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Abstract

In standard propositional logic, logical definability is the ability to derive the truth
value of some propositional symbols given a propositional formula and the truth
values of some propositional symbols. Although appearing more or less informally
in various Al settings, a computation-oriented investigation of the notion is still
lacking, and this paper aims at filling the gap. After recalling the two definitions
of definability, which are equivalent in standard propositional logic (while based
on different intuitions), and defining a number of related notions, we give several
characterization results, and many complexity results for definability. We also show
close connections with hypothesis discriminability and with reasoning about action
and change.
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1 Introduction

When reasoning about knowledge represented in propositional logic, exhibiting
structure can be of a great help. By “structure” we mean some relationships

* This paper is an extended and revised version of some parts of two papers: “Com-
plexity results for independence and definability in propositional logic, appeared in
the proceedings of the Sizth International Conference on Principles of Knowledge
Representation and Reasoning (KR’98), pages 356-367; and “Two forms of Depen-
dence in Propositional Logic: Controllability and Definability”, appeared in the pro-
ceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI’98),
pages 268-273.
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which exist between some sets of propositional symbols and /or formulas within
a propositional formula ¥. Such relationships are known under various names,
including dependency, relevance, novelty, controllability, and some of them
have been investigated, see among others [1,2].

In this paper we focus on an additional form of dependency, called definability.
Definability captures two different intuitions: implicit definability and explicit
definability. A propositional symbol y can be implicitly defined in a given
formula ¥ in terms of a set X of propositional symbols if and only if the
knowledge of the truth values of the propositional symbols of X (whatever they
are) enables concluding about the truth value of y, while y can be explicitly
defined in ¥ in terms of X when there exists a formula ®y built up from X
only, such that ®y is equivalent to y in X.

Definability is acknowledged as an important logical concept for decades. It is
closely related to the Craig/Lyndon interpolation theorem [3]. Many studies in
logic are about determining whether a given logic (standard or modal, propo-
sitional or first-order) satisfies the “basic” Beth property (whenever a theory
implicitly defines a symbol in terms of all others, there is an explicit definition
of that symbol in terms of all others), or even the (stronger) projective Beth
property, (when implicit definability and explicit definability coincide). Thus
classical first-order logic satisfies the “basic” Beth property (this is the famous
Beth’s theorem [4]), while for instance first-order logic on finite structures does
not (see e.g., [5]).

Standard propositional logic has been known to satisfy the projective Beth
property. In this paper, we consider definability in standard propositional logic
from a computational point of view. We present several characterization and
complexity results which prove useful for several AI applications, including
hypothesis discrimination and reasoning about actions and change.

From a computational point of view, our results concern both time and space
complexity. As to time complexity, we mainly considered the decision prob-
lem DEFINABILITY which consists in determining whether a given formula ¥
defines a given symbol y (or more generally a given set Y of symbols) in terms
of a given set X of symbols. We identified its complexity both in the general
case and under restrictions induced by a number of propositional fragments
(formally defined in Section 2) that proved of interest in many Al contexts
(see [6-9]); the results are summarized in Table 1.

While the table shows the definability problem intractable in the general case
(unless P = NP), it also shows that:

e the main propositional fragments which are tractable for SAT are also tractable
for DEFINABILITY. Indeed, DNNF contains (among others) all DNF formu-
las and all OBDD “formulas”, while g-HornCNF contains all renamable



Fragment C DEFINABILITY
PROPpg (general case) coNP-c
DNNF in P
q-HornCNF in P
P coNP-c

Table 1
The complexity of DEFINABILITY.

Horn CNF formulas. The fact that large propositional fragments (including
complete ones, i.e., fragments into which any propositional formula has an
equivalent, as DNNF is) is of great value from a practical perspective.

e nevertheless,tractability for SAT is not enough for ensuring tractability for
DEFINABILITY. Thus the Blake fragment IP is tractable for SAT but likely
not for DEFINABILITY. We also identified some sufficient conditions (referred
to as stability conditions) under which a propositional fragment is tractable
for sAT if and only if it is tractable for DEFINABILITY.

About space complexity, we focused on the size of definitions; we showed
that in the general case, the size of any explicit definition of a symbol y
in terms of a set of symbols X in ¥ is not polynomially bounded in the
input size. We identified some sufficient conditions (polytime conditioning and
polytime forgetting) on propositional fragments for ensuring that definitions
can be computed in polynomial time (hence are of polynomial size) when such
definitions exist. Interestingly, the influential DNNF fragment satisfies them,
as well as the Blake fragment IP. The result for IP shows that it can be the
case that computing an explicit definition of ¥ on X in ¥ is easy when one
knows that such a definition exists, while deciding whether it exists is hard.

The rest of the paper is organized as follows. In Section 2, we give some nec-
essary background about propositional logic and computational complexity.
In Section 3 the notion of definability is presented, as well as a number of
related notions (including the notions of minimal defining family (or base),
undefinable symbol, necessary symbol and relevant symbol, as well as the no-
tion of unambiguous definability). We also show how such notions relate one
another and are connected to previous concepts, especially variable forgetting
(see [10,2]) as well as the notions of weakest sufficient and strongest necessary
conditions [11]. In Section 4, we give a number of complexity results for defin-
ability and the related notions. We identify a number of tractable restrictions
of the decision problems under consideration. We also report some complex-
ity results about the size of explicit definitions and present an algorithm for
computing a base. In Section 5, we show that definability is closely related
to hypothesis discriminability. In Section 6, we explain how many important
issues in reasoning about action and change can be characterized in terms of



definability. In Section 7, we briefly sketch how definability can prove useful
to automated reasoning. In Section 8, we relate our results to the literature.
Finally, Section 9 concludes the paper.

2 Formal Preliminaries

2.1 Propositional logic

Let PS be a finite set of propositional propositional symbols (also called vari-
ables). PROPpg is the propositional language built up from PS, the connec-
tives -, V, A, =, < and the Boolean constants true and false in the usual
way. Subsets of PS are denoted X, Y, etc. For every X C PS, PROP x denotes
the sublanguage of PROPpg generated from the propositional symbols of X
only.

From now on, ¥ denotes a finite set of propositional formulas from PROPps.
Var(X) is the set of propositional symbols appearing in ¥ and || is the size of
Y, i.e., the number of symbols used to write it. Elements of PS are denoted =,
y, etc. Specific formulas from PROPpg are of interest: a literal is a symbol x of
PS (positive literal) or a negated one —x (negative literal). z and -z are two
complementary literals. A clause (resp. term) is a disjunction (resp. conjunc-
tion) of literals, or the constant false (resp. true). A Conjunctive Normal Form
formula (for short, a CNF formula) is a conjunction of clauses. A Disjunctive
Normal Form formula (for short, a DNF formula) is a disjunction of terms. A
CNF formula is Krom [12] if and only if each clause in it contains at most two
literals. A Krom formula is also said to be a 2-CNF formula or a quadratic
formula. A CNF formula is Horn [13] if and only if each clause in it contains
at most one positive literal. A CNF formula ¥ is renamable Horn [14] if and
only if there exists a Horn renaming for it, i.e., a set V' of symbols v such that
replacing every occurrence of v € V (resp. —v) in ¥ by the complementary
literal =v (resp. v) leads to a Horn CNF formula. A CNF formula ¥ has a
QH-partition [6] if and only if there exists a partition {Q, H} of Var(X) s.t.
for every clause ¢ of X, the following conditions hold:

e ) contains no more than two variables from Q);
e (0 contains at most one positive literal from H;
e if § contains a positive literal from H, then it contains no variable from Q).

A CNF formula ¥ is g-Horn [6] if and only if there exists a q-Horn renaming
for it, i.e., a set V' of symbols v such that replacing in ¥ every occurrence of a
positive literal v (resp. a negative literal —v) by the complementary literal —w
(resp. v) leads to a CNF formula having a QH-partition {Q, H}. The propo-



sitional fragment g-HornCNF is the set all g-Horn formulas from PROPps;
it includes both the Krom formulas (H = () and the renamable Horn CNF
formulas (QQ = 0)) as proper subsets.

A Negation Normal Form formula (for short, an NNF formula) is any formula
Y built up from PS, the connectives —, V, A and the Boolean constants true and
false, such that the scope of any occurrence of = in ¥ is a symbol or a Boolean
constant. Thus, every CNF (resp. every DNF) formula also is an NNF formula.
An NNF formula ¥ is decomposable (i.e., a DNNF formula) [7,9] if and only
if every subformula in ¥ of the form ¢ A ¢ is such that Var(p) N Var(y) = 0.
Obviously, every DNF formula also is a DNNF formula, but the converse does
not hold. DNNF is the propositional fragment containing all DNNF formulas
from PROPpg.

Formulas from PROPpg are interpreted in the standard, usual way. Full in-
stantiations of propositional symbols of PS on BOOL = {0, 1} (worlds) are
denoted by & and their set is denoted by 2. Any world satisfying a given for-
mula ¢ is said to be a model of . Full instantiations of propositional symbols
of X C PS are denoted by 7 and called X-worlds; their set is denoted by Q.
We shall identify 7 with the corresponding canonical conjunction of literals
over X in order to simplify the notations; for instance, if X = {a,b} and
Z=(a=1,b=0) then we also write ¥ = a A =b. We shall also identify any fi-
nite set of formulas with the conjunction of all formulas from the set. = denotes
logical entailment and = denotes logical equivalence. If ¥, ®, ¥ € PROPpg, ¢
and ¥ are said to be Y-equivalent if and only if ¥ = & < 0.

Assuming that worlds are represented by the subset of all variables they satisfy
(i.e., @ is given by {z € PS | &d(z) = 1}), the Horn envelope of a Horn CNF
formula ¥ is the smallest set of models of ¥ (over Var(X)) whose intersection
closure! is the whole set of models of 3. A g-Horn envelope of a ¢-Horn CNF
formula ¥ which has a QH-partition is any smallest set of models of ¥ (over

Var(X)) whose QH-convolution closure is the whole set of models of ¥ (see
[15] for details).

In order to avoid heavy notations, we sometimes abuse notations and write
x instead of {z}. For every formula ® € PROPpg and every propositional
symbol = € PS, ®,, ¢ (resp. ®,. 1) is the formula obtained by replacing in @
every occurence of x by the constant false (resp. true). More generally, if 7 is
a satisfiable conjunction of literals then the conditioning ¥, of ¥ by « is the
formula obtained by replacing in 3 every occurrence of each positive literal x
of v by true and every occurrence of each negative literal —x of v by false.

An implicate (resp. implicant) of a formula ¥ is a clause § (resp. a conjunction

L The intersection closure C of a set S is the smallest set w.r.t. C such that S C C
and Vey,eq € Cegt Ney € C.



of literals ) which is a logical consequence of ¥ (resp. such that ¥ is a logical
consequence of v). A prime implicate (resp. prime implicant) of ¥ is one of
its logically strongest implicates (resp. one of its logically weakest implicants).
A formula ¥ is in prime implicates normal form (or a Blake formula or a
prime formula) [16] if and only if it is a CNF formula whose clauses are the
prime implicates of ¥ (one representative per equivalence class, only). IP is
the propositional fragment containing all Blake formulas.

Example 1

e (aVb)A(aV (=bAc)) is an NNF formula but neither a DNNF formula nor

a CNF formula.

(aVb)A(cV (meNd)) is a DNNF formula but neither a DNF formula nor

a CNF formula.

(@ Ab)V (ma Ad) is a DNF formula.

