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tIn standard propositional logi
, logi
al de�nability is the ability to derive the truthvalue of some propositional symbols given a propositional formula and the truthvalues of some propositional symbols. Although appearing more or less informallyin various AI settings, a 
omputation-oriented investigation of the notion is stillla
king, and this paper aims at �lling the gap. After re
alling the two de�nitionsof de�nability, whi
h are equivalent in standard propositional logi
 (while basedon di�erent intuitions), and de�ning a number of related notions, we give several
hara
terization results, and many 
omplexity results for de�nability. We also show
lose 
onne
tions with hypothesis dis
riminability and with reasoning about a
tionand 
hange.Key words: Knowledge Representation, Computational Complexity.
1 Introdu
tionWhen reasoning about knowledge represented in propositional logi
, exhibitingstru
ture 
an be of a great help. By \stru
ture" we mean some relationships? This paper is an extended and revised version of some parts of two papers: \Com-plexity results for independen
e and de�nability in propositional logi
, appeared inthe pro
eedings of the Sixth International Conferen
e on Prin
iples of KnowledgeRepresentation and Reasoning (KR'98), pages 356{367; and \Two forms of Depen-den
e in Propositional Logi
: Controllability and De�nability", appeared in the pro-
eedings of the Fifteenth National Conferen
e on Arti�
ial Intelligen
e (AAAI'98),pages 268-273.Preprint submitted to Elsevier S
ien
e 5 September 2007



whi
h exist between some sets of propositional symbols and/or formulas withina propositional formula �. Su
h relationships are known under various names,in
luding dependen
y, relevan
e, novelty, 
ontrollability, and some of themhave been investigated, see among others [1,2℄.In this paper we fo
us on an additional form of dependen
y, 
alled de�nability.De�nability 
aptures two di�erent intuitions: impli
it de�nability and expli
itde�nability. A propositional symbol y 
an be impli
itly de�ned in a givenformula � in terms of a set X of propositional symbols if and only if theknowledge of the truth values of the propositional symbols ofX (whatever theyare) enables 
on
luding about the truth value of y, while y 
an be expli
itlyde�ned in � in terms of X when there exists a formula �X built up from Xonly, su
h that �X is equivalent to y in �.De�nability is a
knowledged as an important logi
al 
on
ept for de
ades. It is
losely related to the Craig/Lyndon interpolation theorem [3℄. Many studies inlogi
 are about determining whether a given logi
 (standard or modal, propo-sitional or �rst-order) satis�es the \basi
" Beth property (whenever a theoryimpli
itly de�nes a symbol in terms of all others, there is an expli
it de�nitionof that symbol in terms of all others), or even the (stronger) proje
tive Bethproperty, (when impli
it de�nability and expli
it de�nability 
oin
ide). Thus
lassi
al �rst-order logi
 satis�es the \basi
" Beth property (this is the famousBeth's theorem [4℄), while for instan
e �rst-order logi
 on �nite stru
tures doesnot (see e.g., [5℄).Standard propositional logi
 has been known to satisfy the proje
tive Bethproperty. In this paper, we 
onsider de�nability in standard propositional logi
from a 
omputational point of view. We present several 
hara
terization and
omplexity results whi
h prove useful for several AI appli
ations, in
ludinghypothesis dis
rimination and reasoning about a
tions and 
hange.From a 
omputational point of view, our results 
on
ern both time and spa
e
omplexity. As to time 
omplexity, we mainly 
onsidered the de
ision prob-lem definability whi
h 
onsists in determining whether a given formula �de�nes a given symbol y (or more generally a given set Y of symbols) in termsof a given set X of symbols. We identi�ed its 
omplexity both in the general
ase and under restri
tions indu
ed by a number of propositional fragments(formally de�ned in Se
tion 2) that proved of interest in many AI 
ontexts(see [6{9℄); the results are summarized in Table 1.While the table shows the de�nability problem intra
table in the general 
ase(unless P = NP), it also shows that:� the main propositional fragments whi
h are tra
table for sat are also tra
tablefor definability. Indeed, DNNF 
ontains (among others) all DNF formu-las and all OBDD \formulas", while q-HornCNF 
ontains all renamable2



