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Abstract
A graph is called odd (respectively, even) if every vertex has odd (respectively, even) degree. Gallai proved
that every graph can be partitioned into two even induced subgraphs, or into an odd and an even induced
subgraph. We refer to a partition into odd subgraphs as an odd colouring of G. Scott [Graphs and Combi-
natorics, 2001] proved that a connected graph admits an odd colouring if and only if it has an even number
of vertices. We say that a graph G is k-odd colourable if it can be partitioned into at most k odd induced
subgraphs. The odd chromatic number of G, denoted by χodd(G), is the minimum integer k for which G

is k-odd colourable. We initiate the systematic study of odd colouring and odd chromatic number of graph
classes.
We first consider a question due to Scott (2001), which states that every graph G of even order n has
χodd(G) ≤ c

√
n, for some positive constant c, by proving that this is indeed the case if G is restricted to

having girth at least seven. We also show that any graph G whose all components have even order satisfies
χodd(G) ≤ 2∆ – 1, where ∆ is the maximum degree of G.
Next, we show that certain interesting classes have bounded odd chromatic number. Our main results in
this direction are that interval graphs, graphs of bounded modular-width all have bounded odd chromatic
number. In particular, every even interval graph is 6-odd colourable, and every even graph is 3mw-odd
colourable, where mw is the modular-width of a graph.

K E Y W O R D S

graph classes, vertex partition problem, odd colouring, colouring variant, upper bounds

1 INTRODUCTION

A graph is called odd (respectively even) if all its degrees are odd (respectively even). Gallai proved the following theorem (see
[10], Problem 5.17 for a proof).

Theorem 1. For every graph G, there exist:

• a partition (V1, V2) of V(G) such that G[V1] and G[V2] are both even;
• a partition (V ′

1, V ′
2) of V(G) such that G[V ′

1] is odd and G[V ′
2] is even.

This theorem has two main consequences. The first one is that every graph contains an induced even subgraph with at least
|V(G)|/2 vertices. The second is that every graph can be even coloured with at most two colours, i.e., partitioned into two
(possibly empty) sets of vertices, each of which induces an even subgraph of G. In both cases, it is natural to wonder whether
similar results hold true when considering odd subgraphs.

The first question, known as the odd subgraph conjecture and mentioned already by Caro [4] as part of the graph theory
folklore, asks whether there exists a constant c > 0 such that every graph G contains an odd subgraph with at least |V(G)|/c
vertices. In a recent breakthrough paper, Ferber and Krivelevich proved that the conjecture is true.

Theorem 2 ([9]). Every graph G with no isolated vertices has an odd induced subgraph of size at least |V(G)|/10000.
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Note that the requirement that G does not have isolated vertices is necessary, as those cannot be part of any odd subgraph.
The second question is whether every graph can be partitioned into a bounded number of odd induced subgraphs. We refer

to such a partition as an odd colouring, and the minimum number of parts required to odd colour a given graph G, denoted by
χodd(G), as its odd chromatic number. This can be seen as a variant of proper (vertex) colouring, where one seeks to partition
the vertices of a graph into odd subgraphs instead of independent sets. An immediate observation is that in order to be odd
colourable, a graph must have all its connected components be of even order, as an immediate consequence of the handshake
lemma. Scott [13] proved that this necessary condition is also sufficient. Therefore, graphs can generally be assumed to have
all their connected components of even order, unless otherwise specified.

Motivated by this result, it is natural to ask how many colours are necessary to partition a graph into odd induced subgraphs.
Unsurprisingly, on the computational side, it was shown by Belmonte and Sau [2] that the problem of deciding whether a graph
is k-odd colourable is solvable in polynomial time when k ≤ 2, and NP-complete otherwise, similarly to the case of proper
colouring. Scott showed [13], there exist graphs with arbitrarily large odd chormatic number. More precisely, he showed that
there exist graphs of order n that require Θ(

√
n) colours. In particular, the subdivided clique, i.e., the graph obtained from a

complete graph on n vertices by subdividing every edge once requires exactly n colours. More generally, given any connected
graph G, the graph H obtained from G by subdividing every edge once has χodd(H) = χ(G), and H is odd colourable if and
only if |V(H)| = |V(G)| + |E(G)| is even.

As an upper bound, best known general bound is the following.

Theorem 3 (Scott, 2001). Every connected graph G of even order n has χodd(G) ≤ cn(log log n)–1/2, for some constant c > 0.

Scott conjectured that this bound is far from being best possible, and that the aforementioned lower bound of
√

n is the right
order of magnitude.

Conjecture 1 (Scott, 2001). Every connected graph G of even order n has χodd(G) ≤ (1 + o(1))c
√

n, for some constant c > 0.

A related conjecture about a general upper bound is due to Aashtab et al.[1], who conjectured that a Brooks-type result for
graph colouring should extend to odd colouring.

Conjecture 2 (Aashtab et al., 2023). Every connected graph G of even order has χodd(G) ≤ ∆ + 1, where ∆ is the maximum
degree of G.

In this paper, we study the above two conjectures, which have not yet been given much attention. We first show that the
conjecture of Aashtab et al.[1] holds if one is allowed 2∆ – 1 colours. Next, we use this to prove Scott’s conjecture for sparse
graphs. Then we study specific classes of graphs (such as interval graphs and graphs of bounded modular-width), showing that
these have small odd chromatic numbers.

The rest of the paper is structured as follows. In Section 3, we prove that every graph G of even order and maximum degree ∆
has χodd(G) ≤ 2∆–1, extending the result of Aashtab et al. on subcubic graphs to graphs of bounded degree. We actually prove
a more general result, which provides additional corollaries for graphs of large girth. In particular, we obtain that planar graphs
of girth 11 are 3-odd colourable. We also obtain that graphs of girth at least 7 are O(

√
n)-odd colourable, hence obtaining Scott’s

conjecture for sparse graphs. While this bound is not constant, it is of particular interest since subdivided cliques have girth
exactly 6. In Section 4 we prove that every graph with all connected components of even order satisfies χodd(G) ≤ 3 · mw(G),
where mw(G) denotes the modular-width of G. This significantly generalizes a result on cographs from [2] and provides an
important step towards proving that graphs of bounded rank-width have bounded odd chromatic number, which in turn would
imply that the ODD CHROMATIC NUMBER is FPT when parameterized by rank-width alone. Finally, we prove in Section 5
that every interval graph with all components of even order is 6-odd colourable. It was pointed out to us by Müller [11] that
our proof, albeit with more tedious notation, yields the exact same bound for the larger class of AT-free graphs. Additionally,
we show that every proper interval graph with all components of even order is 3-odd colourable, and this bound is tight. An
overview of known results and open cases is provided in Figure 1 below.

2 PRELIMINARIES

For a positive integer i, we denote by [i] the set containing every integer j such that 1 ≤ j ≤ i. We consider a partition of a set
X to be a tuple P = (P1, . . . , Pk) of subsets of X such that X =

⋃
i∈[k] Pi and Pi ∩ Pj = ∅, i.e., we allow parts to be the empty

set. Let P = (P1, . . . , Pk) be a partition of X and Y ⊆ X. We let P |Y be the partition of Y obtained from (P1 ∩ Y , . . . , Pk ∩ Y) by
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F I G U R E 1 Overview of known and open cases.

removing all empty parts. A partition (Q1, . . . , Qℓ) of X is a coarsening of a partition (P1, . . . , Pk) of X if for every Pi and every
Qj either Pi ∩ Qj = ∅ or Pi ∩ Qj = Pi, i.e., every Qj is the union of Pi’s.

Every graph in this paper is simple, undirected and finite. We use standard graph-theoretic notation, and we refer the reader
to [7] for any undefined notation. The degree (resp. open neighborhood) of a vertex v ∈ V(G) is denoted by dG(v) (resp. NG(v)).
We denote the subgraph induced by S by G[S]. G \ S = G[V(G) \ S]. The maximum degree of any vertex of G is denoted by ∆.
We denote paths and cycles by tuples of vertices. The girth of G is the length of a shortest cycle of G. Given two vertices u and
v lying in the same connected component of G, we say an edge e separates u and v if they lie in different connected components
of G \ {e}.

A graph is called odd (even, respectively) if every vertex has odd (respectively, even) degree. A partition (V1, . . . , Vk) of V(G)
is a k-odd colouring of G if G[Vi] induces an odd subgraphs of G for every 1 ≤ i ≤ k. We say a graph is k-odd colourable if it
admits a k-odd colouring. The odd chromatic number of G, denoted by χodd(G), is the smallest integer k such that G is k-odd
colourable. The empty graph (i.e., the graph such that V(G) = ∅) is considered to be both even and odd. Since odd colouring
exists only for graphs whose every component has even size and the colouring of each component does not affect the colouring
of the others, we can consider each component separately. Therefore, it suffices to prove the statements for connected graphs
of even order.

We would like to point out here that the definition of odd colouring used in this paper is not to be confused with the one
introduced by Petrusevski and Skrekovski [12], which is a specific type of proper colouring.

Modular-width A set S of vertices is called a module if, for all u, v ∈ S, N(u) \ S = N(v) \ S. A partition M = (M1, . . . , Mk)
of V(G) is a module partition of G if every Mi is a module in G. Without loss of generality, we further ask that any module
partition M of G, unless G = K1, is non-trivial, i.e., M has at least two non-empty parts. Given two sets of vertices X and Y ,
we say that X and Y are complete to each other (completely non-adjacent, respectively) if uv ∈ E(G) (uv ̸∈ E(G), respectively)
for every u ∈ X, v ∈ Y . Note that for any two modules M and N in G, either M and N are non-adjacent or complete to each
other. We let GM be the module graph of M, i.e., the graph on vertex set M with an edge between Mi and Mj if and only if
Mi and Mj are complete to each other (non-adjacency between modules Mi, Mj in GM corresponds to Mi and Mj being non-
adjacent in G). We define the modular width of a graph G, denoted by mw(G), recursively as follows. mw(K1) = 1, the width
of a module partition (M1, . . . , Mk) of G is the maximum of k and mw(G[Mi]) for all i ∈ [k] and mw(G) is the minimum width
of any module partitions of G.
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3 GRAPHS OF BOUNDED DEGREE AND GRAPHS OF LARGE GIRTH

In this section, we study Scott’s conjecture (Conjecture 1) as well as the conjecture made by Aashtab et al. [1] which states that
χodd(G) ≤ ∆+ 1 for any graph G. We settle Conjecture 1 for graphs of girth at least 7, and prove that χodd(G) ≤ 2∆ – 1 for any
graph G, thus obtaining a weaker version of the conjecture of Aashtab et al. To this end, we prove the following more general
theorem, which implies both of the aforementioned results.

