Ramirez, from the
Universidad Central de Venezuela, for the experimenta-
tions.

References

[1] S. Bhiri, O. Perrin, and C. Godart. Ensuring required failure atom-
icity of composite web services. Proceedings of the 14th interna-
tional conference on World Wide Web (WWW’2005), pages 138–
147, 2005.

[2] M. C. Jaeger, G.Roec-Goldmann, and G. Muehl. QoS Aggregation
for Web Service Composition using Workflow Patterns. Eighth
IEEE International Enterprise Distributed Object Computing Con-
ference(EDOC’04), IEEE Computer Society, 00:149–159, 2004.

9

[3] M. C. Jaeger, G. Muehl, and S. Golze. Qos-aware composition of
web services: An evaluation of selection algorithms. On the Move
to Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE,
Lecture Notes in Computer Science 3760, pages 646–661, October
2005.

[4] L. Li, C. Liu, and J. Wang. Deriving Transactional Properties of
Composite Web Services. IEEE International Conference on Web
Services (ICWS’2007), pages 631–638, July 2007.

[5] A. Liu, L. Huang, and Q. Li. Qos-aware web services composition
using transactional composition operator. 7th International Confer-
ence Advances in Web-Age Information Management (WAIM’2006),
Lecture Notes in Computer Science 4016, pages 217–228, June
2006.

[6] S. Mehrotra, R. Rastogi, H. Korth, and A. Silberschatz. A transac-
tion model for multidatabase systems. Proceedings of the Interna-
tional Conference on Distributed Computing Systems, pages 56–63,
June 1992.

[7] D. Menasce. Composing Web Services: A QoS view. IEEE Internet
Computing, 6(8):88–90, December 2004.

[8] F. Montagut and R. Molva. Augmenting web services composition
with transactional requirements. IEEE International Conference on
Web Services (ICWS’2006), pages 91–98, September 2006.

[9] V. D. N. Kokash. Evaluating quality of web services: A risk-driven
approach. Business Information Systems (BIS’2007), Lecture Notes
in Computer Science 4439, pages 180–194, 2007.

[10] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros.
Advanced Workflows Patterns. 7th International Conference on
Cooperative Information Systems (CoopIS 2000), Lecture Notes in
Computer Science 1901, pages 18–29, 2000.

[11] B. Wu, CH.Chi, and S.Xu. Service selection model based on qos
reference vector. 2007 IEEE Congress on Services (Services 2007),
IEEE Computer Society, pages 270–277, 2007.

[12] U. S. Zafar and A. A. Shah. Extended web services framework
to meet non-functional requirements. In Workshop proceedings of
the 6th international conference on Web engineering (ICWE ’06),
page 21, 2006.

[13] L. Zeng, A. N. B. Benatallah, M. Dumas, J. Kalagnanam, and
H. Chang. QoS-Aware Middleware for Web services Composition.
IEEE Transactions on Software Engineering, 30(5):311–327, May
2004.

[14] W. Zhang, Y. Yang, S. Tang, and L. Fang. Qos-driven service
selection optimization model and algorithms for composite web
services. 31st Annual International Computer Software and Ap-
plications Conference (COMPSAC’2007), IEEE Computer Society,
2:425–431, 2007.

10