(aVbVe)A(—aV—-bV-c)A(—aVd) is a CNF formula but neither a DNNF

one nor a ¢-Horn CNF one nor a Blake one.

e (aVbVe)A(—aV—bV—c) is a Blake formula but neither a DNNF one nor
a q-Horn CNF one.

e (maV-bVe)A(aV-bV-e) A(maVbV—e)A(—aV—dV—e) A(=bV—dVe)A
(meVvdV—e) AN(dVeV~f)isaqg-Horn CNF formula but neither a« DNNF
one nor a Blake one nor a renamable Horn CNF one nor a Krom one.

e (aVb)A(—aV —cVd) is a renamable Horn CNF formula but neither a
DNNF one nor a Horn CNF one nor a Krom one nor a Blake one.

e (aV—b)A(bV-cV—d)isa Horn CNF formula but neither a DNNF one
nor a Krom one nor a Blake one.

e (aVb)A(-bVe) is a Krom formula but neither a DNNF one nor a Horn
CNF one nor a Blake one.

For each of the propositional fragments listed in this section, the recognition
problem is tractable (i.e., there exists a (deterministic) polynomial time al-
gorithm for determining whether any given propositional formula belongs to
the fragment). This is obvious for most of those fragments, except qHornCNF
(and its subset consisting of all renamable Horn CNF formulas) and to a lesser
extent, IP. For qHornCNF, see [6,17]; for IP, this comes from the correctness
of any resolution-based prime implicates algorithm (like Tison’s one [18]): a
CNF formula ¥ is Blake if and only if whenever two clauses of it have a resol-
vent, there exists a clause in ¥ which implies it, and no clause of ¥ is implied
by another clause of X.

Unlike PROPps and some of its subsets (as the set of all CNF formulas),
qHornCNF, DNNF and IP are known as tractable for the satisfiability problem
SAT; this means that for each of these fragments, there exists a (deterministic)
polynomial time algorithm for determining whether any given formula from
the fragment is satisfiable. For instance, in order to determine whether a Blake



formula is satisfiable, it is enough to check that it does not reduce to false (the
empty clause) (this is a direct consequence of the definition of a Blake formula).
For the qHornCNF and DNNF fragments, see respectively [6] and [7,9].

2.2 Computational complexity

We assume that the reader is familiar with some basic notions of computational
complexity, especially the complexity classes P, NP, and coNP, as well as
the basic decision problems SAT and UNSAT (and their restrictions to CNF
formulas, noted CNF-sAT and CNF-UNSAT) and the classes A?, ¥} and I}
of the polynomial hierarchy PH = Uy>o AL = Upso 2k = Upso LIL (see [19] for
details).

Let us recall that a decision problem is said to be at the k¥ level of PH if and
only if if it belongs to A}, ,, and is either ¥}-hard or ITj-hard.

It is well-known that if there exists i > 0 such that X! = II¥ then for every
j > i, we have ¥7 = TI? = ¥ PH is said to collapse to level i. It is strongly
believed that PH does not collapse (to any level), i.e., it is a truly infinite
hierarchy (for every integer k, PH # X}).

BH, (also known as DP) is the class of all languages L such that L = LN Lo,
for some L; in NP and Ly in coNP.

The canonical BHy-complete problem is SAT-UNSAT: a pair of formulas (¢, 1)
is in SAT-UNSAT if and only if ¢ is satisfiable and ) is not. This class belongs
to the Boolean hierarchy; unless NP = coNP, BHs strictly contains both NP
and coNP.

An advice-taking Turing machine is a Turing machine that has associated with
it a special “advice oracle” A, which can be any function (not necessarily a
recursive one). On input s, a special “advice tape” is automatically loaded
with A(|s]) and from then on the computation proceeds as normal, based on
the two inputs, s and A(]s|).

An advice-taking Turing machine uses polynomial advice if its advice oracle
A satisfies |A(n)| < p(n) for some fixed polynomial p and all non-negative
integers n; finally, P/poly is the class of all languages which can be decided in
polynomial time by deterministic Turing machines augmented by polynomial
advice. It is believed that NP N coNP is not included in P/poly.



3 Definability: Definitions, Properties and Characterizations
3.1 Implicit and explicit definability

Definability is a strong form of dependence: while dependent propositional
symbols interact in some situations, definability imposes that some proposi-
tional symbols are fixed whenever some other propositional symbols are fixed
as well.

Definition 2 ((implicit) definability) Let ¥ € PROPps, X,Y C PS and
y € PS.

e ¥ defines y in terms of X (denoted by X Cyx y) if and only if VT €
Qx, ZAL EyorZAY E —y.
e X Cx VY ifand only if X Cx y for everyy € Y.

Note that requiring # A X to be satisfiable would be useless since T A X E y
holds whenever © A Y is unsatisfiable. When no X-world consistent with ¥ can
be found, ¥ is unsatisfiable. In this case, definability trivializes, i.e., X Cx y
holds for every X and y.

Example 3 Let | stand for “leap year”, and d4 (resp. d25, d100, d400) for
“divisible by 4”7 (resp. by 25, 100, 400). Let ¥ = {d400 = [, (d100 A =d400) =
=, (d4 A =d100) = 1, ~d4 = —l,d100 < (d4 A d25),d400 = d100} a set of
formulas making precise some connections between those symbols.

We have {d4,d25} Cy, d100; {d4, d100, d400} Cs, I; {d4,d25,d400} Cx, I;

Y. does not define 1 in terms of {d25,d100,d400}, because the joint falsity of
these three propositional symbols does not enable telling whether [ is true or
false, since we do not know whether d4 holds or not.

Other definability relations hold; in particular, {l,d100,d400} Cx, d4;
{1,d100} Cx, d4; {I,d100} Cy, {d4,d100,d400}.

When X Cy y holds, one can state equivalently that the functional dependency
X — y holds in X. This notion of functional dependency is the well-known one
from the relational database theory restricted to binary domains (see [20,21]).

Definability satisfies the following easy properties (which we give without
proofs):

(1) Cy is transitive.

(2) If X' C X, then X Ty, X'. In particular, Cy, is reflexive.
(3) If X Cy, Y and X Cy Y7, then X Ty Y U Y.

(4) If X Cy YV and ¥/ = 3, then X Cyy V.

(5) If X Cy Y and X' Cy Y7, then X U X' Cy Y UY".



(1), (2) and (3) correspond to the famous Armstrong’s rules of inference (and
known respectively as the transitivity rule, the inclusion rule and the aug-
mentation rule) [20]. (4) is a monotonicity property; (5) is a derived rule of
inference in Armstrong’s system (and is known as the addition rule or the
composition rule).

It is also easy to show that if ¥ is satisfiable and y ¢ Var(X) U X, then
X s y. Similarly, if ¥ is valid then X Cy, Y holds if and only if Y C X.?2
Other properties that can be shown when {z} Cx, Y are reported in Lemma
2.3 from [22].

Now, another notion of definability can be easily defined, relating a set of
propositional symbols X to a propositional symbol y given a formula ¥; it
requires the existence of an explicit definition of y in ¥ using propositional
symbols of X, only. While the previous form of definability is typically referred
to as implicit definability, the latter one is called explicit definability.

Definition 4 (explicit definability; definition of a propositional symbol)
Let ¥ € PROPpg, X C PS and y € PS. ¥ explicitly defines y in terms of

X if and only if there exists a formula ®x € PROPx s.t. ¥ = &y < y. In
such a case, ®x s called a definition of y on X in 3.

As a corollary of Craig’s interpolation theorem [3] (stated in the more general
framework of first-order logic), the equivalence between the implicit form of
definability (as given above) and the ezplicit form can be stated. This result is
known as the projective Beth’s theorem in propositional logic. We give a proof
for this basic result since it enables for pointing out a first, simple (explicit)
definition.

Theorem 5 (propositional projective Beth’s theorem) Let> € PROPpg,
X C PSandy € PS. Y explicitly defines y in terms of X if and only if X Cyx y.

Proof: The (=) direction is obvious. As to the (<) direction, suppose ¥
implicitly defines y in terms of X. For each world ¥ satisfying ¥, let ¢z be the
conjunction of all literals over X true in #. Since the truth value of y in a world
satisfying ¥ depends only on the truth value of X, we have that X A pz E v.
It follows that the disjunction ® of all pz's for ¥ a world satisfying > = y is
an explicit definition of y on X. Similarly, the negation of the disjunction ¥
of all pz’s for ¥ a world satisfying > = —y is an explicit definition of y on X
(indeed, we have ¥ = & < —0). =

In Lemma 5.1 from [15], one can find representations, based on the prime
implicates of 3, of the two explicit definitions ® and =¥ given in the proof

2 This shows the system of rules above complete when ¥ is valid since every defin-
ability relation is an instance of axiom schema (3).



of Theorem 5. The first one is noted f(x,) and the second one is noted f’(X,g).
Clearly enough, such representations are not always the more succinct one
from the spatial efficiency point of view (both of them can be exponential in
the size of ¥), and since any formula Y-equivalent to ® (resp. ¥) is an explicit
definition of y on X in ¥, there is no specific need to focus on prime implicates
representations.

Example 3 (continued) The following explicit definitions hold:
S = (d4 A (~d100 V d400)) & 1;

Y = (d4 A (=d25 Vv d400)) < 1;

S = (1V d100) & d4;

5 k= (d100 A 1) < d400;

Y = (I A—d25) v d100) < d4.

Theorem 5 shows that 3 defines y in terms of X if and only if there exists a
definition ®x of y in ¥ such that X = Var(®y). Now, what about the unicity
of the definition of y on X in X, when ¥ defines y in terms of X7 As suggested
in the proof of Theorem 5, there are several possible definitions of y on X in
3, which are generally not logically equivalent, but which are nevertheless -
equivalent: if ® and W are both definitions of y in 3, we have ¥ = & < ¥, and
additionally, ® V ¥ and ® A ¥ are also definitions of y in ¥; thus, the set of all
definitions of y on X in X, quotiented by logical equivalence, is a finite lattice.
The least (resp. uppest) element of this lattice is called the strongest (resp.
weakest) definition of y in ¥, and is denoted by Defy’(y) (resp. Defy™(y)).
Note that Defy”(y) and Defy"(y) are defined only when X Cy y holds.

Now, the previous notion of definability of a propositional symbol can be easily
turned into a more general notion of formula definability. Formally:

Definition 6 (formula definability) Let ¥, ¥ € PROPps and X C PS. &
defines V¥ in terms of X (noted X Cx V) if and only if V@ € Qx, ZAE E ¥
or TAY = W,

While formula definability extends propositional symbol definability (since
every propositional symbol y can be also viewed as the formula y), it can be
recovered from it easily:

Lemma 7 Let X, ¥ € PROPps and X C PS. Let z be a (fresh) propositional
symbol of PS\ (X U Var(X) U Var(V)). X Ty, ¥ if and only if X Csawe.) 2

Proof: The proof comes straightforwardly from the following equivalence: for
any ¥, TAX E W or ZAYX =~V is equivalent to TAXA (¥ < 2) | z or
f/\z/\(\lfﬁz)):—'z. O
Thus, there is no gap of generality between propositional symbol definability

and formula definability; also, in the rest of the paper, for the sake of simplicity

10



we restrict to propositional symbol definability without any loss of generality.

3.2 Characterizations of definability

The proof of Theorem 5 gives a first, semantical, expression of a definition of
y on X in X (when it makes sense, i.e., when X Cy y holds), namely, any
formula from PROPx whose set of models is {Z|# A X = y}. The next results
aim at giving more syntactical characterizations, which will provide us with
some pratical ways of computing definitions.