Theorem 4. Let H be a class of graphs such that:

• K2 ∈ H
• H is closed under vertex deletion and
• there is a k ≥ 2 such that any connected graph G ∈ H satisfies at least one of the following properties:

(I) G has two pendant vertices u, v such that NG(u) = NG(v) or
(II) G has two adjacent vertices u, v such that dG(u) + dG(v) ≤ k.

Then any connected graph G ∈ H of even order has χodd(G) ≤ k – 1.

Proof. First notice that H is well defined as K2 has the desired properties. The proof is by induction on the number of vertices.
Let |V(G)| = 2n.

For n = 1, since G is connected, we have that G = K2 which is odd. Therefore, χodd(G) = 1 ≤ k – 1 (recall that k ≥ 2).
Let G be a graph of order 2n. Notice that we only need to consider the case where G is connected as, otherwise, we can
apply the inductive hypothesis to each of the components of G. Assume first that G has two pendant vertices u, v such that
NG(u) = NG(v) = {w}. Then, since G–{u, v} is connected and belongs to H, by induction, there is an odd colouring of G–{u, v}
that uses at most k – 1 colours. Let (V1, . . . , Vk–1) be a partition of V(G) \ {u, v} such that G[Vi] is odd for all i ∈ [k – 1]. We
may assume that w ∈ V1. We give a partition V ′

1, . . . , V ′
k–1 of V(G) by setting V ′

1 = V1 ∪ {u, v} and V ′
i = Vi for all i ∈ [k] \ {1}.

Notice that for all i ∈ [k – 1], G[V ′
i ] is odd. Therefore, χodd(G) ≤ k – 1.

Thus, we assume that G has an edge uv ∈ E(G) such that dG(u) + dG(v) ≤ k. Note that we may assume that k ≥ 3 for
otherwise the theorem follows. We consider two cases; G[V(G) \ {u, v}] is connected and G[V(G) \ {u, v}] is disconnected.

Assume that G[V(G) \ {u, v}] is connected. Since G[V(G) \ {u, v}] has |V(G) \ {u, v}| = 2n – 2 and belongs to H, by induction,
there is an odd colouring of it that uses at most k – 1 colours. Let (V1, . . . , Vk–1) be a partition of V(G) \ {u, v}, such that G[Vi]
is odd of all i ∈ [k – 1]. We give a partition of G into k – 1 odd graphs as follows. Since |NG({u, v})| ≤ k – 2, there exists
ℓ ∈ [k – 1] such that Vℓ ∩ NG({u, v}) = ∅. We define a partition (U1, . . . , Uk–1) of V(G) as follows. For all i ∈ [k – 1], if
i ̸= ℓ, we define Ui = Vi, otherwise we set Ui = Vi ∪ {u, v}. Notice that for all i ̸= ℓ, G[Ui] is odd since Ui = Vi. Also, since
NG[Uℓ][u] = NG[Uℓ][v] = {u, v} and G[Vℓ] is odd, we conclude that G[Uℓ] is odd. Thus, χodd(G) ≤ k – 1.

Now, we consider the case where G \ {u, v} is disconnected. First, we assume that there is at least one component in G \ {u, v}
of even order. Let U be the set of vertices of this component. By induction, χodd(G[U]) ≤ k – 1 and χodd(G \ U) ≤ k – 1.
Furthermore, |NG({u, v})∩U| ≤ k–3 because G \{u, v} has at least two components. Let (U1, . . . , Uk–1) be a partition of U such
that G[Ui] is odd for all i ∈ [k –1]. Also, let (V1, . . . , Vk–1) be a partition of V(G) \ U such that G[Vi] is odd for all i ∈ [k –1]. We
may assume that Vi ∩{u, v} = ∅ for all i ∈ [k – 3]. Since |NG({u, v})∩U| ≤ k – 3, there are at least two indices l, l′ ∈ [k – 1] such
that Ul ∩ NG({u, v}) = Ul′ ∩ NG({u, v}) = ∅. We may assume that l = k – 2 and l′ = k – 1. We define a partition (V ′

1, . . . , V ′
k–1) of

V(G) as follows. For all i ∈ [k – 1] we define V ′
i = Vi ∪Ui. We claim that G[V ′

i ] is odd for all i ∈ [k – 1]. To show the claim, we
consider two cases; either V ′

i ∩ {u, v} = ∅ or not. If V ′
i ∩ {u, v} = ∅, since the only vertices in V(G) \ U that can have neighbours

in U are v and u, we have that G[V ′
i ] is odd. Indeed, this holds because Ui ∩ NG(Vi) = ∅ and both G[Ui] and G[Vi] are odd. If

V ′
i ∩ {u, v} ̸= ∅, then i = k – 2 or i = k – 1. In both cases, we know that Ui ∩ NG(Vi) = ∅ because the only vertices in V(G) \ U

that may have neighbours in U are v and u and we have assumed that u, v do not have neighbours in Uk–2 ∪ Uk–1. So, G[V ′
i ] is

odd because Ui ∩ NG(Vi) = ∅ and both G[Ui] and G[Vi] are odd.
Thus, we can assume that all components of G \ {u, v} are of odd order. Let ℓ > 0 be the number of components, denoted

by V1, ..., Vℓ, of G \ {u, v} and note that ℓ must be even. We consider two cases, either for all i ∈ [ℓ], one of G[Vi ∪ {u}] or
G[Vi ∪ {v}] is disconnected, or there is at least one i ∈ [ℓ] such that both G[Vi ∪ {u}] and G[Vi ∪ {v}] are connected.

In the first case, for each Vi, i ∈ [ℓ] we call wi the vertex in {u, v} such that G[Vi ∪ {wi}] is connected. Note that wi is
uniquely determined, i.e., only one of u and v can be wi for each i ∈ [ℓ]. Now, by induction, for all i ∈ [ℓ], G[Vi ∪ {wi}] has
χodd(G[Vi ∪ {wi}]) ≤ k – 1. Let, for each i ∈ [ℓ], (V i

1, . . . , V i
k–1) denote a partition of Vi ∪ {wi} such that G[V i

j ] be odd, for all
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j ∈ [k – 1]. Furthermore, we may assume that for each i ∈ [ℓ], if v ∈ Vi ∪ {wi}, then v ∈ V i
k–2. Also, we can assume that for

each i ∈ [ℓ], if u ∈ Vi ∪ {wi}, then u ∈ V i
k–1. Finally, let I = {i ∈ [ℓ] | wi = v} and J = {i ∈ [ℓ] | wi = u}.

We consider two cases. If |I| is odd, then |J| is odd since ℓ = |I|+|J| is even. Then, we claim that for the partition (U1, . . . , Uk–1)
of V(G) where Ui =

⋃
j∈[ℓ] V j

i it holds that G[Ui] is odd for all i ∈ [k – 1]. First notice that (U1, . . . , Uk–1) is indeed a partition
of V(G). Indeed, the only vertices that may belong in more than one set are u and v. However, v belongs only to some sets V i

k–2,
and hence it is no set Ui except Uk–2. Similarly, u belongs to no set Ui except Uk–1. Therefore, it remains to show that G[Ui] is
odd for all i ∈ [k – 1]. We will show that for any i ∈ [k – 1] and for any x ∈ Ui, |NG(x) ∩ Ui| is odd. Let x ∈ Ui \ {u, v}, for
some i ∈ [k – 1]. Then we know that NG(x) ∩ Ui = NG(x) ∩ V j

i for some j ∈ [ℓ]. Since G[V j
i ] is odd for all i ∈ [k – 1] and j ∈ [ℓ]

we have that |NG(x) ∩ Ui| = |NG(x) ∩ V j
i | is odd. Therefore, we only need to consider u and v. Notice that v ∈ Uk–2 =

⋃
j∈[ℓ] V j

k–2

(respectively, u ∈ Uk–1 =
⋃

j∈[ℓ] V j
k–1). Also, v (respectively, u) is included in V j

k–2 (respectively, V j
k–1) only if j ∈ I (respectively,

j ∈ J). Since G[V j
k–2] (respectively, G[V j

k–1]) is odd for any j ∈ [ℓ] we have that |N(v) ∩ V j
k–2| (respectively, |N(u) ∩ V j

k–1|)
is odd for any j ∈ I (resp. j ∈ J). Finally, since |I| and |J| are odd, we have that |NG(v) ∩ Uk–2| =

∑
j∈I |N(v) ∩ V j

k–2| and
|NG(u) ∩ Uk–1| =

∑
j∈I |N(u) ∩ V j

k–1| are both odd. Therefore, for any i ∈ [k – 1], G[Ui] is odd and χodd(G) ≤ k – 1.
Now, suppose that both |I| and |J| are even. We consider the partition (U1, . . . , Uk–1) of V(G) where, for all i ∈ [k – 3]

Ui =
⋃

j∈[ℓ] V j
i , Uk–2 =

⋃
j∈J V j

k–2∪
⋃

j∈I V j
k–1 and Uk–1 =

⋃
j∈I V j

k–2∪
⋃

j∈J V j
k–1. We claim that for this partition it holds that G[Ui]

is odd for all i ∈ [k – 1]. First notice that (U1, . . . , Uk–1) is indeed a partition of V(G). Indeed, this is clear for all vertices except
for u and v. However, v only belongs to sets of type V i

k–2 for i ∈ I, and u only belongs to sets of type V i
k–1 for i ∈ J. Therefore,

u or v belong to no set Ui except Uk–1. We will show that for any i ∈ [k – 1] and x ∈ Ui, |NG(x) ∩ Ui| is odd. Let x ∈ Ui \ {u, v},
for some i ∈ [k – 1]. Then we know that NG(x) ∩ Ui = NG(x) ∩ V j

i for some j ∈ [ℓ]. Since G[V j
i ] is odd for all i ∈ [k – 1] and

j ∈ [ℓ] we have that |NG(x)∩Ui| = |NG(x)∩V j
i | is odd. Therefore, we only need to consider u and v. Note that u, v ∈ Uk–1. Since

both |I| and |J| are even and Uk–1 =
⋃

j∈I V j
k–2 ∪

⋃
j∈J V j

k–1, we have that |NG(v) ∩ Uk–1 \ {u}| and |NG(u) ∩ Uk–1 \ {v}| are both
even. Finally, since uv ∈ E(G) we have that |NG(u) ∩ Uk–1| and |NG(v) ∩ Uk–1| are both odd. Hence, χodd(G) ≤ k – 1.