Fragment C definabilityPROPPS (general 
ase) 
oNP-
DNNF in Pq-HornCNF in PIP 
oNP-
Table 1The 
omplexity of definability.Horn CNF formulas. The fa
t that large propositional fragments (in
luding
omplete ones, i.e., fragments into whi
h any propositional formula has anequivalent, as DNNF is) is of great value from a pra
ti
al perspe
tive.� nevertheless,tra
tability for sat is not enough for ensuring tra
tability fordefinability. Thus the Blake fragment IP is tra
table for sat but likelynot for definability. We also identi�ed some suÆ
ient 
onditions (referredto as stability 
onditions) under whi
h a propositional fragment is tra
tablefor sat if and only if it is tra
table for definability.About spa
e 
omplexity, we fo
used on the size of de�nitions; we showedthat in the general 
ase, the size of any expli
it de�nition of a symbol yin terms of a set of symbols X in � is not polynomially bounded in theinput size. We identi�ed some suÆ
ient 
onditions (polytime 
onditioning andpolytime forgetting) on propositional fragments for ensuring that de�nitions
an be 
omputed in polynomial time (hen
e are of polynomial size) when su
hde�nitions exist. Interestingly, the in
uential DNNF fragment satis�es them,as well as the Blake fragment IP. The result for IP shows that it 
an be the
ase that 
omputing an expli
it de�nition of y on X in � is easy when oneknows that su
h a de�nition exists, while de
iding whether it exists is hard.The rest of the paper is organized as follows. In Se
tion 2, we give some ne
-essary ba
kground about propositional logi
 and 
omputational 
omplexity.In Se
tion 3 the notion of de�nability is presented, as well as a number ofrelated notions (in
luding the notions of minimal de�ning family (or base),unde�nable symbol, ne
essary symbol and relevant symbol, as well as the no-tion of unambiguous de�nability). We also show how su
h notions relate oneanother and are 
onne
ted to previous 
on
epts, espe
ially variable forgetting(see [10,2℄) as well as the notions of weakest suÆ
ient and strongest ne
essary
onditions [11℄. In Se
tion 4, we give a number of 
omplexity results for de�n-ability and the related notions. We identify a number of tra
table restri
tionsof the de
ision problems under 
onsideration. We also report some 
omplex-ity results about the size of expli
it de�nitions and present an algorithm for
omputing a base. In Se
tion 5, we show that de�nability is 
losely relatedto hypothesis dis
riminability. In Se
tion 6, we explain how many importantissues in reasoning about a
tion and 
hange 
an be 
hara
terized in terms of3



de�nability. In Se
tion 7, we brie
y sket
h how de�nability 
an prove usefulto automated reasoning. In Se
tion 8, we relate our results to the literature.Finally, Se
tion 9 
on
ludes the paper.2 Formal Preliminaries2.1 Propositional logi
Let PS be a �nite set of propositional propositional symbols (also 
alled vari-ables). PROPPS is the propositional language built up from PS, the 
onne
-tives :, _, ^, ), , and the Boolean 
onstants true and false in the usualway. Subsets of PS are denoted X, Y , et
. For every X � PS, PROPX denotesthe sublanguage of PROPPS generated from the propositional symbols of Xonly.From now on, � denotes a �nite set of propositional formulas from PROPPS.Var(�) is the set of propositional symbols appearing in � and j�j is the size of�, i.e., the number of symbols used to write it. Elements of PS are denoted x,y, et
. Spe
i�
 formulas from PROPPS are of interest: a literal is a symbol x ofPS (positive literal) or a negated one :x (negative literal). x and :x are two
omplementary literals. A 
lause (resp. term) is a disjun
tion (resp. 
onjun
-tion) of literals, or the 
onstant false (resp. true). A Conjun
tive Normal Formformula (for short, a CNF formula) is a 
onjun
tion of 
lauses. A Disjun
tiveNormal Form formula (for short, a DNF formula) is a disjun
tion of terms. ACNF formula is Krom [12℄ if and only if ea
h 
lause in it 
ontains at most twoliterals. A Krom formula is also said to be a 2-CNF formula or a quadrati
formula. A CNF formula is Horn [13℄ if and only if ea
h 
lause in it 
ontainsat most one positive literal. A CNF formula � is renamable Horn [14℄ if andonly if there exists a Horn renaming for it, i.e., a set V of symbols v su
h thatrepla
ing every o

urren
e of v 2 V (resp. :v) in � by the 
omplementaryliteral :v (resp. v) leads to a Horn CNF formula. A CNF formula � has aQH-partition [6℄ if and only if there exists a partition fQ;Hg of Var(�) s.t.for every 
lause Æ of �, the following 
onditions hold:� Æ 
ontains no more than two variables from Q;� Æ 
ontains at most one positive literal from H;� if Æ 
ontains a positive literal from H, then it 
ontains no variable from Q.A CNF formula � is q-Horn [6℄ if and only if there exists a q-Horn renamingfor it, i.e., a set V of symbols v su
h that repla
ing in � every o

urren
e of apositive literal v (resp. a negative literal :v) by the 
omplementary literal :v(resp. v) leads to a CNF formula having a QH-partition fQ;Hg. The propo-4