Before presenting them, we need to recall a few basic notions and results about
independence and forgetting (see [2] for more details). Let X be a subset of
PS. A formula ¥ € PROPpg is independent of X if and only if there exists
a formula ® s.t. ® = X holds and Var(®) N X = (). When X = {z}, we say
that ¥ is independent of x. It can be easily shown ([2]) that ¥ is independent
of X if and only if ¥ is independent of each propositional symbol of X. The
set, of propositional symbols on which a formula ¥ depends is denoted by
DepVar(X). For instance, if ¥ = a A (b V —b) then DepVar(X) = {a}.

Let ¥ € PROPpg and X C PS. The forgetting of X in X, denoted 3X.3%, is
the formula from PROPpg inductively defined as follows [10]:

e dD.X =%,
L4 H{LL‘}E =Yz V Ex(—Oa
e Iz} UV = 3Y.(H{a}.5).

For instance, with ¥ = (ma V b) A (a V ¢), we have I{a}.X =bV c.

Clearly enough, 4X.3 corresponds to a quantified Boolean formula, usually
with free variables (3 is second-order quantification, i.e., it bears on proposi-
tional atoms).

It can be shown [2] that 3X.¥ is the logically strongest consequence of ¥ that
is independent of X (up to logical equivalence). Thus, if ¢ is independent of
X, then ¥ = ¢ if and only if 3X.3 E ¢. Accordingly, ¥ is independent of X
if and only if ¥ = 4X.X¥ holds.

Now, the projection of a formula ¥ on a set of propositional symbols X is the
result of forgetting everything in 3 except X:

Proj(X, X) = 3(Var(X) \ X).X.

Taking advantage of the notion of projection, the following result gives a
characterization of the definitions of a propositional symbol y definable in

11



terms of a set of propositional symbols X in a formula .

Theorem 8 Let ¥ € PROPps and X C PS. Let ®x € PROPx and y € PS.
®x is a definition of y on X in X if and only if

Proj(¥ ANy, X) = ®x = —Proj(X A —y, X).

Proof: We have ¥ = dx < yifandonly if & | &y < yand ¥ | oy = y if
and only if Ay = —-®x and XAy = @y if and only if I(PS\ X).(XA-y) =
—®y and I(PS\ X).(X Ay) E ®x (since Py is independent of PS\ X) if
and only if Proj(¥ Ay, X) = ®x E —Proj(X A -y, X). 0

As a direct corollary, we obtain the following characterizations of the strongest
and weakest definitions of y, as well as a further characterization of definabil-

ity:
Corollary 9 Let ¥ € PROPpg, X C PS and y € PS.

o If X Ty y then Defs'(y) = Proj(S Ay, X).
o If X Ty, y then Defa"(y) = —=Proj(S A =y, X).
e X Cyx y if and only if Proj(X Ay, X) |E —Proj(X A —y, X).

Example 3 (continued) Here are the weakest and the strongest definitions
(up to logical equivalence) of d4 on {l,d25,d100} in X:

. Def{zl,d%,dloo},l(d4) = (1 d100).
o Defl 0N (14) = (d25 A d100) V (I A =d25 V —~d100).

Theorem 8 shows that definability is related to the notions of weakest sufficient
condition and strongest necessary condition from [11]. Indeed, let X C PS and
y € PS. A formula ® of PROPx is a strongest necessary condition (SNC) of y
on X given ¥ if ¥ = y = @ holds (i.e., ® is a necessary condition (NC) of y
on X given Y), and for any formula ¥ of PROPy, if ¥ =y = ¥ holds, then
Y. | ® = U holds. ® € PROPy is a weakest sufficient condition (WSC) of y
on X given ¥ if ¥ = ® = y holds (i.e., ® is a sufficient condition (SC) of y
on X given Y), and for any formula ¥ of PROPy, if ¥ = ¥ = y holds, then
¥ = ¥ = & holds. Note that both the strongest necessary and the weakest
sufficient conditions of y on X are unique up to Y-equivalence [11] (but not
up to logical equivalence in the general case).

The following theorem shows how SNC and WSC can be characterized using
the notion of projection. It extends Theorem 2 from [11] by relaxing the as-
sumption that y € Var(X) and y ¢ X, and focus on the logically strongest
(resp. weakest) SNC (resp. WSC) of y on X w.r.t. &, up to logical equivalence:

Theorem 10 Let ¥ € PROPpg, X C PS and y € PS.
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o Proj(X Ay, X) is (up to logical equivalence) the logically strongest SNC' of
y on X given X.

e —Proj(X A =y, X) is (up to logical equivalence) the logically weakest WSC
of y on X given X.

Proof: We just prove the first point (the second one is similar by duality
between SNC and WSC). Let ®x be an SNC of y on X given X. By definition,
we have ¥ = y = ® . This is equivalent to X Ay | @, and equivalent again
to Proj(¥ Ay, X) | ®y since Var(®x) C X. Hence every SNC of y on X
given ¥ is a logical consequence of Proj(X A y, X). It remains to show that
Proj(X Ay, X) is an NC of y on X given X, which is easy since by definition of
forgetting, XAy | Proj(X Ay, X) for any X and Proj(X Ay, X) is independent
of every symbol which does not belong to X. o

From this theorem, one can show that Theorem 8 generalizes Proposition 2
from [11] by providing not only a characterization of definability in terms of
SNC and WSC, but also a characterization of all the definitions of y on X
w.r.t. ¥ in terms of SNC and WSC.

Finally, the following lemma shows that, when checking whether X Cy, Y,
every propositional symbol can be forgotten from > except the definiens X
and the definiendum Y':

Lemma 11 Let ¥ € PROPps and X, Y C PS. X Ly Y if and only if
X Eprje,xuy) Y-

Proof:

(=) Let y € Y. We have X Cy, y if and only if there exists a formula ¥ s.t.
Var(¥) C X and £ = (¥ < y). Clearly enough, (¥ < y) is independent
of every propositional symbol which does not occur in X U {y}. Especially,
(¥ & y) is independent of Var(X) \ (X U {y}). Since Proj(X, X U {y}) =
d(Var(X) \ (X U {y})).X is the most general consequence of ¥ that is in-
dependent, of Var(X) \ (X U {y}), we have ¥ = (¥ & y) if and only if
Proj(X, X U{y}) E (¥ & y). Hence, X CTpyojs,(xufy}) {¥}- This is true for
any y € Y, hence we have X Cpjs xuy) Y-

(<) As explained in Section 3.1, Cy is monotonic in ¥ in the sense that, for
every X, Y, 2,3 if X Cy, YV and ¥’ = X, then X Cyv Y. The fact that
d(Var(X) \ (X UY)).X is a logical consequence of ¥ completes the proof.

O

A practical interest of this lemma lies in the fact that Proj(X, X UY") may be-
long to a fragment which is computationally easier than ¥ for the definability
issues. For instance, consider ¥ = (aV (=bAc))A(aA(-aVd)), X = {b,c} and
Y = {d}. While ¥ belongs to the NNF fragment for which DEFINABILITY is

13



not tractable (unless P = NP) (see Theorem 22), Proj(X, X UY) = 3{a}.X be-
longs to the DNNF fragment for which DEFINABILITY is tractable (see Lemma
27).

3.8  Minimal definability

In many AT applications (some of them will be presented in Sections 6 and
7), one is interested in pointing out a set of propositional symbols X in terms
of which ¥ defines every symbol of a given formula ¥. Indeed, it is enough to
assign truth values to the symbols from such a set X to determine the truth
value of ¥. Thus, one is especially interested in the minimal sets X:

Definition 12 (base) Let ¥ € PROPps and X,Y C PS. X is a minimal
defining family, or for short a base, for Y w.r.t. ¥, if and only if X Cx Y
holds and there is no proper subset X' of X such that X' Cs Y. The set of all
bases for Y w.r.t. ¥ is denoted by BSx(Y).

Example 3 (continued) ¥ = {d400 = [,(d100 A =d400) = =i, (d4 A
~d100) = 1, ~d4 = I, d100 < (d4 A d25)}.

{d4,d25} is a base for d100; the two sets {d4,d100,d400} and {d4,d25,d400}
are bases forl;

Y. defines d4 in terms of {l,d100,d400}, but not minimally, since {I,d100} is
a base for d4; the latter also is a base for {d4,d100,d400}.

The following results can be derived easily (we give them without proofs):

(1) 3Y € BSy(X) such that Y C X (and, a fortiori, we have BSx(X) # 0);

(2) BSy is antimonotonic, i.e., VX,V C PS, if X C Y then BSy(X) »
BSx(Y), where = is the partial order defined by & = S, if and only if
VA €S, dB € S such that B C A.

(3) BSx(X) = {0} if and only if for all z € X we have ¥ 2z or ¥ | -z,

(4) VB € BSx(X), we have B C Var(X) U X.

As to defining a set of propositional symbols, not only we know (from the
definition) that X Cy Y if and only if Vy € Y, X Cy, y, but the following
theorem shows that the set of all bases for a set of propositional symbols
can be computed from the set of all bases for propositional symbols taken
individually by performing pointwise unions and then minimizing the obtained
sets. 3

3 The operator * such that BSx({z,y}) = BSx({z}) * BSx({y}) is sometimes
called “unionist product” [23]; it is commutative, associative and idempotent —
and as a consequence, it makes sense to write BSy(X) = #,cxBSxu({z}) =
min({Uzex Bz|B: € BSx({z})}, Q).
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Theorem 13 Let ¥ € PROPps and Y = {y1,...,y,} C PS.

BSs(Y) = min ({ij B; | B; € BSs({u:})}, g) .

=1

Proof: Let X C PS; we prove that X Ty Y if and only if 3X,,..., X, CPS
s.t. X = XjU...UX, and X, Cy, y; for every i € {1,...,p}. Then the theorem
follows immediately.

(=) X Cs {vy1,...,y,} means that X Cy, y; for every i € {1,...,p}. There-
fore, taking X; = X for every ¢ proves the result.

(<) Assume that 3X,..., X, such that X = X; U... U X, and X; Cy, y,
for every i € {1,...,p}. Since X; Cx y; and X; C X, we have X Cy y; for
every i € {1,...,p}. Therefore X Cx {yi,...,y,}-

O

Consequently, it will be enough to compute sets of bases for single propo-
sitional symbols only. Note however that a similar result does not hold for
shortest bases (in terms of cardinality), i.e., a shortest base for {z,y} cannot
always be written as the union of a shortest base for {x} and a shortest base

for {y}.

Note also that it is not the case in general that Var(Defy” )YWH (1)) (or
Var(Defy ™ (1))} belongs to BSs({y}); such sets are defining sets but
they are not necessarily minimal w.r.t. C (just consider ¥ = a < b and
y = b as a counter-example). The conclusion still holds if we consider only the
variables ¥ is not independent of them (i.e., if we replace Var by DepVar in
the previous statement) (the same counter-example works).

Note finally that there is no guarantee in the general case that the number
of bases for {y} w.r.t. ¥ is polynomial in |X|; for instance, for the following
formula ¥ (equivalent to a Horn CNF formula), {y} has 2" + 1 bases: ¥ =

((Aizr 1) = y) AN (20 © 29).

3.4 Undefinable propositional symbols

Because X Cyx X trivially holds, such instances of the definability relation
are typically of little interest. In the theory of relational databases, functional
dependencies of the form X — X are said to be trivial. In the following, a
propositional symbol for which every definition in ¥ is trivial as such is said
to be undefinable.
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Definition 14 (undefinable propositional symbols) Let ¥ € PROPps
and y € PS. y is undefinable in X if and only if Var(X) \ {y} Zs y. Other-
wise, y is said to be definable in Y.