Now we consider the case where there is at least one i ∈ [ℓ] where both G[Vi ∪ {u}] and G[Vi ∪ {v}] are connected. We
define the following sets I and J. For each i ∈ [ℓ]

• i ∈ I, if G[Vi ∪ {u}] is disconnected and
• i ∈ J, if G[Vi ∪ {v}] is disconnected.

Finally, for the rest of the indices, i ∈ [ℓ], which are not in I ∪ J, it holds that both G[Vi ∪ {u}] and G[Vi ∪ {v}] are connected.
Call this set of indices X and note that by assumption |X| ≥ 1. Since |I| + |J| + |X| is even, it is easy to see that there is a partition
of X into two sets X1 and X2 such that both I′ := I∪X1 and J′ := J∪X2 have odd size. Let VI =

⋃
i∈I′ Vi and VJ =

⋃
i∈J′ Vi. Now,

by induction, we have that χodd(G[VI ∪ {v}]) ≤ k – 1 and χodd(G[VJ ∪ {u}]) ≤ k – 1. Assume that (V I
1, . . . , V I

k–1) is a partition
of VI and (VJ

1 , . . . , VJ
k–1) is a partition of VJ such that for any i ∈ [k – 1], G[V I

i ] and G[VJ
i ] are odd. Without loss of generality,

we may assume that v ∈ V I
1 and u ∈ VJ

k–1. Since |X| ≥ 1, note that both dG(u) and dG(v) are at least two, which implies that
dG(u) ≤ k – 2 and dG(v) ≤ k – 2. Therefore, there exists i0 ∈ [k – 2] such that NG(v) ∩ VJ

i0 = ∅ and j0 ∈ [k – 1] \ {1} such that
NG(v) ∩ V I

j0 = ∅. We reorder the sets VJ
i , i ∈ [k – 2], so that i0 = 1 and we reorder the sets V I

i , i ∈ [k – 1] \ {1} so that j0 = k – 1.
Note that this reordering does not change the fact that v ∈ V I

1 and u ∈ VJ
k–1. Consider the partition (U1, . . . , Uk–1) of V(G),

where Ui = V I
i ∪VJ

i . We claim that for all i ∈ [k –1], G[Ui] is odd. Note that for any x ∈ Ui, we have NG(x)∩Ui = NG(x)∩V I
i or

NG(x) ∩ Ui = NG(x) ∩ VJ
i . Since for any i ∈ [k – 1], G[V I

i ] and G[VJ
i ] are odd we conclude that G[Ui] is odd for any i ∈ [k – 1].

Notice that the class of graphs G of maximum degree ∆ satisfies the requirements of Theorem 4. Indeed, this class is closed
under vertex deletions and any connected graph in the class has least two adjacent vertices u, v such that dG(u) + dG(v) ≤ 2∆.
Therefore, the following corollary holds.

Corollary 1. Any connected graph G of even order and maximum degree ∆ has χodd(G) ≤ 2∆ – 1.

Next, we prove Conjecture 1 for graphs of girth at least seven.

Corollary 2. Any connected graph G of even order and of girth at least 7 has χodd(G) ≤ 3
√

n
2 + 1 where n = |V(G)|.

Proof. Let G7 be the class of graphs of girth at least 7. Note that G7 is closed under vertex deletion. Therefore, we need prove
that any connected graph G ∈ G7 of even order that does not satisfy the property (I) of the Theorem 4 has at least two adjacent
vertices u, v such that dG(u) + dG(v) ≤ 3

√
n/2 + 2. Then, the corollary follows from the Theorem 4
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Claim 1. Let G be a graph in G7 of order n. If G does not have two pendant vertices u, v such that NG(u) = NG(v), then it has
two adjacent vertices u′, v′ such that dG(u′) + dG(v′) ≤ 3

√
n

2 + 2.

Proof of Claim: Assume that for any two adjacent vertices u, v such that dG(u) + dG(v) ≥ 3
√

n/2 + 3. Let G′ be the graph we
obtain after we remove all pendant vertices of G. Since each vertex of G had at most one pendant vertex we have that for any
edge uv ∈ E(G′), dG′ (u) + dG′ (v) ≥ 3/2

√
n + 1. Also notice that G′ does not contain any pendant vertices as otherwise this

vertex was attached to a pendant vertex of G and this gives us an edge uv ∈ E such that dG(u) + dG(v) = 3 ≤ 3
√

n/2 + 2.
Let w be a vertex such that dG′ (w) ≥ 3

√
n/4 + 1/2. We consider all the vertices of distance at most 3 from w in G′. Let V1

be the set of vertices of distance one from w, V2 be the set of vertices of distance two from w and V3 be the set of vertices of
distance three from w. Notice that, since G has girth at least 7 we have that both V1 and V2 are independent sets, no two vertices
in V1 have a common neighbour in V2, and no two vertices in V2 have a common neighbour in V3.

We will compute the minimum number of vertices in these sets. For any j ∈ {1, 2}, let |Vj| = mj, vj,i, i ∈ [mj], be the vertices
of Vj and dj,i = dG′ (vj,i) for all i ∈ [mj]. For each vertex v1,i, i ∈ [m1], select i′ ∈ [m2] such that v2,i′ ∈ NG(v1,i)\{w}. We note that
the selected vertices i′ are necessarily distinct for each vertex v1,i ∈ V1. We have |NG′ [{v1,i, v2,i′}]\{w}| = d1,i +d2,i′ –1 ≥ 3

√
n/2.

It follows that |V(G)| ≥
∑

i∈[m1](3
√

n/2) = m1(3
√

n/2) ≥ 9n/8 + 3
√

n/4 > n. This is a contradiction since G has n vertices. ■

One may wonder if graphs of sufficiently large girth may have bounded odd chromatic number. In fact, this is far from being
true, which we show in the next proposition. Recall that the chromatic number χ(G) of a graph G is the smallest integer k such
that V(G) can be partitioned into k sets each of which is independent.

Proposition 1. For every integer g and k, there exist graphs of even order and of girth at least g such that χodd(G) ≥ k.

Proof. We use a classical result of Erdős [8], which states that for all sufficiently large n, there exists a n-vertex graph G of girth
at least g and χ(G) ≥ k. Let G be such a graph, with n even. We may assume that G has no component of odd order (otherwise,
we can add an edge between any pair of odd components without affecting the girth or decreasing the chromatic number). Let
H be the graph obtained from G by subdividing each edge of G once. We claim that χodd(H) ≥ k. Suppose that χodd(H) ≤ k – 1
and let U1, . . .Uk–1 be a partition of V(H) such that G[Ui] is odd for each i ∈ [k – 1]. Since χ(G) ≥ k, there must exist two
adjacent vertices u, v ∈ V(G) such that both {u, v} ∈ Ui for some i ∈ [k – 1]. But we know that there is a vertex wuv in H with
NH(wuv) = {u, v}. Let Uj be the set containing wuv. Then Uj is not odd, a contradiction.

Remark 1. In fact, by using a stronger result of Bollobás [3], it is possible to show that for every g, there is ϵ > 0 such that for
all even n sufficiently large, there exist connected graphs G of order n and girth at least g, with χodd(G) > nϵ.

Next, we obtain the following result for sparse planar graphs.

Corollary 3. Any connected planar graph G of even order and of girth at least 11 has χodd(G) ≤ 3.

Proof. Let G be the class of planar graphs of girth at least 11. Notice that this class is closed under vertex deletion. We will
show that for any graph G ∈ G at least one of the following properties holds:

(I) G has two pendant vertices u, v ∈ V(G) such that NG(u) = NG(v) or
(II) G has an edge uv ∈ E(G) such that dG(u) + dG(v) ≤ 4

Assume that G does not satisfy the property (I). We construct G′ by deleting all pendant vertices of G. If the minimum
degree of G′ is 1, then the property (II) holds for G. Indeed, if G′ has a pendant vertex u, then must have a pendant vertex v in
G. Therefore, dG(u) + dG(v) = 2 + 1 ≤ 4.

Assume that G′ has minimum degree 2. Since G′ is also planar and has girth at least 11 we can apply the Theorem 4.11
(Chang, Duh [5]), which states that there exists an edge uv ∈ E(G′) such that dG′ (u) = dG′ (v) = 2. We consider two cases: either
one of u and v were attached to a pendant vertex v in G or none of them were attached to a pendant vertex of G. In the first case,
we may assume that u is attached to a pendant vertex w of G. Then we have dG(u) + dG(w) = 3 + 1 ≤ 4, therefore G satisfies
the property (II). In the latter case, both u and v have dG(u) = dG(v) = 2. Then G satisfies the property (II).

Now, by applying Theorem 4 to the class G the corollary follows.

Remark 2. The upper bound presented in Corollary 3 is tight as C14, the cycle of length 14, has χodd(C14) = 3.