We have the following easy connection between undefinable symbols and bases:

Lemma 15 Let ¥ € PROPpg and y € PS. y is undefinable in ¥ if and only

if BSs({y}) = {{y}}-
Proof:

(1 = 2) If y is undefinable in ¥, then Var(X) \ {y} s y. As a consequence,
() Zs, y. Hence, {y} is a base for y w.r.t. X. Now, let B € BSx({y}). We have
B C Var(X)U{y}. Ify ¢ B, then B C Var(X)\{y}, but this contradicts the
fact that Var(X)\{y} Zs y. Hence, y € B, and therefore BSs({y}) = {{y}}.

(2 = 1) If BSgx({y}) = {{y}}, then for every X C PS, we have X Cy y if
and only if y € X, which concludes the proof.

3.5 Necessary and relevant propositional symbols

Given a formula ¥ and a set Y of propositional symbols, all propositional
symbols in Var(3) can be classified according to their usefulness for defining
Y. The most (resp. the least) important ones are the propositional symbols
which are necessary (resp. irrelevant) for defining Y, defined as those symbols
which belong to all bases for Y (resp. to none of the bases for Y). Computing
necessary propositional symbols in a preliminary step can also prove valuable
for improving the computation of the set of all bases for Y w.r.t. .

Definition 16 (necessary and relevant propositional symbols) Let ¥ €
PROPps, Y C PS and x € PS.

e 1 is a necessary propositional symbol for Y w.r.t. ¥ if and only if x
belongs to all bases for' Y w.r.t. 3.

e 1 is a relevant propositional symbol for Y w.r.t. ¥ if and only if x
belongs to at least one base for Y w.r.t. ¥ (otherwise, z is an irrelevant
symbol for Y w.r.t. ¥).

Since both Y and ¥ are finite, the set of all bases for Y w.r.t. ¥ is never empty
(Y Cy Y always holds). As a consequence, any necessary propositional symbol
for Y is a relevant propositional symbol for Y. Moreover, it is obvious that
any propositional symbol x is relevant to itself whenever ¥ £ x and ¥ j£ —z.
The following results are simple characterizations of necessary and relevant
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propositional symbols:
Lemma 17 Let ¥ € PROPpg, Y C PS and x € PS.

(1) x is necessary for Y w.r.t. ¥ if and only if x € Y and x is undefinable in
Y.

(2) x is relevant for Y w.r.t. X if and only if it is relevant for some y € Y
w.r.t. Y.

(3) x is necessary for'Y w.r.t. ¥ if and only if it is necessary for somey € Y
w.r.t. Y.

Proof:

(1, =) Assume that z is necessary for ¥V w.r.t. ¥. Since Y Cy Y, there
exists a B € BSg(Y) such that B C Y. Therefore, since x € B, we have
x € Y. Now, suppose that x is definable in ¥, which means that there
exists Z C Var(X) such that © ¢ Z and Z Cyx, z. Let B € BSx(Y) and
B' = (B\ {z})UZ. From what precedes, we have B’ Cy, Y, therefore there
is a B"” € BSx(Y) such that B” C B’', and since x does not belong to B”, it
cannot be necessary for Y w.r.t. 3.

(1, <) Assume that x € Y and z is undefinable in ¥. x being undefinable
in ¥ is equivalent to BSy({z}) = {{x}}, therefore, as a consequence of
Theorem 13 and the fact that € Y, any B € BSx(Y") contains x, which
means that x is necessary for YV w.r.t. 3.

(2, =) If z is relevant for Y w.r.t. ¥ then there is a B € BSg(Y') containing
x, and by Theorem 13, there is a y € Y and a B’ € BSx({y}) such that
y € B'; hence x is relevant for y w.r.t. 3.

(2, <) Immediate consequence of Theorem 13.

(3) Comes easily from point (1): z is necessary for Y = {yy,...,y,} wr.t. 2
if and only if 37 € 1...p, x = y; and x is undefinable in ¥ if and only if
i €1...p, (r =y and z is undefinable in ¥) if and only if i € 1...p, x
is necessary for y; w.r.t. X.

Point (1) expresses that the propositional symbols necessary for Var(X) —
hence the “key propositional symbols”, by analogy with data bases, are all
those that cannot be defined otherwise. Point (2) expresses that it is enough
to consider the relation “being relevant for” between propositional symbols
instead of sets of propositional symbols. Point (3) expresses the same result
for the relation “being necessary for”.

As a direct corollary, we obtain the following easy connection between neces-
sary symbols and undefinable ones:

Corollary 18 Let ¥ € PROPps and y € PS. y is undefinable in ¥ if and
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only if y is necessary for {y} w.r.t. X.
Example 3 (continued)

e BSs.(Var(X)) = {{d4, d25,d400}, {l, d25,d100}, {l, d4,d25}}; therefore, only
d25 is necessary for Var(X) w.r.t. ¥; furthermore, BSx({d25}) = {{d25}}
and d25 is undefinable in 3.

o BSs({l,d4,d100, d400}) = {{d4, d100, d400}, {d4, d25,d400}, {1, d100, d400},
{l,d4,d25}, {l,d4,d100}}; therefore, no propositional symbol is necessary
for {l,d4,d100,d400} w.r.t. X, and all propositional symbols of Var(XZ) are
relevant for {l,d4,d100,d400} w.r.t. X.

Note that the relation “being relevant for” between single propositional sym-
bols is not symmetric. For instance, let ¥ = (¢ < (a V' b)). a is relevant for c,
but c is not relevant for a.*

3.6 Unambiguous definability

In the beginning of this section we wrote that definability imposes that some
propositional symbols are fixed whenever some other propositional symbols
are fixed as well, or in other terms, that the value of y is a function of the
values of the variables in X. Formally, this is not entirely true, as we can see
on the following example: let ¥ = (a = b) A ((a & b) & ¢), X = {a,b},
and y = c. Clearly, X Cy, y. Is the value of ¢ unambiguously defined from the
values of a and b? No, because of the situation ¥ where a is true and b false.
This situation being inconsistent with ¥, it trivially holds that ¥ A & E y
and ¥ A # |= —y, thus in this situation the value of y is not unambiguously
defined, and we cannot formally say that the value of y is a function of the
values of a and b. However, in practice, this makes little difference provided
that 3 is interpreted as a hard constraint (that is, any countermodel of ¥ is
an impossible world that does not need to be considered): in this case, we
can safely neglect those Z-worlds that are inconsistent with ¥, and say that
in every possible situation, the value of y is a function of the values of a and
b. Still, in some contexts (especially reasoning about action and change — see
Section 6), it is important to know whether such inconsistent X-assignments
exist or not.

Definition 19 Let ¥ € PROPps and X C PS. We say that ¥ is strongly
X-consistent if and only if for every ¥ € Qx, ¥ AN X is consistent. We say

4 The relation “being necessary for” between single propositional symbols is of no
interest since y # x is never necessary for z, and z is necessary for z if and only if
z is undefinable.
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that ¥ unambiguously defines Y in terms of X if and only if ¥ is strongly
X -consistent and X Cy Y.

Requiring 3 to be strongly X-consistent has a strong impact on the charac-
terization of explicit definitions. Indeed, the strong X-consistency of ¥ is a
necessary and sufficient condition for the unicity (up to logical equivalence) of
explicit definitions on X in >:

Theorem 20 Let ¥ € PROPpg, X C PS and y € PS such that X Cx, y.
Then X is strongly X -consistent if and only if for any two definitions ¢, 1 of
y on X in X, we have p = 1.

Proof:

(=) Assume there exist two non-equivalent formulas ¢ and ¢ of PROP x such
that (a) ¥ Fy < pand (b) ¥ Ey < . (a) and (b) imply (¢) ¥ | ¢ < 9.
Since ¢ and 1 are not logically equivalent, there exists a ¥ € Q2x such that
T = =(p < 1), which, together with (c¢), implies that Z A ¥ is inconsistent,
therefore ¥ is not strongly X-consistent.

(<) Assume X is not strongly X-consistent. Let then be # € Qx such that
Z A X is inconsistent. Let ¢ be a definition of y on X in X. If ¥ | ¢
(respectively, ¥ = =), then let 1) be the formula of PROPx, unique up to
logical equivalence, whose set of models are exactly the models of ¢ except
& (respectively, the models of ¢ plus Z). 1) is also a definition of y on X in
Y, and v is not logically equivalent to .

4 Computational Aspects

4.1 Definability

The following result is the restriction to propositional logic of a property, which
holds in first-order logic, and is due to Padoa [24]. Tt consists of an entailment-
based characterization of (implicit) definability and is useful for identifying
tractable restrictions of definability in the propositional case. We give a simple
proof which holds for propositional logic: for any ¥ and any X C PS, let
rename(X, X)) be the formula obtained by replacing in ¥ in a uniform way

every propositional symbol z from Var(X) \ X by a new propositional symbol
2'. We have:

Theorem 21 (Padoa’s method) [2//
If y ¢ X, then X Cyx y if and only if (X Arename(Z, X)) Ey=1v'.
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Proof: From Theorem 8, we get that X Cy, y if and only if Proj(X Ay, X) |
=Proj(X A =y, X). Equivalently, X Cy y if and only if 3(PS\ X).(EAy) A
A(PS\ X).(XA-y) is unsatisfiable. Since quantified variables are dummy ones,
when y ¢ X, I(PS\ X).(EAy) AI(PS\ X).(XA—y) is equivalent to I(PS'\
X).(EAY)AI(PS'\X").(rename(X, X ) A—y') where for any subset Z of PS we
have Z' = {#' | x € Z}. This quantified Boolean formula is also equivalent to
the following prenex one: I(PS\ X)U(PS'\ X').(XAyArename(Z, X)A—y'),
which is unsatisfiable if and only if ¥ Ay Arename(X, X)) A—y' is unsatisfiable
if and only if (X A rename(X, X)) Ey=1v'.

O

Accordingly, whenever y does not belong to X, checking definability comes
down to a standard deduction check. Since X Ly y trivially holds in the
remaining case (i.e., y € X), we can conclude that a set-membership test plus
a deduction check are always sufficient to decide definability.

We now give the complexity of definability in the general case, as well as in
some restricted cases:

Theorem 22 DEFINABILITY is cONP-complete even under the restriction when
Y 1s a Blake formula.

Proof:

e Membership: Membership of DEFINABILITY to coNP comes directly from
Theorem 21 which gives a polynomial reduction from DEFINABILITY to UN-
SAT, which is in coNP and coNP is well-known as closed under such reduc-
tions.

e Hardness: As to hardness, let us exhibit a polynomial reduction from CNF-
UNSAT to the restriction of DEFINABILITY to the Blake fragment: let ¢ =
A, vi be a CNF formula from PROPpg such that Var(yp) = {z1,...,2,};
w.l.o.g., we assume that ¢ does not contain any clause implied by another
clause (if it is not the case, we first remove every properly implied clause
from it; this can be easily achieved in polynomial time). To ¢ we associate in
polynomial time the formula ¥ = A" (v; Vnew Vy) A(y; V-newV —y) where
new is a fresh variable from PS'\ (Var(¢) U {y}). We take advantage of the
following property, which results directly from the correctness of resolution-
based prime implicates algorithms (like Tison’s one [18]): a CNF formula ¥
contains all its prime implicates if and only if whenever two clauses from it
have a resolvent §, there exists a clause € € ¥ s.t. € = 0. By construction,
every binary resolvent from clauses of ¥ is tautologous, hence implied by
any clause of ¥. As a consequence, Y contains all its prime implicates, and
since it does not contain properly implied clauses, it is a prime implicates
formula. Now, from Theorem 8, we have that X Cy, y if and only if Proj(X A
y, X) | —Proj(X A —y, X) if and only if 3X.(S A y) A IX.(Z A —y) is
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unsatisfiable. With X = Var(¢) U {new}, we have that X Cy y if and
only if IX.(AZ, (v V new V y) A (v V —mew V —y) A y) A IX (AL (v V
new V y) A (y; V ~new V —y) A —y) is unsatisfiable. The latter formula is
equivalent to AX. (AT, ((v; V-new)Ay)) AIX (AT, (v Vnew) A—y)), which
is itself equivalent to A, (v; V —new) A A, (v; V new) since X = {y} and
y & Var(p) U {new}. But this formula is also equivalent to ¢ (it is enough
to compute all its resolvents over new and remove the implied clauses to
get ). Hence ¢ is unsatisfiable if and only if X Cy y and this completes
the proof.

This theorem generalizes Theorem 2.2 from [22]: we relax here the (useless)
assumption that ¥ is a CNF formula for proving the membership to coNP and
constrain ¥ to belong to the Blake fragment for the hardness part.

Interestingly, it shows that constraining ¥ to belong to a propositional frag-
ment that is tractable for SAT (as it it the case for IP) does not necessarily
lead a tractable restriction of DEFINABILITY.

We also identified the complexity of the minimal definability problem:

Theorem 23 Let ¥ € PROPps, X C PS and y € PS. Checking whether X
is a minimal defining family for y (MINIMAL DEFINING FAMILY) w.r.t. ¥ i
BHy-complete.

Proof:

o Membership: X is a minimal defining family for y w.r.t. ¥ if and only if
X Cyyand VX' C X, X' s y. Now, VX' C X, X' Ly, y holds if and only if
Vr € X, X \{z} Zs y. Thus MINIMAL DEFINING FAMILY is the intersection
of a language in coNP and of a language in NP (since the intersection of a
linear number of a languages in NP is in NP), which proves membership to
BH,.

e Hardness: let ¢ and v be two propositional formulas; we associate to them
in polynomial time the tuple L({p, 1)) = (£, X, y) where
cE= (W Az) = y) AU A nz) = —y) A((-e) = y);

- X ={z};

- x and y are new propositional symbols, not appearing in ¢ or 1.

It is easy to check that {x} Cy y if and only if ¢ is unsatisfiable or ¢
is unsatisfiable. Now, () Cyx, y if and only if ¢ is unsatisfiable. This means
that {z} is a minimal defining family for y w.r.t. X if and only if 1 is
unsatisfiable and ¢ is satisfiable, i.e., if and only if {p, ) is an instance of
SAT-UNSAT. Thus L is a polynomial (Karp) reduction from SAT-UNSAT to
MINIMAL DEFINING FAMILY.
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When ¥ is such that deciding whether X Cyx y holds for any X C PS and
y € PS is tractable, deciding whether X is a minimal defining family for y
w.r.t. ¥ for any X C PS and y € PS is tractable as well (since X is a minimal
defining family for y w.r.t. ¥ if and only if X Cy, y and Vo € X, X\ {z} Zs, v).

On the other hand, as Theorem 23 suggests it, when X Cy y is known to
hold, deciding whether X is a minimal defining family for y w.r.t. ¥ remains
computationally hard (unless P = NP):

Theorem 24 Let ¥ € PROPpg, X C PS and y € PS such that X Cx, y.
Checking whether X is a minimal defining family for y w.r.t. ¥ is NP-complete.

Proof:

e Membership: Membership consists in checking that Vo € X, X \ {2} Zs v,
which requires to solve Card(X) (independent) instances of DEFINABILITY.
Since DEFINABILITY is in NP, this is also the case of the problem under
consideration.

e Hardness: By reduction from SAT. Let ¢ € PROPpg such that Var(yp) =
{z1,...,2,} a non-empty set. To ¢ we associate in polynomial time ¥ =
(oA N-y(z; < 1)) < y (where z),..., 2] are fresh atoms from PS \
{z1,...,zp,y})and X = {xq,...,2z,, 2, ..., 2, }. By construction pAA, (x; <
x}) is a definition of y on X in ¥, hence X Cy y. Now, ¢ is satisfiable if and
only if X is a minimal defining family for y w.r.t. . Indeed if ¢ satisfiable
then depends on all its variables X (i.e., there does not exist a formula v
such that ¥ = ¢ A A, (x; < 2%) and Var(¢)) C X). This means that there
does not exist a definition of y on a proper subset of X in ¥, hence X is
a minimal defining family for y w.r.t. 3. If ¢ is unsatisfiable, then ¥ = -y
and () Cyx, y, hence X does not minimally defines y w.r.t. 3.

Since the transformation from formula definability to propositional symbol
definability given by LLemma 7 can be achieved in polynomial time and since
propositional symbol definability is a restriction of formula definability, these
complexity results apply as well to formula definability.

Now, some tractable restrictions for DEFINABILITY (hence for MINIMAL DEFIN-
ING FAMILY) can be easily derived from Theorem 21. We first need to make

precise the conditions under which such restrictions are based:

Definition 25 (stability conditions) LetC be a propositional fragment, i.e.,
a subset of PROPpg.

22



e C is stable by expansion for partial renaming if and only if for every
¥ € C and for every X C PS, we have ¥ A rename(X, X) € C.

e C is stable by conditioning if and only if for every ¥ € C and v is a
satisfiable conjunction of literals, then the conditioning ¥, of X by v also
belongs to C.

Theorem 26 Let C be a propositional fragment satisfying the stability condi-
tions listed in Definition 25. C is tractable for SAT if and only if the restriction
of DEFINABILITY when X belongs to C s tractable.

Proof: Let us first show that if C is tractable for SAT then the restriction
of DEFINABILITY is tractable. The key is Theorem 21; there are two cases:
if y € X (which can be obviously decided in polynomial time), then any X
defines y in terms of X; otherwise, Theorem 21 shows that X Cy y if and
only if ¥ A rename(X, X) = y = y'. This is equivalent to determine whether
(X Arename(X, X)), is inconsistent where vy is y A—y’. By construction, such a
formula (X A rename(X, X)), belongs to C whenever ¥ belongs to C, because
C is stable by conditioning and expansion by partial renaming; hence the
satisfiability of it can be decided in polynomial time.

Conversely, if the restriction of DEFINABILITY when Y belongs to C is tractable
then deciding whether () Cy, new (with new € Ps\ Var(X)) can be achieved
in polynomial time. But () Cx, new if and only if ¥ is unsatisfiable. Hence the
satisfiability of ¥ can be decided in polynomial time. o

Note that stability by expansion with partial renaming is strictly less de-
manding than stability by (bounded) conjunction; for instance, the class of
renamable Horn CNF formulas is stable by expansion for partial renaming,
but it is not stable by bounded conjunction.

Interestingly, some quite general propositional fragments satisfy the stabil-
ity conditions given in Definition 25. This is the case for the class of q-Horn
formulas (which includes both Krom CNF formulas, Horn CNF formulas and
renamable Horn CNF formulas as specific cases) [6] and the class of Decompos-
able Negation Normal Form (DNNF) formulas (which includes several other
important fragments, namely the DNF formulas and the Ordered Binary De-
cision Diagrams, OBDD.) [7,9].

Lemma 27 The restrictions of DEFINABILITY for which ¥ is a g-Horn CNF
formula or a DNNF' formula are in P.

Proof: 1t is known that the class of g-Horn CNF formulas is tractable for
SAT [6]; and it is obvious that it is stable by conditioning; now, stability by
expansion with partial renaming comes from the fact that if V' is a q-Horn
renaming for X, then the set of symbols V U {rename(z,0) | x € V '\ X} is
a g-Horn renaming for ¥ A rename(X, X). Finally, as to the DNNF class, the
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result comes immediately from Propositions 4.1 and 5.1 from [25]. o

Lemma 27 generalizes Theorem 3.1 and Corollary 3.2 from [22], which con-
cern Horn CNF formulas, as well as Theorem 7.1 and Corollary 7.2 from [15],
which concern g-Horn CNF formulas. It does not generalize Theorem 3.5 and
Corollary 3.6 from [22] (resp. Theorem 7.3 and Corollary 7.4 from [15]), show-
ing the tractability of the restrictions of DEFINABILITY when ¥ is equivalent
to a Horn CNF formula (resp. a q-Horn CNF formula) but is given by its
(disjunctively interpreted) Horn (resp. q-Horn) envelope.

Note that Theorem 21 can prove helpful for deciding in polynomial time
whether X Cy, y under restrictions on X that are outside the scope of Lemma
27. For instance, if ¥ = (¢ = y) A(y = 1) where ¢, ¢ are Horn CNF formulas
such that y ¢ Var(y) U Var(y), then X Cy y can be decided in polynomial
time since it amounts to determining whether ¢ = ¢ holds. However, ¥ is
neither a g-Horn CNF formula, nor a DNNF one.

It is interesting to observe that the stability conditions given in Definition 25
are not satisfied by every propositional fragment that is tractable for sAT (for
instance the Blake fragment (formulas in prime implicates normal form) does
not satisfy any of them).

Now, what about the complexity of unambiguous definability? Checking that
Y is strongly X-consistent being significantly harder than checking definability,
this carries over to unambiguous definability:

Theorem 28 Let ¥ € PROPpg, X C PS and y € PS.

e Deciding whether ¥ is strongly X -consistent is I15-complete.
e Deciding whether ¥ unambiguously defines y in terms of X is II5-complete.

Proof: Membership is easy in both cases. For deciding whether ¥ is strongly
X-consistent, hardness comes from this trivial reduction from QBF,y: JAVBE
is a valid instance of QBF,y if and only if ¥ is strongly A-consistent. As
for deciding whether > unambiguously defines y in terms of X, it suffices to
remark that ¥ unambiguously defines X in terms of X if and only if ¥ is
strongly X-consistent. o

Finally, knowing that ¥ is strongly X-consistent does not change the com-
plexity of definability:

Theorem 29 Let ¥ € PROPps, X C PS and y € PS. Given that ¥ is
strongly X -consistent, deciding whether X Cyx y s coNP-complete.

Proof: Membership is obvious. Hardness comes from the following reduction
from UNSAT: let ¢ be a propositional formula and z a fresh variable, not
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appearing in @; then ¢ € UNSAT if and only if p V z |= 2, that is, if @ Ty, z,
and clearly, ¢ V z is strongly (-consistent, because ¢ V z is consistent. 0

4.2 Undefinability, necessity and relevance

From Theorem 21, we can easily derive the following characterization of un-
definable propositional symbols, which is surprisingly simple:

Lemma 30 Let ¥ € PROPpg and y € PS. y is undefinable in ¥ if and only
if Xyeo N Xy s satisfiable.

Proof: By definition, we have that y is undefinable in ¥ if and only if Var(X)\
{y} s y. Since y ¢ Var(X) \ {y}, from Theorem 21, we get that y is undefin-
able in ¥ if and only if (X Arename(X, Var(X)\{y})) ¥ (yV-y'). This is equiv-
alent to state that (X Arename(X, Var(X)\ {y})) A—y Ay’ is satisfiable. This is
again equivalent to state that the conditioning of ¥ Arename(X, Var(X)\ {y})
by the satisfiable conjunction of literals —y Ay’ is satisfiable. Now since y' (resp.
y) does not occur in ¥ (resp. rename(X, Var(X) \ {y})), this conditioning is
equivalent to ¥, Arename(X, Var(X)\{y}), . Since rename(Z, Var(X)\{y})y
is equivalent to X, (since y is the unique symbol that has been renamed), we
obtain that y is undefinable in ¥ if and only if ¥, A ¥, is satisfiable.