Odd Chromatic Number of Graph Classes 7

4 GRAPHS OF BOUNDED MODULAR-WIDTH

In this section we consider graphs of bounded modular-width and show that we can upper bound the odd chromatic number by
the modular-width of a graph.

Theorem 5. For every graph G with all components of even order, χodd(G) ≤ 3 mw(G).

The following is an easy consequence of theorem 1 which will be useful to colour modules and gain control over the parity
of parts in the case the module is of even size.

Remark 3. For every non-empty graph G of even order, there exists a partition (V1, V2, V3) of V(G) with |V2|, |V3| being odd
such that G[V1] is odd and G[V2], G[V3] are even. This can be derived from theorem 1 by taking an arbitrary vertex v ∈ V(G),
setting V3 := {v} and then using the existence of a partition (V1, V2) of V(G) \ {v} such that G[V1] is odd and G[V2] is even.

In order to prove theorem 5 we first show that every graph G is 3-colourable for which we have a module partition M such
that the module graph GM exhibits a particular structure, i.e., is either a star Lemma 1 or a special type of tree Lemma 2.

Lemma 1. For every connected graph G of even order with a module partition M = {M1, . . . , Mk} such that GM is a star,
χodd(G) ≤ 3.

Proof. Assume that in GM the vertices M2, . . . , Mk have degree 1. We refer to M1 as the centre and to M2, . . . , Mk as leaves of
GM. We further assume that |M2|, . . . , |Mℓ| are odd and |Mℓ+1|, . . . , |Mk | are even for some ℓ ∈ [k]. We use the following two
claims.

Claim 2. If W ⊆ V(G) such that G[W ∩ Mi] is odd for every i ∈ [k], then G[W] is odd.

Proof of Claim: First observe that the degree of any vertex v ∈ W∩M1 in G[W] is dG[W∩M1](v)+
∑k

i=2 |W∩Mi|. Since dG[W∩M1](v)
is odd and |W ∩ Mi| is even for every i ∈ {2, . . . , k} (which follows from G[W ∩ Mi] being odd by the handshake lemma) we
get that dG[W](v) is odd. For every i ∈ {2, . . . , k} the degree of any vertex v ∈ W ∩ Mi in G[W] is dG[W∩Mi](v) + |W ∩ M1| which
is odd (again, because |W ∩ M1| must be even). Hence G[W] is odd. ■

Claim 3. If W ⊆ V(G) such that G[W ∩ Mi] is even for every i ∈ [k], |W ∩ M1| is odd and |
{

i ∈ {2, . . . , k} : |W ∩ Mi| is odd
}

|
is odd, then G[W] is odd.

Proof of Claim: Since GM is a star and M1 its centre we get that the degree of any vertex v ∈ W ∩ Mi for any i ∈ {2, . . . , k} is
dG[W∩Mi](v)+|W∩M1|. Since |W∩M1| is odd and dG[W∩Mi](v) is even we get that every vertex v ∈ W∩Mi for every i ∈ {2, . . . , k}
has odd degree in G[W]. On the other hand, the degree of v ∈ W ∩ M1 is dG[W∩M1](v) +

∑k
i=2 |W ∩ Mi|. Since dG[W∩M1](v) is

even and |
{

i ∈ {2, . . . , k} : |W ∩ Mi| is odd
}

| is odd dG[W](v) is odd. We conclude that G[W] is odd. ■
First consider the case that |M1| is odd. Since G is of even order this implies that there must be an odd number of leaves of

GM of odd size and hence ℓ is even. Using theorem 1 we let (W i
1, W i

2) be a partition of Mi such that G[W i
1] is odd and G[W i

2] is
even for every i ∈ [k]. Note that since G[W i

1] is odd |W i
1| has to be even and hence |W i

2| is odd if and only if i ∈ [ℓ]. We define
V1 :=

⋃
i∈[k] W i

1 and V2 :=
⋃

i∈[k] W i
2. Note that (V1, V2) is a partition of G. Furthermore, G[V1] is odd by claim 2 and G[V2] is

odd by claim 3. For an illustration we refer the reader to fig. 2.

Now consider the case that |M1| is even. We first consider the special case that ℓ = 1, i.e., there is no i ∈ [k] such that |Mi|
is odd. In this case we let (W i

1, W i
2, W i

3) be a partition of Mi for i ∈ {1, 2} such that G[W i
1] is odd, G[W i

2], G[W i
3] are even and

|W i
2|, |W i

3| are odd which exists due to remark 3. For i ∈ {3, . . . , k} we let (W i
1, W i

2) be a partition of Mi such that G[W i
1] is odd

and G[W i
2] is even which exists by theorem 1. We define V1 :=

⋃
i∈[k] W i

1, V2 :=
⋃

i∈[k] W i
2 and V3 := W1

3 ∪ W2
3 . As before we

observe that (V1, V2, V3) is a partition of V(G), G[V1] is odd by claim 2 and G[V2], G[V3] are even by claim 3. For an illustration
see fig. 2.

Lastly, consider the case that |M1| is even and ℓ > 1. By remark 3 there is a partition (W1
1 , W1

2 , W1
3 ) of M1 such that G[W1

1 ] is
odd, G[W1

2 ], G[W1
3 ] are even and |W1

2 |, |W1
3 | are odd. For i ∈ {2, . . . , k} we let (W i

1, W i
2) be a partition of Mi such that G[W i

1]
is odd and G[W i

2] is even which exists by 1. We define V1 :=
⋃

i∈[k] W i
1, V2 := W1

2 ∪
⋃k

i=3 W i
2 and V3 := W1

3 ∪ W2
2 . Note that

(V1, V2, V3) is a partition of V(G). Furthermore, G[V1] is odd by claim 2 and G[V3] is odd by 3. Additionally, since |M1| is even
there is an even number of i ∈ {2, . . . , k} such that |Mi| is odd. Since for each i ∈ {2, . . . , k} for which |Mi| is odd, |W i

1| must
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F I G U R E 2 Schematic illustration of the three cases in the proof of lemma 1. Depicted is the module graph GM along with
a partition of the modules into sets V1, V2 and V3 such that G[Vi] is odd for i ∈ [3]. Specifically, the left figure depicts the case
where the centre is of odd size, the middle figure depicts the case where the centre is of even size and there is no odd sized leaf
and the right figure depicts the case where the centre is of even size and there is at least one odd sized leaf.

be odd, we get that |
{

i ∈ {2, . . . , k} : |V1 ∩ Mi| is odd
}

| is odd (note that V1 ∩ M2 = ∅ because W2
2 ⊆ V3). Hence we can use

Claim 3 to conclude that G[V2] is odd. For an illustration see fig. 2.

Let G be a connected graph of even order with module partition M = (M1, . . . , Mk) such that GM is a tree. For an edge e of
GM we let Xe and Ye be the two components of the graph obtained from GM by removing e. We say that the tree GM is colour
propagating if the following properties hold.

(i) |M| ≥ 3.
(ii) Every non-leaf module has size one.

(iii) |
⋃

M∈V(Xe) M| is odd for every edge e ∈ E(GM) which is not incident to any leaf of GM.

Lemma 2. For every connected graph G of even order with a module partition M = (M1, . . . , Mk) such that GM is a colour
propagating tree, χodd(G) ≤ 2.

Proof. To find an odd colouring (V1, V2) of G, we first let (W i
1, W i

2) be a partition of Mi such that G[W i
1] is odd and G[W i

2] is
even for every i ∈ [k]. The partitions (W i

1, W i
2) exist due to theorem 1. Note that (ii) implies that for every module Mi which is

not a leaf |W i
2| = 1 and W i

1 = ∅. We define V1 :=
⋃

i∈[k] W i
1 and V2 :=

⋃
i∈[k] W i

2.
To argue that (V1, V2) is an odd colouring of G first consider any v ∈ V(G) such that v ∈ Mi for some leaf Mi of GM.

Condition (i) implies that GM must have at least three vertices and hence the neighbour Mj of Mi cannot be a leaf due to GM
being a tree. Hence |Mj| = 1 by (ii). Hence, if v ∈ W i

1, then dG[V1](v) = dG[W i
1](v) since W j

1 = ∅ and therefore dG[V1](v) is odd.
Further, if v ∈ W i

2, then dG[V2](v) = dG[W i
2](v) + 1 since |W j

2| = 1 and hence dG[V2](v) is odd. Hence the degree of any vertex
v ∈ Mi is odd in G[V1], G[V2] respectively.
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Now consider any vertex v ∈ V(G) such that Mi = {v} for some non-leaf Mi of GM. Let Mi1 , . . . , Miℓ be the neighbours of
Mi in GM. Let ej be the edge MiMij ∈ E(G) for every j ∈ [ℓ]. Without loss of generality, assume that Mi /∈ V(Xej ) for every
j ∈ [ℓ]. By (iii) we have that |

⋃
M∈V(Xej )

M| is odd whenever Mij is not a leaf in GM. Hence, by (ii), |
⋃

M∈V(Xej )
M| ≡ |Mij |

(mod 2) for every j ∈ [ℓ] for which Mij is not a leaf in GM. On the other hand, as a consequence of the handshake lemma we
get that |W ij

2 | is odd if and only if |Mij | is odd. Hence the following holds for the parity of the degree of v in G[V2].

dG[V2](v) = |{j ∈ [m] : dGM (Mij ) ≥ 2}| +
∑
j∈[m]

dGM (Mij
)=1

|W ij
2 | ≡ |V(G) \ Mi| (mod 2).

Since G has even order we conclude that dG[V2](v) is odd and hence (V1, V2) is an odd colouring of G.

We now show that, given a graph G with module partition M, we can decompose the graph in such a way that the module
graph of any part of the decomposition is either a star or a colour propagating tree. Here we consider the module graph with
respect to the module partition M restricted to the part of the decomposition we are considering. To obtain the decomposition
we use a spanning tree GM and inductively find a non-separating star, i.e., a star whose removal does not disconnect the graph,
or a colour propagating tree. In order to handle parity during this process we might separate a module into two parts of the
decomposition.