]

Necessary propositional symbols can be characterized by means of prime im-
plicants in this simple and elegant way:

Lemma 31 Let ¥ € PROPpg and x € PS. x is definable in X if and only if
every prime implicant of ¥ contains x or —x.

Proof: The prime implicants of ¥, or equivalently of (-2 AY, o)V (zAX, 1),
that contain neither x nor —x, are the prime implicants of ¥, o A X, 1, see
e.g., [8]. Since the latter formula is unsatisfiable whenever z is definable in ¥
(cf. Lemma 30), every prime implicant of ¥ contains x or —z in this situation
(and only if x is definable in ¥). 0

We have also derived the following complexity results:
Theorem 32 Let > € PROPps, X,Y C PS, and x,y € PS.

(1) Deciding whethery is undefinable in ¥ (UNDEFINABILITY ) is NP-complete.

(2) Deciding whether x is necessary for Y w.r.t. ¥ (NECESSITY) is NP-
complete. Hardness still holds if Y is a singleton.

(3) Deciding whether x is relevant to Y w.r.t. ¥ (RELEVANCE) is in Y5 and
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both NP-hard and coNP-hard, hence not in NP U coNP (unless the poly-
nomial hierarchy collapses to the first level). Hardness still holds if Y is
a singleton.’®

Proof:

(1)

Membership is a corollary of Lemma 30. Hardness comes from the fol-
lowing polynomial reduction from SAT: for any propositional formula ¢,
let ¥ = ¢V y where y & Var(p); now, ¢ is satisfiable if and only if y is
undefinable in X.

Membership is a corollary of Point (1) above and Point (2) of Lemma
17. Hardness is a consequence of Point (1) above and the equivalence
between (1) and (4) in Corollary 18.

Membership is easy: guess B C Var(X) UY and check using a linear
number of calls to an NP oracle that B is a minimal defining family for
Y w.r.t. 3. NP-hardness comes from the following polynomial reduction
from SAT: for any propositional formula ¢, let ¥ = p Ay where y ¢ Var(p)
and let Y = {y}; now, ¢ is satisfiable if and only if y is relevant to Y’
w.r.t. 3. coNP-hardness comes from the following polynomial reduction
from UNSAT: for any propositional formula ¢ over X = {x1,...,z,}, let
Y=z yYAN(((zAp) V)& y);if ¢ is unsatisfiable, then x is relevant
to Y = {y} w.r.t. ¥ since {z} is a base for Y w.r.t. ¥ in such a case;
if  is satisfiable, then x is not relevant to Y w.r.t. ¥; indeed, ¥ does
not define Y in terms of X U {z}: let & be any X-model of ¢; we have
TA-xAY = (2 & y) showing that instantiating z is necessary to derive
the truth value of y. Hence, every base for Y w.r.t. ¥ must contain z;
since, by construction, {z} is a base for Y w.r.t. ¥, we conclude that {z}
is the unique base for Y w.r.t. ¥ when ¢ is satisfiable, and this is enough
to conclude the proof.

O

From the definition of undefinable symbols and Lemma 17, it immediately
follows that the restrictions of UNDEFINABILITY and of NECESSITY for which
Y satisfies the stability conditions listed in Definition 25 are also in P. Such
restrictions also make the complexity of RELEVANCE belonging to NP.

4.3

Computing explicit definitions

Theorem 8 and its corollary give us several ways of computing explicit defi-
nitions. In particular, they show that when X Csy y, then the strongest def-
inition of ¥y on X in ¥ is Proj(X A y, X), or equivalently in the case y & X,

> We conjecture that this problem is ¥P-complete.
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Proj(Syc1, X).

Such a characterization proves particularly helpful when ¥ is from a propo-
sitional fragment allowing polytime forgetting and conditioning [26]. As a
consequence of Theorem 8, we get:

Lemma 33 Let C be any propositional fragment, which is stable by condition-
ing and enables polytime forgetting (i.e., there exists a polytime algorithm for
deriving a formula from C equivalent to Proj(3, X) for any formula ¥ € C
and a set of symbols X ). Then for any ¥ € C, X C PS and y € PS such that
X Gy, y, an explicit definition ®x of y on X in X can be computed in time
polynomial in |X| + | X|.

Proof: If y € X then y < y is an explicit definition of y on X in . Otherwise,
from Theorem 8, we have that Proj(2,. 1, X) is an explicit definition of y on X
in . Under the assumptions of the lemma, a propositional formula equivalent
to Proj(X,«1,X) can be computed in polynomial time. o

Among the influential propositional fragments enabling both operations in
polynomial time are the DNNF one [7,9] and the prime implicates one (see
[26]). For instance, Proj(X A y, X)) can be computed efficiently by selecting
from the set TP(X) of prime implicates of ¥ A y those belonging to PROP y
(see e.g., Lemma 8 from [27]). Once this formula has been computed, the truth
value of y for any ¥ € {2x can be computed in linear time as the truth value of
Proj(¥ Ay, X)yc1. It is interesting to note that, while both fragments enable
the computation of definitions of polynomial size when ¥ is known to define
y in terms of X, the restrictions of DEFINABILITY they induce do not have
the same complexity (unless P = NP). Thus determining whether X Cy, y is
tractable when ¥ is a DNNF formula and coNP-complete when X is a prime
implicates formula (see Lemma 27 and Theorem 22).

The OBDD. fragment [28,29], a famous subset of DNNF, can also be consid-
ered, provided that the variables to be forgotten (i.e., all the variables except
those of X) are the final variables w.r.t. the total, strict ordering < on vari-
ables, associated to the fragment [30,31]. Accordingly, the previous corollary
completes some results reported in [22] (resp. in [15]), showing that when ¥
is a Horn CNF formula (resp. a q-Horn CNF formula), then every variable y
has an explicit definition in ¥ that is equivalent to a positive conjunction of
literals (resp. a conjunction of literals or a clause) (hence, is of polynomial size
w.r.t. the input).

While the possibility to compute an explicit definition ®x of y on X in ¥
in polynomial time in some restricted cases (and to determine in polynomial
time that no such definition exists otherwise), ensures that the size of this
definition is polynomially bounded, this cannot be guaranteed in the general
case, unless P = NP (this is a direct consequence of Theorem 22).
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Actually, the situation is even computationally worse in the general case, since
we can prove that there is no way to compute definitions in polynomial space
in the general case (under the usual assumptions of complexity theory).

Theorem 34 Let 3 be a formula from PROPpg. Let X C PS and let y € PS.
In the general case, the size of any explicit definition ®x of y in X is not
polynomially bounded in || + | X| unless NP N coNP C P/poly.

Proof: We exploit a close connection between the definability problem and
the interpolation one.

Let ¢, ¥ be two formulas from PROPpg. A formula o from PROPpg is an
interpolant of (p, ) if and only if Var(a) C Var(yp) N Var(y) and ¢ = « and
a = 9 hold.

Indeed, it is known that in the general case the size of any interpolant o of
(i, 1) is not polynomially bounded in || + |¢| unless NP N coNP C P/poly
[32].

To every pair (p, 1), we can associate in polynomial time the pair (3, new)
where ¥ = (¢ = new) A (new = ¢), new € PS\ (Var(¢) U Var(¢)). The
point is that ¢ = ¢ if and only if X Ty new. Moreover, every interpolant
of {p,1) is a definition of new on Var(yp) N Var(y) w.r.t. ¥ and the converse
also holds. Indeed, from Craig’s interpolation theorem in propositional logic,
¢ E 1 holds if and only if there exists an interpolant of (¢, ¢). Now:

e If way. Let ®x be any explicit definition of new on X = Var(y) N Var(¢)
w.r.t. . We have ¥ = new < ®x. This is equivalent to state that (1)
(v = new) A (new = @) | new = ®Px, and (2) (¢ = new) A (new =
¢) E ®x = new. (1) is equivalent to (¢ = new) A (new = ¢) Anew A—®x
is unsatisfiable, or equivalently to new A ¢ A =®x is unsatisfiable. Since
new ¢ Var(¢) U Var(y), we have new ¢ X. Accordingly, (1) is equivalent
to p A Py is unsatisfiable, i.e., p = ®x. From (2), it is easy to derive in a
similar way that ®y = 1. Hence, any ®x is an interpolant of (i, ).

e Only-if way. Let ax be any interpolant of (¢, ). By definition, we have
E (p = ax) A (ax = ). Subsequently, ¥ = (¢ = new) A (new =
©) A (¢ = ax) A (ax = ). We immediately obtain that ¥ | new < ax.
Thus, X Cy new and every interpolant of (p, ) is an explicit definition of
new on X = Var(yp) N Var(y)) w.r.t. .
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4.4 Computing a base

In this section, we present an algorithm for generating a base X for a proposi-
tional symbol y w.r.t. a formula ¥, if any. X will be required to be contained
in a fixed set of “acceptable” propositional symbols V*. We called such a base
a V*- base. The role of VV* is to focus on interesting bases, only; for instance,
in a discriminability problem, V* will be the set of testable propositional sym-
bols. In particular, if one wants to know whether y is undefinable or not in ¥,
then V* is set to Var(X) \ {y}.

This algorithm (described by the function Find-A-Base below) is a greedy
algorithm which considers all the propositional symbols of V* in any order
(nevertheless the use of heuristics for determining this order may reduce the
search time) and throw them away when they are not necessary for forming a
base from the current set of acceptable propositional symbols. The inputs of
Find-A-Base are V*, y and ¥ and its output is a subset of V* or “failure”.

This algorithm calls a function Defines which checks whether a given subset
of propositional symbols defines y w.r.t. 3. How ¥ is represented and how the
function Defines is implemented will be discussed separately.

if not Defines(V*, y, ¥) then
return “failure”
else
XV
for z € V* do
if Defines(X \ {z}, y, ¥) then
X« X\ {z}
end if
end for
return X
end if

The following easy lemma states that the algorithm Find-A-Base is correct:

Lemma 35 Provided that Defines(X,y, ) returns true if and only if X Cyx
y, Find-A-Base returns a V*-base for y w.r.t. ¥ if there exists such a base,
“failure” otherwise.

Proof: Straightforward. o
This algorithm can readily be extended to an algorithm for generating a base
X for a set Y of propositional symbols w.r.t. a formula X. It suffices to replace

y by Y within each call to Defines, and to extend the latter function to such
sets Y (this is obvious given the definition of implicit definability).
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It can also be extended to an algorithm for deriving all V*-bases for a set
Y, through a judicious way to search the whole set 2V (see the set enu-
meration tree algorithm in [33]). This task is clearly more computationally
expensive than computing a single base, especially due to the number of such
bases (which can be exponential, as explained before); however, as Theorem
22 suggests it, its computational cost is not solely due to the number of bases:

Theorem 36 Unless P = NP, there exists no polynomial time algorithm for
computing a V*-base for a propositional symbol y w.r.t. a CNF formula 3.