Lemma 3. For every graph G of even order and module partition M = (M1, . . . , Mk) there is a partition M̂ of V(G) with at
most 2k many parts such that there is a coarsening P of M̂ with the following properties. |P| is even for every part P of P .
Furthermore, for every part P of P we have that M̂|P is a module partition of G[P] and G[P]M̂|P

is either a star (with at least
two vertices) or a colour propagating tree.

Proof. We use the following extensively throughout the proof.

Claim 4. If N is a module partition of a graph H and W ⊆ V(G) such that N |W has at least two non-empty parts, then N |W is
a module partition of G[W].

Proof of Claim: Assume that this is not the case and there is a part N of N |W which is not a module in G[W]. By construction
there is a part N′ of N such that N ⊆ N′. Since N is not a module in G[W] there are vertices u, v ∈ N, w ∈ W \ N such that
uw ∈ E(G[W]) and vw /∈ E(G[W]). Since N ⊆ N′ this implies that N′ cannot be a module in G, a contradiction. ■

We use an induction on the number of modules in M to find partitions M̂ and P . Observe that in case GM is a star or a
colour propagating tree we can set M̂ := M and P := (V(G)) which satisfies the conditions of the statement. Hence assume
that GM is neither a star nor a colour propagating tree. We use the two following claims to conduct our inductive argument.

Claim 5. Let H be a graph with module partition N = (N1, . . . , Nℓ) such that HN is neither a star nor a colour propagating tree.
If HN is a tree, then there is a partition N̂ = (N̂1, . . . , N̂ℓ̂) of V(G) with ℓ̂ ≤ ℓ + 1 and a coarsening Q = (Q1, Q2) of N̂ with
the following properties. |Qi| is even and N̂ |Qi is a module partition of H[Qi] for i ∈ [2]. Furthermore, H[Q1] is connected and
H[Q2]N̂ |Q2

is either a star or a colour propagating tree. Additionally, for any fixed index i ∈ [ℓ] we can enforce that Ni ∩Q1 ̸= ∅.

Proof of Claim: First observe that since HN is a tree but neither a colour propagating tree nor a star we know that either

• there is a non-leaf vertex N in HN with |N | > 1 which has at least one non-leaf neighbour or
• there is an edge e ∈ E(HN ) not incident to any leaf of HN and |

⋃
N∈V(Xe) N | is even.

Assume we have fixed i ∈ [ℓ] (Ni will be the part which is guaranteed to be partially contained in Q1). For any part N ̸= Ni of
N we let eN be an edge incident to N which separates N from Ni. Let XN be the component of HN after removing eN which
contains N. Let Z be the set of non-leaf parts N ̸= Ni in HN such that either |N| > 1 or eN is not incident to a leaf and XN is
of even order. Note that by our previous observation we know that Z ∪ {Ni} cannot be empty. Finally, we in case Z ̸= ∅ we
let N ∈ Z be a part with minimum |V(XN)| amongst all parts in Z. In case Z = ∅ we define N := Ni. In this case we let eN be
an edge incident to Ni and some other non-leaf vertex and XN the component containing Ni after removing eN . Observe that in
case Z = ∅ we get as an immediate consequence that |Ni| > 1 and |XN | is odd. Now observe that in any case our choice of N
guarantees that |N′| = 1 for every non-leaf part N′ ̸= N of XN and for every edge e ∈ E(XN) not incident to a leaf of XN we have
that |

⋃
N′∈V(Xe) N′| is odd. Furthermore, since N is not a leaf XN has more than one vertex.
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First consider the case that |N| = 1. We set N̂ := N , Q2 :=
⋃

N′∈V(XN ) N′ and Q1 := V(H) \ Q2. Since N ∈ Z and |N | = 1
we know that |Q1| and |Q2| are even. Furthermore, claim 4 implies that N |Qi is a module partition of H[Qi] for i ∈ [2]. By
construction H[Q1] is connected and H[Q2]N̂ |Q2

is a colour propagating tree. Lastly, observe that by choosing eN to be an edge
separating N from Ni (since |N | = 1 we get N ̸= Ni) we get that Ni ⊆ Q1 as required.

Now consider the case that |N| > 1. First assume that all neighbours of N in XN are leaves. In this case let N′ ⊆ N such that
N′ ̸= ∅ and |N′ ∪

⋃
N′′∈V(XN ) N′′| is even. Now we define N̂ to be the partition obtained from N by removing part N and adding

N′ and N \ N′. We further let Q2 := N′ ∪
⋃

N′′∈V(XN ) N′′ and Q1 := V(H) \ Q2. By construction |Q1|, |Q2| are even. Furthermore,
N̂ |Q1 must contain at least two parts since HN is not a star. Hence N̂ |Qi is a module partition of H[Qi] for i ∈ [2] by claim 4.
Furthermore, H(Q1) is connected and H[Q2]N̂ |Q2

is a star. In case N = Ni recall that XN is of odd order and hence we can pick
N′ such that N \ N′ ̸= ∅ which implies Ni ∩ Q1 ̸= ∅. Finally, in case N ̸= Ni we get Ni ⊆ Q1 as in the previous case.

On the other hand, assume that N has at least one non-leaf neighbour N′ in XN . Choose an arbitrary vertex n ∈ N. We define
N̂ to be the partition obtained from N by removing N and adding {n} and N\{n}. We additionally set Q2 := {n}∪

⋃
N′′∈V(XN′ ) N′′

and Q1 := V(H) \ Q2. Note that since NN′ is an edge between non-leaf vertices we get that |
⋃

N′′∈V(XN′ ) N′′| is odd and hence
|Q1| and |Q2| must be even. Since N \ {n} ̸= ∅ we get that N |Q1 contains at least two parts and hence N̂ |Qi is a module partition
of H[Qi] for i ∈ [2] by 4. Additionally, since N \ {n} ̸= ∅ we have that H(Q1) must be connected. Finally, H[Q2]N̂ |Q2

is a colour
propagating tree. The condition that Ni ∩ Q1 ̸= ∅ is trivially satisfied in case N = Ni and follows as before in case N ̸= Ni. ■

Claim 6. Let T be any spanning tree of GM. If there exists an edge e ∈ E(GM)\E(T), then there is a partition N̂ = (N̂1, . . . , N̂ℓ̂)
of V(G) with ℓ̂ ≤ k + 1 and a coarsening Q = (Q1, Q2) of N̂ with the following properties. |Qi| is even and N̂ |Qi is a module
partition of G[Qi] for i ∈ [2]. Furthermore, G[Q1] is connected and G[Q2]N̂ |Q2

is either a star or a colour propagating tree.

Proof of Claim: For any edge e = MM′ ∈ E(GM) \ E(T) we let e1, e2 ∈ E(T) such that e1 is incident to M, e2 is incident
to M′, (T \ {e1, e2}) ∪ {e} has exactly two components and M is in the same component as M′ in (T \ {e1, e2}) ∪ {e}. For
e = MM′ ∈ E(GM) \ E(T) let Ce be the subgraph of GM induced by the vertices of the component of (T \ {e1, e2})∪ {e} which
contains M and M′. We now define e to be an edge minimizing |V(Ce)|. This means that Ce must be a tree. First consider the
case that Ce is of even order and Ce is a colour propagating tree. First consider that GM \ Ce has at least two vertices. In this
case we can set N̂ := M, Q2 :=

⋃
M∈V(Ce) M and Q1 := V(G) \ Q2 satisfying all requirements.

Hence assume that GM \ Ce consists of one vertex N. Hence in particular e1, e2 must be incident to N. Since Ce is of even
order |N | must be even. Partition N into two parts N′, N′′ of odd size and obtain N̂ from M by removing N and adding N′ and
N′′. Furthermore, since Ce is a colour propagating tree we get that |

⋃
X∈V(Xe) X| is odd where Xe is one of the two components

of Ce after removing e. Now observe that since N′ is odd and adjacent to precisely one module of Xe the graph GM[V(Xe)∪N′]
is a colour propagating tree. Hence we can set Q2 := N′ ∪

⋃
X∈V(Xe) X and Q1 := V(G) \ Q2 which satisfies all requirements.

On the other hand, consider the case that Ce is not a colour propagating tree. First assume that Ce is of even order. Since Ce

is not a colour propagating tree we can use claim 5 on Ce with module partition M|Ve where Ve :=
⋃

N∈V(Ce) N. We obtain a
partition N ′ = (N′

1, . . . , N′
ℓ′ ) of Ve with ℓ′ ≤ |V(Ce)|+1 and a coarsening Q′ = (Q′

1, Q′
2) of N ′ such that Mi∩Q′

1 ̸= ∅ as in claim 5
where Mi is one of the modules incident to e. We obtain N̂ by removing all parts in V(Ce) from M and adding the parts from
N ′. We further set Q2 := Q′

2 and Q1 := V(G) \ Q2. Note that since Mi ∩ Q′
1 ̸= ∅, GM \ Ce, G[Q′

1] are connected and either e1 or
e2 is incident to both Mi and some vertex in GM \ Ce we get that G[Q1] is connected. All other properties follow from claim 5.

On the other hand, if Ce is of odd order, then either Xe or Ye must be of even order where Xe, Ye are the two connected
components of Ce after removing e. Without loss of generality let Xe be of even size. Note that removing e and e1 from GM
splits GM into precisely two component of which one is Xe. In the case that Xe is a colour propagating tree or star we can set
N̂ := M, Q2 :=

⋃
M∈V(Xe) M and Q1 := V(G) \ Q2. On the other hand, if Xe is not a colour propagating tree, we can use the

same argument as above only considering Xe in place of Ce. ■
Note that since GM is not a star or colour propagating tree the premise of either claim 5 or claim 6 must be satisfied. We

obtain a partition N̂ = (N̂1, . . . , N̂ℓ̂) of V(G) with ℓ̂ ≤ k + 1 and a coarsening Q = (Q1, Q2) of N̂ as in the two claims. Since
N̂ |Q2 must contain at least two modules we get that N̂ |Q1 has strictly less modules than M. Let k′ < k be the number of modules
of N̂ |Q1 . Hence we can recursively obtain a partition M′ of G[Q1] with at most 2k′ parts and a coarsening P ′ of M′ with the
following properties. |P| is even, M′|P is a module partition of G[P] and G[P]M′ |P is either a star or a colour propagating tree
for every part P of P . We obtain the partition M̂ of V(G) by adding all parts of N̂|Q2 to M′ and the coarsening P of M̂ by
adding P2 to P ′. Note that the number of parts of M̂ is at most 2k′ + (̂l – k′) ≤ 2k. Hence M̂ and P satisfy the conditions of
the statement.
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Proof of theorem 5. Without loss of generality assume that G is connected. Furthermore, let k := mw(G) and M = (M1, . . . , Mk)
be a module partition of G. Let M̂ be a partition of V(G) with at most 2k parts and P be a coarsening of M̂ as in lemma 3.
First observe that M̂|P must contain at least two parts for every part P of P as M̂|P is a module partition of G[P]. Since M̂ has
at most 2k parts and P is a coarsening of P̂ this implies that P has at most k parts. Since G[P]M̂|P

is either a star or a colour
propagating tree we get that χodd(G[P]) ≤ 3 for every part P of P by lemma 1 and lemma 2. Using a partition (WP

1 , WP
2 , WP

3 )
of G[P] such that G[WP

i ] is odd for every i ∈ [3] for every part P we obtain a global partition of G into at most 3k parts such
that each part induces an odd subgraph.

Since deciding whether a graph is k-odd colourable can be solved in time 2O(k rw(G)) [2, Theorem 6] and rw(G) ≤ cw(G) ≤
mw(G), where cw(G) denotes the clique-width of G and rw(G) rank-width, we obtain the following as a corollary.

Corollary 4. Given a graph G and a module partition of G of width m the problem of deciding whether G can be odd coloured
with at most k colours can be solved in time 2O(m2).

5 INTERVAL GRAPHS

In this section we study the odd chromatic number of interval graphs and provide an upper bound in the general case as well as
a tight upper bound in the case of proper interval graphs. We use the following lemma in both proofs.

Lemma 4. Let G be a connected interval graph and P = (p1, . . . , pk) a maximal induced path in G with the following property.

(∗) ℓp1 = min{ℓv : v ∈ V(G)} and for every i ∈ [k – 1] we have that rpi+1 ≥ rv for every v ∈ NG(pi).

Then every v ∈ V(G) is adjacent to at least one vertex on P.

Proof. Towards a contradiction, assume that there is v ∈ V(G) such that v is not adjacent to any vertex of P. Note that
v /∈ {p1, . . . , pk}. Furthermore, by the assumption that v is not adjacent to any vertex of P either ℓpi ≤ rpi < ℓv or ℓv < ℓpi ≤ rpi

for every i ∈ [k]. Pick i ∈ [k] to be the maximum index such that rpi < ℓv. Observe that i is well defined as by property (∗)
ℓp1 = min{ℓv : v ∈ V(G)} ≤ rp1 < ℓv. First consider the case that i < k. But then rpi < ℓv ≤ rv < ℓpi+1 which contradicts that
pi and pi+1 are adjacent. Hence i = k. Since G is connected there must be a path Q = (q1, . . . , qℓ) from pk to v. Let j ∈ [ℓ]
be the last index such that ℓqj ≤ rpk . Since q1 = pk we know that qj exists and is adjacent to some vertex in P. Indeed j < ℓ

as rpk < ℓv and qℓ = v. Therefore qj+1 exists and further qjqj+1 ∈ E(G) and ℓqj+1 > rpk (by choice of j). We conclude that
rpk < rqj . If qj is adjacent to pk–1, this contradicts the property (∗). On the other hand, if qj is not adjacent to pk–1, then the set
{v ∈ V(G) : pk–1v /∈ E(G), pkv ∈ E(G)} is not empty which contradicts the maximality of P. Hence v has to be adjacent to at
least one vertex of P.

To prove that the odd chromatic number of proper interval graphs is bounded by three we essentially partition the graph into
maximal even sized cliques greedily in a left to right fashion.

Proposition 2. For every proper interval graph G with all components of even order, χodd(G) ≤ 3.

Proof. We assume that G is connected. Fix an interval representation of G and denote the interval representing vertex v ∈ V(G)
by Iv = [ℓv, rv] where ℓv, rv ∈ R. Let P = (p1, . . . , pk) be a maximal induced path in G as in lemma 4. For every vertex
v ∈ V(G) \ {p1, . . . , pk} let iv ∈ [k] be the index such that piv is the first neighbour of v on P. Note that this is well defined by
lemma 4. For i ∈ [k] we let Yi be the set with the following properties.

(Π1)i {v ∈ V(G) : iv = i} ⊆ Yi ⊆ {v ∈ V(G) : iv = i} ∪ {pi, pi+1} .
(Π2)i pi ∈ Yi if and only if

∣∣{p1, . . . , pi–1} ∪
⋃

j∈[i–1]{v ∈ V(G) : iv = j}
∣∣ is even.

(Π3)i pi+1 ∈ Yi if and only if
∣∣{p1, . . . , pi} ∪

⋃
j∈[i]{v ∈ V(G) : iv = j}

∣∣ is odd.

First observe that (Y1, . . . , Yk) is a partition of V(G) as (Π2)i and (Π3)i imply that every pi is in exactly one set Yi. Furthermore,
|Yi| is even for every i ∈ [k] since (Π1)i and (Π3)i imply that

∣∣Yi ∪ {p1, . . . , pi} ∪
⋃

j∈[i–1]{v ∈ V(G) : iv = j}
∣∣ is even and

(Π2)i implies that
∣∣({p1, . . . , pi} ∪

⋃
j∈[i–1]{v ∈ V(G) : iv = j}) \ Yi

∣∣ is even. Since v ∈ V(G) \ {p1, . . . , pk} is not adjacent to
piv–1 we get that ℓv ∈ Ipiv

. Since G is a proper interval graph this implies that rpiv
≤ rv and hence v is adjacent to piv+1. Hence

(Π1)i implies that G[Yi] must be a clique since Yi ∩ {p1, . . . , pk} ⊆ {pi, pi+1} for every i ∈ [k]. Furthermore, NG(Yi) and Yi+3
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are disjoint since rv ≤ rpi+1 for every v ∈ Yi by property (∗) and rpi+1 < ℓpi+3 ≤ rw for every w ∈ Yi+3 since P is induced. Hence
we can define an odd-colouring (V1, V2, V3) of G in the following way. We let Vj :=

⋃
i≡j (mod 3) Yi for j ∈ [3]. Note that since

NG(Yi) ∩ Yi+3 = ∅ we get that dG[Yi](v) = dG[Vj](v) for i ≡ j (mod 3) which is odd (as Yi is a clique of even size). Hence G[Vj] is
odd for every j ∈ [3].

Remark 4. The upper bound presented in proposition 2 is tight. Consider the graph G consisting of a K4 with two added pendant
vertices u, w adjacent to different vertices of K4. Clearly, G is a proper interval graph and further χodd(G) = 3.

We use a similar setup (i.e., a path P covering all vertices of the graph G) as in the proof of 2 to show our general upper bound
for interval graphs. The major difference is that we are not guaranteed that sets of the form {pi}∪{v ∈ V(G) : iv = i} are cliques.
To nevertheless find an odd colouring with few colours of such sets we use an odd/even colouring as in 1 of {v ∈ V(G) : iv = i}
and the universality of pi. Hence this introduces a factor of two on the number of colours. Furthermore, this approach prohibits
us from moving the pi around as in the proof of proposition 2. As a consequence we get that the intervals of vertices contained
in a set Yi span a larger area of the real line than they do in the proof of proposition 2. This makes the analysis more technical.

Theorem 6. For every interval graph G with all components of even order, χodd(G) ≤ 6.

Proof. We assume that G is connected. First we fix an interval representation of G. We denote the interval representing vertex
v ∈ V(G) by Iv = [ℓv, rv] where ℓv, rv ∈ R. Let P = (p1, . . . , pk) be a maximal induced path in G as in lemma 4. Let Y be
V(G) \ {p1, . . . , pk}. For every v ∈ Y we define iv ∈ [k] to be the minimum index such that v is adjacent to piv . Note that this is
well defined by lemma 4.

We now recursively define a partition (Y1, . . . , Yk) of Y such that for every i ∈ [k] the following properties hold.

(P1)i Every vertex in Yi is adjacent to pi.
(P2)i If |{p1, . . . , pi} ∪ {v ∈ Y : iv ≤ i}| is even, then

⋃i
j=1 Yj = {v ∈ Y : iv ≤ i}.

(P3)i If |{p1, . . . , pi} ∪ {v ∈ Y : iv ≤ i}| is odd, then either |{v ∈ Y : iv ≤ i} \
⋃i

j=1 Yj| = 1 or
⋃i

j=1 Yj = {v ∈ Y : iv ≤ i} and
NG(pi+1) ∩ Yi = ∅.

(P4)i If iw ≤ i for w /∈
⋃i

j=1 Yj, then w ∈ NG(pi+1) and iw = max{iv ≤ i : v ∈ Y ∩ NG(pi+1)}.