Proof: Let ¢ be a CNF formula and let y ¢ Var(y); let V* = Var(p) U {y};
let ¥ = ¢ Ay. If p is unsatisfiable (resp. satisfiable), then () (resp. {y}) is the
unique V*-base for y w.r.t. . If a polynomial time algorithm for computing
a V*-base for y would exist, then after running it on y and X, there are two
possibilities: either the computed base is () and in this case, ¢ is unsatisfiable,
or it is {y} and in this case ¢ is satisfiable. But this would be a polynomial
time algorithm for deciding whether a CNF formula ¢ is satisfiable. Hence,
SAT would belong to P. o

Since Theorem 36 also holds when y has a single V*-base w.r.t. 3, it strength-
ens Theorem 3.1 from [34] showing that there exists no polynomial total time
(i.e., polynomial in the size of the input plus the size of the output) for com-
puting all the minimal functional dependencies which hold in ¥, unless P =
NP when ¥ is a CNF formula.®

In practice, the task of deriving all V*-bases for a set Y w.r.t. ¥ can be im-
proved in some situations by computing first the set of all necessary variables
and the set of all relevant variables for Y w.r.t. ¥; all irrelevant variables can
be removed from V* before running the algorithm, and subsets of 2V" which
do not contain all necessary variables can be skipped during the search.

Clearly enough, the simple algorithm Find-A-Base above does not run in
polynomial time in the worst case (since this is not the case for the function
Defines, unless P = NP). This coheres with Theorem 36 showing that no such
algorithm exists, unless P = NP.

Now, there are several possible ways to implement the function Defines de-
pending on the propositional fragment 3 belongs to. If ¥ is a CNF formula,
then one can easily implement Defines by taking advantage of a SAT solver
(and many such solvers with impressive performances are available nowadays).

6 In the same paper, the authors also showed that, when ¥ is given by the set
of its models (over Var(X)) this task is polynomially equivalent to the problem
of dualizing a positive theory (or, equivalently, of computing the transversals of
a hypergraph), for which no polynomial time algorithm is known but a pseudo-
polynomial algorithm exists.
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In the case when the syntactic restrictions on ¥ makes definability polynomial,
then the search for a V*-base is itself polynomial because it consists in |V*|+1
definability tests. Additionally, when > belongs to a propositional fragment
satisfying the conditions listed in Definition 25, and X is a base for y w.r.t.
¥, the truth value of y of can be computed in time polynomial in |X|+ | X]| for
every X-world 7. Indeed, checking whether X3, is satisfiable can be done in
polynomial time and the truth value of this test gives the truth value of y.

5 Definability and Hypothesis Discriminability

In this section, we investigate a notion which is closely related to definability
and which also has many practical applications ranging from fault isolation
in diagnosis to decision under partial observability. Intuitively, given a set of
propositional formulas H = {h;...h,}, which represent mutually exclusive
and exhaustive hypotheses w.r.t. a knowledge base ¥ (i.e., Vh,h' € H, if
h # h' then ¥ = =(h A R) and ¥ = VI, h;) and a set X of available binary
tests (encoded as propositional symbols), X discriminates H w.r.t. ¥ if the
knowledge of the truth values of propositional symbols of X helps finding out
which one of the h; is true.

Definition 37 (discrimination)

e An input of a discrimination problem is a triple (¥, X, H) which consists
of a consistent formula 3, a set of test variables X s.t. X C Var(X) and a
set H={hy,...h,} of formulas which are mutually exclusive and exhaustive
w.r.t. Y.

e X discriminates H w.r.t. ¥ if and only if VZ € Qx 3h € H s.t. TAX | h.

e X discriminates minimally H w.r.t. ¥ if and only if X discriminates H
w.r.t. X and no proper subset of X does it.

There are many activities (including diagnosis and decision under uncertainty)
where one wishes to discriminate among a set of hypotheses h;,2 = 1,...,n
given a set of available tests. Let us illustrate it, focusing on the consistency-
based diagnosis setting [35] (things are similar in the abductive diagnosis set-
ting with respect to the discrimination issue).

Definition 38 (minimal diagnosis) [35] Let (SD,COMPS,OBS) be the
input of a diagnosis problem (SD is a conjunction of propositional formulas
representing the system description, COMPS is a set of symbols denoting
the components of the system and OBS is a conjunction of literals repre-
senting the initial observations). A minimal consistency-based diagno-
sis for (SD,COMPS,OBS) is a minimal subset A of COMPS such that
SDANOBS AN AB(A) is consistent, where AB(A) is the formula N\.ep AB-c A
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Neccorps\a 7AB_c (each AB_c is a propositional symbol meaning that that
the corresponding component ¢ is “abnormal”, i.e., it does not work properly).

Definition 39 (fault isolation) Let (SD,COMPS,OBS) be the input of a
diagnosis problem, and TB = {ty,...t,} a test base over some of the propo-
sitional symbols of the system (set of available measures); we have TB C
Var(SDUOBS). The input (SD,COMPS,0BS, TB) of the fault isolation
problem is the input (X, TB, HY P) of the discrimination problem defined by
Y. =SDAOBS, TB, and HYP = {AB(A) | A is a minimal consistency-
based diagnosis for (SD,COMPS,OBS)} U{Axr—AB(A) | A is a minimal
consistency-based diagnosis for (SD,COMPS,0OBS)}.

By construction, HYP is a set of mutually exclusive and exhaustive hypotheses
w.r.t. 3.

Interestingly, there is a direct link between hypothesis discriminability and
definability:

Theorem 40 Let (3, X, H = {hy,...,h,}) be a discrimination problem. Let
Y =S AN (hi & hL.,), where each K, € PS\ Var({S} U H) is a new
symbol. Then X discriminates H w.r.t. X if and only if X' defines H,ey =
{hi ., li€l...n} in terms of X.

new

Proof:

(=) IfVZ € Qx Jhz € H s.t. ZTAY |E hg, then Vi € Qx (Fhz € H s.t. TAY | hy
and Vh € H \ {hz}, we have ¥ A ¥ |= —h; indeed, ¥ = —hzV # h for every
h € H\{hz} since H contains mutually exclusive hypotheses given . Thus,
VieQx Vhe H(ZAX |E horZ#AY | —h) holds. Hence ¥ defines Hyeyp
in terms of X.

(<) If X' defines H,., in terms of X then Vh € H VZ € Qx (ZAX E h
or ¥ A X = —h) holds. Equivalently, VZ € Qx Vh € H (Z AX E h or
T AY = —h) holds. Assume that Vi € Qx Vh € H Z A X |= —h. Since H is
exhaustive given X, this is possible only if ¥ is unsatisfiable. In such a case,
X trivially discriminates H w.r.t. 3. In the remaining case, we have that
VZ € Qx dh € H ZAY | h. Hence X trivially discriminates H w.r.t. 3.

]

Clearly enough, one can take advantage of this polynomial reduction and the
results reported in the previous sections to compute discriminating sets and
minimal discriminating sets. Thus, when dealing with mutually exclusive and
exhaustive sets of hypotheses, bases can be used to design minimal test inputs
([36] [37]) in order to isolate faulty components in model-based diagnosis (in
this case hypotheses correspond to candidate diagnoses, and testable proposi-
tional symbols correspond most often to available measurements). Note that
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Mecllraith’s notions of relevant or necessary tests [37] have some counterparts
in our framework (for instance, a necessary test corresponds to a propositional
symbol without which the hypothesis space cannot be discriminated). Lastly,
the algorithm for computing bases described before can be used to design con-
ditional test policies (where tests are performed sequentially and conditioned
by the outcomes of previous tests — see [38] for the case of mutually exclusive
hypotheses).

Conversely, the definability problem can be also reduced to the hypothesis dis-
criminability problem (in presence of mutually exclusive hypotheses). Indeed,
a consistent formula 3 defines y in terms of X if and only if X discriminates
H = {y, -y} w.r.t. ¥. Since both reductions are polytime ones, this is enough
to show that deciding whether X discriminates H w.r.t. ¥ (HYPOTHESIS DIS-
CRIMINABILITY) is a coNP-complete problem.

6 Propositional Definability and Reasoning about Action and Change
6.1 Determinism, executability, and successor state axioms

In this section, we show that definability is also closely related to several issues
pertaining to reasoning about action and change.

Let F be a finite set of fluents (i.e., a subset of PS). Define F, = {f, | f € F'}
and Fyoy = {fiy1 | [ € F}, two sets of fluents indexed by time points. Let

Yo be a propositional action theory describing action «, that is, a formula of
PROPpup,,,, such that (fy, f{,,) | X4 holds if and only if f' is a possible

successor state of fby Q. T}Le transition function for a is the binary relation
R, on Qg defined by Ro(f, f') iff (fi, fi11) E Xa. Then:

e « is deterministic if for every fe Qp there is at most one f" € Qp such
that R,(f, f')-
e « is fully executable if for every f € Qp there is a f' € Qp such that

Ro(f, ).

Now, it is easy to check that determinism and full executability are expressed
simply within the notions of definability and strong consistency:

Lemma 41

o « is determunistic if and only if Fy; Cx, Fiiq.
e « is fully executable if and only if 3, is strongly F;-consistent.

Proof: Straightforward. o
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Putting these two points together, a is deterministic and fully executable if
and only if F;,; is unambiguously defined from F; w.r.t. X,.

Furthermore, even when an action « is not “fully” deterministic, it may be
deterministic for some fluents. Let us say that a is deterministic for f if and
only if for any f € Qp and any two states f1, f € Qp such that Ro(f, f1) and
R, ( f; fz) then ﬂ and fz give the same truth value to f. Clearly, definability
allows for identifying the fluents for which « is deterministic. Moreover, when
a is deterministic for f, any definition of f;11 on F}; in X, corresponds to a
successor state aziom [39]. (See also the final example of [11]).

Example 42 Let a, § and v be the actions defined by the following theories:
Yo = (a1 € mag) A (ap = b)) A (b = biyr) A ((bag A —by) = —biyq),

Y5 = (41 € 2a) A(ar = ber) A (by = (app1 Abpr)) A ((mag A=by) = =gy,
E,y = (at+1 =4 —|at) VAN (at = bt+1) VAN (bt = bt+1).

{at, b} Cx, {ai11,bi1} holds, therefore « is deterministic, and ¥, is strongly
{as, by }-consistent, therefore « is fully executable. The successor state aziom
of q corresponds to the definition of q (it is unique up to logical equivalence,
due to Theorem 20): b1 = (a; V by).

Y5 is not strongly {a, bi}-consistent, because a; A by A X is inconsistent.
Therefore, (3 is not fully executable (but it is deterministic). There are two
non-equivalent definitions of fluents at time t + 1, hence two successor state
azioms: b1 = (ap V by) and by = (ap & —by).

{ay, b} Cs. {ay1,bi41} does not hold, therefore v is not deterministic (but it
is fully executable). However, it is deterministic as far as fluent a is concerned,
since {ay, b} Cs. az41 holds.

Note that usually, we are given initially a set of causal rules from which, using
some completion process (e.g., [40,41]), we compute successor state axioms
and then finally >,. Computing successor state axioms as definitions is the
reverse process of the latter completion process: from an action theory already
compiled in its propositional form ¥, we find the successor state axioms (and
then possibly a compact description of the effects of o by causal rules).

Due to the connections made precise by Lemma 41, many notions and results
of the paper apply to reasoning about action.

For instance, as a direct consequence of Theorem 20 and Lemma 41, when
an action is fully executable and deterministic for f, there exists only one
successor state axiom for f (up to logical equivalence) — it is indeed the case
for o, but not for § in Example 42.

Definability proves also useful for characterizing regression. Given a proposi-

tional formula ¢y € PROPpg, the (deductive) regression of ¢) by « is the for-
mula reg(¢), @) (unique up to logical equivalence) such that Mod(reg(, ) =
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Ujizy R;l(]?’). The abductive regression of ¢ by « is the formula Reg(1), «)

(unique up to logical equivalence) such that Mod(Reg(1, ) = {f | Ra(f) C
Mod(%))}. While we have Reg(1, ) = reg(1, «) in the general case, reg(, «)
and Reg(v, a) are equivalent when « is deterministic [41].