Fix i ∈ [k] and assume that we have defined Y1, . . . , Yi–1 satisfying (P1)j, (P2)j, (P3)j, (P4)j for every j ∈ [i–1]. In the following
we show how to construct Yi. Define Y ′

i :=
{

v ∈ Y \
⋃i–1

j=1 Yj : iv ≤ i
}

. Note that Y ′
i ∪

⋃i–1
j=1 Yj = {v ∈ Y : iv ≤ i}. In the case that

either |{p1, . . . , pi} ∪ {v ∈ Y : iv ≤ i}| is even or Y ′
i ∩ NG(pi+1) = ∅ we set Yi := Y ′

i . Otherwise, pick w ∈ Y ′
i ∩ NG(pi+1) such

that iw = max{iv ≤ i : v ∈ Y ′
i ∩ NG(pi+1)} and define Yi := Y ′

i \ {w}. Note that w is well defined since we are considering the
case that Y ′

i ∩ NG(pi+1) ̸= ∅. Observe that properties (P2)i and (P3)i are true by construction of Yi. To argue that property (P1)i

is true we observe that by (P4)i–1 every vertex w ∈ Y ′
i with iw < i has to be adjacent to pi. Since in addition every vertex v with

iv = i is adjacent to pi by choice of iv, property (P1)i holds. To argue that property (P4)i holds we observe that every vertex
v ∈ Y with iv = i is contained in Y ′

i . Hence, if max{iv ≤ i : v ∈ Y ∩ NG(pi+1)} = i, then we would choose w with iw = i. In the
case that max{iv ≤ i : v ∈ Y ∩ NG(pi+1)} < i then (P4)i follows directly from (P4)i–1. This concludes the construction of the
sets Y1, . . . , Yk. The following two claims allows us to reuse the colours used to colour Yi for sets Yi+c, Yi+2c, . . . for some small
constant c.

Claim 7. For every vertex v ∈ Y it holds that Iv ∩ Ipi = ∅ for every i /∈ {iv, iv + 1, iv + 2}. In particular, NG(v) ∩ {p1, . . . , pk} is
contained in {piv , piv+1, piv+2} for every vertex v ∈ Y .

Proof of Claim: First observe that Iv ∩ Ipi = ∅ for every i < iv by definition of iv. Since P is an induced path rpiv+1 < ℓpiv+3 . On
the other hand, rv ≤ rpiv+1 by property (∗). Hence rv < ℓpiv+3 ≤ ℓpi for every i ≥ iv + 3. Hence Iv ∩ Ipi = ∅ for every i ≥ iv + 3
concluding the proof of the statement. ■

As a consequence of claim 7 we get the following claim.

Claim 8. If Yi ⊆ {v ∈ Y : iv ≥ i′}, then

• NG({pi}) is disjoint from {pj} ∪ Yj for any j ≤ i – 3 and
• NG(Yi) is disjoint from {pj} ∪ Yj for any j ≤ i′ – 2.
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Proof of Claim: From claim 7 we get that no v ∈ Y with iv ≤ i – 3 can be adjacent to {pi}. Furthermore, P is an induced path
so pj is non-adjacent to pi for every j ≤ i – 2. Therefore, NG({pi}) is disjoint from {pj} ∪ Yj for every j ≤ i – 3.

To prove the second property, observe that the property (∗) and P being an induced path imply that for every v ∈
{p1, . . . , pi′–2} ∪

⋃i′–2
j=1 Yj we have that rv ≤ rpi′–1

. Since every w ∈ Yi satisfies that iw ≥ i′ we get that every v ∈
{p1, . . . , pi′–2} ∪

⋃i′–2
j=1 Yj cannot be adjacent to any vertex in Yi (note that this is not true for pi in case i = i′ as ℓpi ≤ rpi–1 ). Since

by construction of Y1, . . . , Yk for every j ≤ i′ – 2 we have Yj ⊆ {v ∈ Y : iv ≤ i′ – 2} we get that NG(Yi) is disjoint from Yj for
any j ≤ i′ – 2. ■

Using the sets Y1, . . . , Yk, claim 7 and claim 8 we can now find an odd colouring of G. To colour G we use a recursive
argument. In the i-th step we find a partition of the set {p1, . . . , pi}∪

⋃i
j=1 Yj into six (possibly empty) parts V i

1, . . . , V i
6 with the

following properties.

(C1)i If |{p1, . . . , pi} ∪
⋃i

j=1 Yj| is even, then (V i
1, . . . , V i

6) is an odd colouring of G[{p1, . . . , pi} ∪
⋃i

j=1 Yj].
(C2)i If |{p1, . . . , pi} ∪

⋃i
j=1 Yj| is odd, then there is ji ∈ [6] such that G[V i

j ] is odd for every j ̸= ji, pi ∈ V i
ji and in G[V i

ji ] every
vertex apart from pi has odd degree.

(C3)i {pi} ∪ Yi is contained in the union of at most two parts of the partition (V i
1, . . . , V i

6).
(C4)i For every j ∈ [6], any pair of vertices v, w ∈ V i

j can be separated in G[V i
j ] by removing an edge of the path P if there are

two indices i′ ̸= i′′ such that v ∈ {pi′} ∪ Yi′ and w ∈ {pi′′} ∪ Yi′′ .

Let us fix i ∈ [k] and assume we have partitioned {p1, . . . , pi–1} ∪
⋃i–1

j=1 Yj into six parts V i–1
1 , . . . , V i–1

6 with properties (C1)j,
(C2)j, (C3)j and (C4)j for every j ≤ i – 1. Our goal is to find a partition (W1, W2) of {pi} ∪ Yi and two indices j1 ̸= j2 ∈ [6] such
that the partition obtained from (V i–1

1 , . . . , V i–1
6 ) by adding W1 to V i–1

j1 and W2 to V i–1
j2 is a partition of {p1, . . . , pi}∪

⋃i
j=1 Yj with

properties (C1)i, (C2)i, (C3)i and (C4)i.
To define the partition (W1, W2) we use a partition (W ′

1, W ′
2) of G[Yi] such that G[W ′

1] is odd and G[W ′
2] is even which exists

due to theorem 1. Note that in the case that Yi is empty we simply obtain the partition (∅, ∅) which is sufficient for our purpose.
We define W1 := W ′

1 and W2 := W ′
2 ∪ {pi}. Observe that G[W ′

1] being odd implies that |W ′
1| is even by the handshake lemma.

Hence |W ′
2| is odd if and only if |Yi| is odd. Since every vertex in W ′

2 is adjacent to pi by (P1)i, we obtain that every vertex in
W ′

2 has odd degree in G[W2] and pi has odd degree in G[W2] if and only if |Yi| is odd. Note that we can get a colouring with 12
colours at this point without much further analysis. Obtaining a colouring with six colours requires careful analysis.

The following claim will provide us with possible choices for indices j1 and j2. Note that the indices from the claim will not
in every case be a suitable choice.

Claim 9. There is a partition (V̂ i–1
1 , . . . , V̂ i–1

6 ) of {p1, . . . , pi–1} ∪
⋃i–1

j=1 Yj with properties (C1)j, (C2)j, (C3)j, (C4)j for every
j ≤ i – 1 and indices ĵ1 ̸= ĵ2 ∈ [6] such that NG(W1) is disjoint from V̂ i–1

ĵ1
and NG(W2) is disjoint from V̂ i–1

ĵ2
.

Proof of Claim: First consider the case that Yi ⊆ {v ∈ Y : iv ∈ {i, i – 1}}. In this case we will set V̂ i–1
j := V i–1

j for every
j ∈ [6]. Since Yi ⊆ {v ∈ Y : iv ∈ {i, i – 1}} we obtain using claim 8 that both NG(W1) and NG(W2) are disjoint from any set
{pj} ∪ Yj with j ≤ i – 3. Since (C3)j, j < i implies that {pi–2, pi–1} ∪ Yi–2 ∪ Yi–1 is contained in at most four parts of the partition
(V̂ i–1

1 , . . . , V̂ i–1
6 ) we can find ĵ1, ĵ2 ∈ [6], ĵ1 ̸= ĵ2 with the following properties. V̂ i–1

ĵ1
and V̂ i–1

ĵ2
do not contain any element from

{pi–2, pi–1} ∪ Yi–2 ∪ Yi–1. This choice guarantees that NG(W1) is disjoint from V̂ i–1
ĵ1

and NG(W2) is disjoint from V̂ i–1
ĵ2

.

Now consider the case that Yi contains a vertex w with iw < i – 1. Observe that in this case we get that iw = i – 2 as a
consequence of claim 7. Figure 3 illustrates the layout of intervals and the available colours we obtain in this case.

We know that at least one set out of W1, W2 is fully contained in {v ∈ Y : iv = i} ∪ {pi} (i.e., the one not containing w)
by (P3)i. Without loss of generality assume that this is true for W1 (i.e., we do not use in the following argument that W2

contains pi). By claim 8 we infer that NG(W2) ⊆ NG({pi} ∪ Yi) is disjoint from any set {pj} ∪ Yj with j ≤ i – 4. Furthermore,
(C3)j, j < i implies that {pi–3, pi–2} ∪ Yi–3 ∪ Yi–2 is contained in at most four parts of the partition (V i–1

1 , . . . , V i–1
6 ). Hence,

{pi–3, pi–2, pi–1} ∪ Yi–3 ∪ Yi–2 is contained in at most five parts of the partition (V i–1
1 , . . . , V i–1

6 ). Pick ĵ2 in such a way that V i–1
ĵ2

is
disjoint from {pi–3, pi–2, pi–1} ∪ Yi–3 ∪ Yi–2. In the following we will argue that we can, after potentially modifying the partition
(V i–1

1 , . . . , V i–1
6 ), assume that {pi–1} ∪ Yi–1 is also disjoint from V i–1

ĵ2
.

First observe that w ∈ Yi with iw = i – 2 implies that Yi–1 ⊆ {v ∈ Y : iv = i – 1} by (P2)i–2 and (P3)i–2. By claim 8 we get
that NG(Yi–1) is disjoint from {pj} ∪ Yj for any j ≤ i – 3. Since {pi–2} ∪ Yi–2 is contained in at most two parts of the partition
(V i–1

1 , . . . , V i–1
6 ) by (C3)j, j < i we can pick j′, j′′ ∈ [6], j′ ̸= j′′ distinct from ĵ2 such that V i–1

j′ , V i–1
j′′ are disjoint from {pi–2} ∪ Yi–2.
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even

odd

even

odd

even

odd

even

odd

even

odd

V̂ i−1
1 V̂ i−1

2 V̂ i−1
3 V̂ i−1

4 V̂ i−1
5 V̂ i−1

6

pi−4

Yi−4

pi−3

Yi−3

pi−2

Yi−2

pi−1

Yi−1

pi

Yi

F I G U R E 3 Schematic representation of the partition (V̂ i–1
1 , . . . , V̂ i–1

6 ) in the case that iw = i – 2 in the proof of claim 9. Note
that in the figure Yi is coloured in the two colours of the indices ĵ1 = 3 and ĵ2 = 2 we obtain in this case.