For any formula ¢ from PROPpg, let us note ¢; the formula from PROPG,
obtained by substituting in a uniform way in ¢ every symbol a by a;; we have:

Theorem 43 Let « be a deterministic and fully executable action. For any
fluent f € F and any formula ) € PROPg, reg(¢, a); (or equivalently Reg(1), a))
is equivalent to any definition of 2z, on Fy in Xy A (Y1 € 2441), where z is

a fresh symbol (not in F).

Proof: First observe that from Theorem 20 and Lemma 41, it makes sense
to consider any definition (since all of them are equivalent). Now, we have
reg(y, a); = Proj(Xq Atyi1, Fy) (see Proposition 5 in [41]). The latter formula
is also equivalent to Proj(Xa, A (Y111 < 2i41) A 2i41, Fy). Finally, Theorem 8
concludes the proof. o

This result can be generalized to actions that are not fully executable. We omit
it for the sake of brevity, as well as applications of definability to progression
and planning.

6.2 Ramification

Another role of definability in reasoning about change is in the handling of
ramification, or indirect action effects. A way to address the well-known prob-
lem consists in finding out fluents that can be derived from primitive ones
(called a frame) within the knowledge base, and to apply change on reduced
world descriptions (composed of primitive fluents, only) [42]. Many formalisms
for reasoning about change, adhere to this approach that has been imple-
mented in various planning systems (e.g., in the early system BUILD [43]).

Let us describe more formally the role of definability for dealing with the
ramification problem. Let F' be a set of fluents, and ¥ be a propositional
formula expressing some constraints on the values that fluents may take (at
any time point). Finding a partition of F' between a set Fp of primary fluents
and a set Fp of derived fluents comes down to find a base for F' with respect
to 3. Clearly, several choices are generally possible, since BSy(F') is generally
not a singleton. The goal being to come up with action descriptions that are
as concise as possible, a good heuristics consists in choosing a base of F' of
minimum cardinality.
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7 Yet Another Application to AI: Automated Reasoning

The notion of definability proves valuable in automated reasoning for several
tasks. For instance, identifying functionally dependent propositional symbols
is a way for finding out variable orderings that may prevent the OBDD rep-
resentation of a formula from an exponential size blowup [44].

Identifying definability relations between variables can also prove useful for
the satisfiability issue. [45] have shown how definability can be exploited in
local search for the satisfiability problem. The idea is to concentrate the search
on undefinable variables, and to handle the remaining ones by exploiting defin-
ability relations. They reported some empirical results showing their algorithm
DAGSAT valuable. [46] considered the role of definability relations (what they
called gates) to reduce the search space explored by complete DPLL-like al-
gorithms for SAT. In a nutshell, the idea is that a definable variable should
not be elected by a branching rule before the variables from a base for it
have been assigned. Accordingly, the undefinable variables of the input CNF
formula ¥ should be considered first. Since deciding definability relations is
a coNP-complete problem, they considered only those relations that can be
discovered through (linear time) unit propagation of literals (such relations
include equivalent literals which have been considered in several other papers,
see e.g., [47]); in [46], the explicit definitions of variables which are discov-
ered take the form of a conjunction of literals or a clause (depending on the
sign of the propagated literal); interestingly, once the variables occurring in
an explicit definition of y have been assigned, unit propagation in X proves
enough to get y assigned as well. The resulting set of functional dependencies
induces a “relevance” graph whose set of vertices is Var(X) and the set of
arcs contains (z,z) whenever one of the found definitions of variable z bears
on variable z. When no undefinable variables occur in ¥ (or the CNF for-
mulas obtained by conditioning and simplifying 3 at subsequent steps of the
algorithm), the corresponding “relevance graph” contains no source (i.e., a
node of incoming degree 0); then polynomial time heuristics for approximat-
ing a minimal cycle cutset of the graph are used, and the variables from the
resulting set (also known as a strong backdoor) are assigned first. This ap-
proach exhibited interesting performances on some benchmarks used during
the SAT’02 and SAT’03 competitions, and appeared as the best performer
on hand-made instances at the SAT’03 competition. [48] also reported on the
possible advantages and drawbacks of taking advantage of such “independent
(i.e., undefinable) variable selection” heuristics.
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8 Other Related Work

As evoked previously, propositional definability is closely related to the notions
of strongest necessary and weakest sufficient conditions and to the notion of
functional dependencies in propositional logic. In this section, we make precise
the main differences between the contribution of the present paper and the
(closest) related ones from the literature. Before concluding the paper, we
also briefly present some other related work, where definability is considered
in more complex logical settings than classical propositional logic.

8.1 Functional dependencies

The closest work to our own one is described in three papers by Ibaraki, Kogan
and Makino [22,15,34]. In those papers, Ibaraki, Kogan and Makino presented
a number of results related to functional dependencies.

In [22,15], they reported many very interesting results about issues that we
mainly ignored here. Among them is the condensation issue: the basic idea
comes from the observation that when X Cy y and y ¢ X, then ¥ can be
simplified by “removing” y (i.e., forgetting y in X), while keeping track of an
explicit definition of y on X in ¥; at the semantical level, no loss of information
results from such a process; condensing ¥ consists in repeating it in an iterative
way, unless reaching a formula without any non-trivial functional dependency.
While the result of the condensing procedure is not unique in general (it de-
pends on the functional dependency chosen at each step), Ibaraki, Kogan and
Makino have shown that it is unique when ¥ is a Horn CNF formula or more
generally a g-Horn CNF formula (given as such or by its corresponding enve-
lope), and that the condensing process can be achieved in polynomial time in
such a case. In [34], the authors considered the problem of computing all the
minimal functional dependencies which hold in ¥. Among other things, they
showed that there exists an incrementally polynomial algorithm for achieving
this goal when ¥ is a Horn CNF formula, or more generally, a q-Horn CNF
formula, while the problem is equivalent to the problem of dualizing a posi-
tive theory when ¥ is equivalent to a Horn CNF formula (resp. q-Horn CNF
formula) but is given by the Horn (resp. g-Horn) envelope of its models.

A major difference with our present work is that Ibaraki, Kogan and Makino
mainly focused on Horn and g-Horn formulas, while our results are mainly
about (unconstrained) propositional formulas. Actually, the few results from
[22,15,34] which are related to unconstrained propositional formulas have been
exhaustively listed in Sections 3.1, 4.1, and 4.3. Some of our results generalize
their results (e.g., our Theorem 26 gives more tractable classes for the (mini-
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mal) definability problem than just the Horn or q-Horn one), and some other
results complete them (e.g., the results presented in Section 4.3 — about the
computation of explicit definitions — address the general case and, again, give
other tractable classes for this issue than just the Horn or q-Horn one).

8.2 Strongest necessary and weakest sufficient conditions

The work by Lin [11] is concerned with strongest necessary and weakest suf-
ficient conditions.

In Section 3.2, we have shown close connections between definability and
strongest necessary (SNC) / weakest sufficient conditions (WSC). While Propo-
sition 2 from [11] characterizes definability in terms of WSC and SNC, we have
shown how to characterize all the definitions of y on X in ¥ in terms of SNC
and WSC.

First, Theorem 10 shows how SNC and WSC can be characterized using the
notion of projection. It extends Theorem 2 from [11] by relaxing the assump-
tion that y € Var(X) and y ¢ X, and focus on the logically strongest (resp.
weakest) SNC Proj(X Ay, X) (resp. WSC) =Proj(X A -y, X) of y on X w.r.t.
Y, up to logical equivalence. Then Theorem 8 shows that ®x is a definition
of y on X in ¥ if and only if Proj(X Ay, X) E ®x E —Proj(X A -y, X).

8.3 Definability in other logical settings

Since Padoa and Beth, there has been a considerable amount of work on de-
finability and interpolation in various classes of logics. A logic is said to has
the projective Beth definability property if and only if implicit definability
equals explicit definability. As pointed out in [5], implicit definability being a
semantical (model-theoretic) concept whereas explicit definability is a syntac-
tic (proof-theoretic) concept, to say that both forms of definability coincide in
a given logic is a good indication that there is a good balance between syntax
and semantics in the logic. There are two main streams of works: definability
in fragments of first-order logic, and definability in propositional modal log-
ics. We briefly discuss these two streams of work, by pointing to some of the
most relevant references. A comprehensive review can be found in Chapter
2 of [5]. See also the excellent book [49] for connections with second order
quantification in many propositional logics.

Definability in predicate logic starts with Padoa’s work and, later on, Beth’s
theorem. The latter [4] shows that first-order logic has the definability prop-
erty. The question is now whether given fragments of first-order logic still have
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the property. For instance, the k-variable fragment of first-order logic fails to
satisfy it [?,?], as well as in a large number of first-order modal logics (e.g.,
[?]), while it holds in intuitionistic predicate logic [?,?]. Definability in frag-
ments of first-order logic also has an impact on the database community (e.g.,
[50].)

As for propositional logics, a large number thereof satisfy the definability
property. For instance, Kreisel [?] proves that this is the case for any logic
between classical propositional logic and intuitionistic propositional logic. A
large number of works has concentrated on modal logics (e.g. [?,51,52]), and
especially (and more AT related) on description logics [53,54] (the latter paper
focuses on computational issues; especially, they give bounds on the size of
explicit definitions).

Our work, focusing on classical propositional logic, is not of the same nature
as most of the abovementioned works (apart of the works about description
logics). Our focus is on the computational issues of the problems related to
definability, as well as on the applications to artificial intelligence problems.

9 Conclusion

This paper is centered on definability in standard propositional logic and re-
ports a number of results issued from our computation-oriented investigation
of this notion. Especially, we gave several characterization results, and com-
plexity results for definability and related notions. We also presented a number
of applications of such results in several Al problems, including hypothesis dis-
crimination, reasoning about actions and automated reasoning.

This work calls for a number of perspectives. First, an alternative way of
characterizing logical definability (and related notions) would consist in ex-
pressing it in epistemic logic, remarking that for any propositional formula
> € PROPpg, X C PS, and y € PS, we have X Cy y holds if and only if
(KEANgex (KzVK—z)) = (KyVK=y) is a theorem of S5. From this we can
derive characterizations for other notions, such as minimal defining families,
undefinable variables, etc. The results stated in the paper would then be easily
reformulated (in different terms) in this setting.

Second, the notion of definability studied in this paper is rather strong, and
it would be worth to relaxing the notion of definability. Doing so is not easy
if the background knowledge ¥ is still expressed by a mere propositional for-
mula; now, if instead of ¥ we have a probability distribution over €2, expressed
succinctly for instance by a Bayesian network N whose induced probability
distribution is py, then definability becomes itself a probabilistic, decision-
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theoretic notion: defining §(N, X, y) = Yzca, Py (Z). max(py (y|Z), oy (—y|T)),
then 0(NN, X, y) can be interpreted as the prior probability of guessing the right
value of y after observing the values of variables in X, and is probably the
most natural generalization of definability (obviously, ¥ defines y in terms of
X in the usual way if and only if 6(N, X,y) = 1). Thus, a natural decision
problem in this setting would be: given a Bayesian network N, a set X of vari-
ables, a variable y and « € [0, 1], determine whether 6(N, X, y) > «. Another
notion of probabilistic definability arises when the probabilistic background
knowledge is expressed by a set of constraints in probabilistic logic [55] — in
this case we do not have a single probability distribution but a set of prob-
ability distributions, and the latter notion must be updated accordingly. A
computational investigation of these probabilistic notions of definability is left
for further research.
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