By (C3)i–1 we know that {pi–1} ∪ Yi–1 is contained in at most two parts of the partition (V i–1
1 , . . . , V i–1

6 ). Assume V i–1
m′ , V i–1

m′′ are
those two parts and pi–1 ∈ V i–1

m′′ . In case {pi–1}∪Yi–1 is contained in one part we let m′ = m′′. Define M′ := V i–1
m′ ∩∪Yi–1. Observe

that m′′ ̸= ĵ2 as V i–1
ĵ2

does not contain pi–1 by choice of ĵ2. If m′ ̸= ĵ2 then V i–1
ĵ2

is disjoint from {pi–3, pi–2, pi–1}∪
⋃i–1

j=i–3 Yj and hence

with setting V̂ i–1
j := V i–1

j for every j ∈ [6] we get that NG(W2) is disjoint from V̂ i–1
ĵ2

. Hence assume that m′ = ĵ2. Since j′ ̸= j′′ we

get that m′′ is not equal to either j′ or j′′. Assume j′ ̸= m′′. We define V̂ i–1
j′ := V i–1

j′ ∪ M′, V̂ i–1
ĵ2

:= V i–1
ĵ2

\ M′ and V̂ i–1
j := V i–1

j for

j /∈ {j′, ĵ2}. To see that the partition (V̂ i–1
1 , . . . , V̂ i–1

6 ) of {p1, . . . , pi–1}∪
⋃i–1

j=1 Yj satisfies (C1)i–1, (C2)i–1, (C3)i–1, (C4)i–1 we make
the following two observations. Since V i–1

ĵ2
is disjoint from {pi–3, pi–2, pi–1}∪Yi–3 ∪Yi–2 and NG(M′) ⊆ NG(Yi–1) is disjoint from

{pj} ∪ Yj for any j ≤ i – 3 we get that M′ is a component of G[V i–1
ĵ2

]. Hence dG[V i–1
ĵ2

](v) = dG[V̂ i–1
ĵ2

](v) for any vertex v ∈ V i–1
ĵ2

\ M′.

Additionally, since V i–1
j′ is disjoint from {pi–2} ∪ Yi–2 and NG(M′) ⊆ NG(Yi–1) is disjoint from {pj} ∪ Yj for any j ≤ i – 3 we get

that M′ is a connected component of G[V̂ i–1
j′ ]. Hence dG[V i–1

j′ ](v) = dG[V̂ i–1
j′ ](v) for any vertex v ∈ V i–1

j′ and dG[V i–1
ĵ2

](v) = dG[V̂ i–1
j′ ](v)

for any vertex v ∈ M′. This argument shows that (C1)i–1 and (C2)i–1 are satisfied. (C4)i–1 follows from the observation that M′

is a connected component of G[V̂ i–1
j′ ] and (V i–1

1 , . . . , V i–1
6 ) satisfying (C4)i–1. Furthermore, (C3)i–1 is trivially satisfied.

To choose ĵ1 we first observe that W1 ⊆ {pi} ∪ {v ∈ Y : iv = i} implies that NG(W1) is disjoint from {pj} ∪ Yj for every
j ≤ i – 3 using claim 8. Since {pi–2, pi–1}∪ Yi–2 ∪ Yi–1 is contained in at most four parts of the partition (V̂ i–1

1 , . . . , V̂ i–1
6 ) by (C3)j,

j < i we can choose ĵ1 ∈ [6] such that ĵ1 ̸= ĵ2 and NG(W1) is disjoint from V̂ i–1
ĵ1

as required. ■

For the remainder of the argument we pick ĵ1, ĵ2 ∈ [6] and (V̂ i–1
1 , . . . , V̂ i–1

6 ) as in the statement of claim 9. We define partition
(V i

1, . . . , V i
6) in the following considering several different cases.

First consider the case that |{p1, . . . , pi–1} ∪
⋃i–1

j=1 Yj| is even. We set j1 := ĵ1 and j2 := ĵ2 and define V i
j1 := V̂ i–1

j1 ∪ W1,
V i

j2 := V̂ i–1
j2 ∪W2 and V i

j := V̂ i–1
j for every j /∈ {j1, j2}. Since |{p1, . . . , pi–1}∪

⋃i–1
j=1 Yj| is even we get that G[V̂ i–1

j ] is odd for every
j ∈ [6] by (C1)i–1. Since additionally G[W1] is odd and NG(W1) is disjoint from V̂ i–1

j1 we get that G[V i
j1 ] is odd. Furthermore,

recall that every vertex v ∈ W2 \ {pi} has odd degree in G[W2] and pi has odd degree in G[W2] if and only if |Yi| is even.
Since |{p1, . . . , pi–1} ∪

⋃i–1
j=1 Yj| is even, |{p1, . . . , pi} ∪

⋃i
j=1 Yj| is even if and only if |Yi| is even (and pi has odd degree). Hence

(V i
1, . . . , V i

6) satisfies (C1)i and (C2)i. Additionally, (C3)i is true because {pi} ∪ Yi are contained in V i
j1 ∪ V i

j2 . Lastly, (C4)i

follows from (C4)i–1 and the fact that NG(W1) is disjoint from V̂ i–1
j1 and NG(W2) is disjoint from V̂ i–1

j2 .

Now consider the case that |{p1, . . . , pi–1}∪
⋃i–1

j=1 Yj| is odd. Assume j2 ∈ [6] is the index such that pi–1 ∈ V̂ i–1
j2 and further set

j1 := ĵ1. We define V i
j1 := V̂ i–1

j1 ∪ W1, V i
j2 := V̂ i–1

j2 ∪ W2 and V i
j := V̂ i–1

j for every j /∈ {j1, j2}. By (C1)i–1 and (C2)i–1 we directly
conclude that G[V i

j ] is odd for j /∈ {j1, j2}.
Note that by claim 9 we have that NG(W1) is disjoint from V̂ i–1

j1 . As W1 is therefore a connected component in G[V i
j1 ] and

both G[W1] and G[V̂ i–1
j1 ] are odd we get that G[V i

j1 ] is odd. Furthermore, property (C2)i–1 implies that dG[V̂ i–1
j2

](pi–1) is even and
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dG[V̂ i–1
j2

](v) is odd for every v ∈ V̂ i–1
j2 \ {pi–1}. Additionally, dG[W2](v) is odd for every v ∈ Yi \ {pi}. To determine the degree of

pi–1 in G[V i
j2 ] observe that (P3)i–1 ensures that Yi ⊆ {v ∈ Y : iv = i} and hence pi–1 is non-adjacent to any v ∈ Yi. Since pi–1

is adjacent to pi we get dG[V i
j2

](pi–1) = dG[V̂ i–1
j2

](pi–1) + 1 and hence the degree of pi–1 is odd in G[V i
j2 ]. To determine the degree

of v ∈ V i
j2 \ {pi–1}, we first argue that (C4)i holds for the partition (V i

1, . . . , Vk
6). Let G′ be the graph obtained from G[V̂ i–1

j2 ] by
removing all edges of the path P. Then (C4)i–1 implies that every v ∈ V̂ i–1

j2 ∩ ({p1, . . . , pi–2} ∪
⋃i–2

j=1 Yj) has to be in a different
component of G′ then any w ∈ V̂ i–1

j2 ∩ ({pi–1}∪Yi–1). Hence rv < ℓw for any pair of vertices v ∈ V̂ i–1
j2 ∩ ({p1, . . . , pi–2}∪

⋃i–2
j=1 Yj),

w ∈ V̂ i–1
j2 ∩ ({pi–1} ∪ Yi–1) apart from the pair pi–2, pi–1. Since Yi–1 ∩ NG(pi) = ∅ and Yi ⊆ {v ∈ Y : iv = i} we further know

that rv < ℓw for every v ∈ Yi–1, w ∈ {pi} ∪ Yi. Combined we get that rv < ℓw (and therefore v is non-adjacent to w) for any
v ∈ V̂ i–1

j2 ∩ ({p1, . . . , pi–1} ∪
⋃i–1

j=1 Yj), w ∈ {pi} ∪ Yi apart from the pair pi–1, pi. Hence we argued that (C4)i holds for the
partition (V i

1, . . . , Vk
6). Since both pi–1 and pi are contained in V i

j2 the property (C4)i implies that dG[V i
j2

](w) = dG[W2](w) for every

w ∈ Yi. Further, (C4)i implies that dG[V i
j2

](w) = dG[V̂ i–1
j2

](w) for every w ∈ V̂ i–1
j2 \ {pi–1}. Lastly, dG[V i

j2
](pi) = dG[W2](pi) + 1 since pi

is adjacent to pi–1. Furthermore, |{p1, . . . , pi} ∪
⋃i

j=1 Yj| is even if and only if |Yi| is odd since |{p1, . . . , pi–1} ∪
⋃i–1

j=1 Yj| is odd.
Since dG[W2](pi) is even if and only if |Yi| is odd we get that dG[V i

j2
](pi) is odd if and only if |{p1, . . . , pi} ∪

⋃i
j=1 Yj| is even as

required. Therefore, (C1)i and (C2)i hold for (V i
1, . . . , V i

6). Additionally, (C3)i is true by construction.

Finally, since |{p1, . . . , pk} ∪
⋃k

j=1 Yj| = |V(G)| is even (Vk
1 , . . . , Vk

6) is an odd colouring of G by (C1)k.

Observe that the proof of theorem 6 only relies on the fact that interval graphs have a so called dominating pair (a pair of
vertices u, v such that every path from u to v dominates all vertices). Since this property also holds for all connected AT-free
graphs [6], the following result can be shown analogously to theorem 6.

Theorem 7 ([11]). For every AT-free graph G with all components of even order, χodd(G) ≤ 6.
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