sitional fragment q-HornCNF is the set all q-Horn formulas from PROPPS;it in
ludes both the Krom formulas (H = ;) and the renamable Horn CNFformulas (Q = ;) as proper subsets.A Negation Normal Form formula (for short, an NNF formula) is any formula� built up from PS, the 
onne
tives :, _, ^ and the Boolean 
onstants true andfalse, su
h that the s
ope of any o

urren
e of : in � is a symbol or a Boolean
onstant. Thus, every CNF (resp. every DNF) formula also is an NNF formula.An NNF formula � is de
omposable (i.e., a DNNF formula) [7,9℄ if and onlyif every subformula in � of the form ' ^  is su
h that Var(') \ Var( ) = ;.Obviously, every DNF formula also is a DNNF formula, but the 
onverse doesnot hold. DNNF is the propositional fragment 
ontaining all DNNF formulasfrom PROPPS.Formulas from PROPPS are interpreted in the standard, usual way. Full in-stantiations of propositional symbols of PS on BOOL = f0; 1g (worlds) aredenoted by ~! and their set is denoted by 
. Any world satisfying a given for-mula ' is said to be a model of '. Full instantiations of propositional symbolsof X � PS are denoted by ~x and 
alled X-worlds; their set is denoted by 
X .We shall identify ~x with the 
orresponding 
anoni
al 
onjun
tion of literalsover X in order to simplify the notations; for instan
e, if X = fa; bg and~x = (a = 1; b = 0) then we also write ~x = a^:b. We shall also identify any �-nite set of formulas with the 
onjun
tion of all formulas from the set. j= denoteslogi
al entailment and � denotes logi
al equivalen
e. If �;�;	 2 PROPPS, �and 	 are said to be �-equivalent if and only if � j= �, 	.Assuming that worlds are represented by the subset of all variables they satisfy(i.e., ~! is given by fx 2 PS j ~!(x) = 1g), the Horn envelope of a Horn CNFformula � is the smallest set of models of � (over Var(�)) whose interse
tion
losure 1 is the whole set of models of �. A q-Horn envelope of a q-Horn CNFformula � whi
h has a QH-partition is any smallest set of models of � (overVar(�)) whose QH-
onvolution 
losure is the whole set of models of � (see[15℄ for details).In order to avoid heavy notations, we sometimes abuse notations and writex instead of fxg. For every formula � 2 PROPPS and every propositionalsymbol x 2 PS, �x 0 (resp. �x 1) is the formula obtained by repla
ing in �every o

uren
e of x by the 
onstant false (resp. true). More generally, if 
 isa satis�able 
onjun
tion of literals then the 
onditioning �
 of � by 
 is theformula obtained by repla
ing in � every o

urren
e of ea
h positive literal xof 
 by true and every o

urren
e of ea
h negative literal :x of 
 by false.An impli
ate (resp. impli
ant) of a formula � is a 
lause Æ (resp. a 
onjun
tion1 The interse
tion 
losure C of a set S is the smallest set w.r.t. � su
h that S � Cand 8e1; e2 2 C; e1 \ e2 2 C. 5



of literals 
) whi
h is a logi
al 
onsequen
e of � (resp. su
h that � is a logi
al
onsequen
e of 
). A prime impli
ate (resp. prime impli
ant) of � is one ofits logi
ally strongest impli
ates (resp. one of its logi
ally weakest impli
ants).A formula � is in prime impli
ates normal form (or a Blake formula or aprime formula) [16℄ if and only if it is a CNF formula whose 
lauses are theprime impli
ates of � (one representative per equivalen
e 
lass, only). IP isthe propositional fragment 
ontaining all Blake formulas.Example 1� (a_ b)^ (a_ (:b^ 
)) is an NNF formula but neither a DNNF formula nora CNF formula.� (a _ b) ^ (
 _ (:
 ^ d)) is a DNNF formula but neither a DNF formula nora CNF formula.� (a ^ b) _ (:a ^ d) is a DNF formula.� (a_ b_ 
)^ (:a_:b_:
)^ (:a_d) is a CNF formula but neither a DNNFone nor a q-Horn CNF one nor a Blake one.� (a_ b_ 
)^ (:a_:b_:
) is a Blake formula but neither a DNNF one nora q-Horn CNF one.� (:a_:b_ 
)^ (a_:b_:
) ^(:a_ b_:
)^ (:a_:d_:e) ^(:b_:d_e)^(:
 _ d _ :e) ^(d _ e _ :f) is a q-Horn CNF formula but neither a DNNFone nor a Blake one nor a renamable Horn CNF one nor a Krom one.� (a _ b) ^ (:a _ :
 _ d) is a renamable Horn CNF formula but neither aDNNF one nor a Horn CNF one nor a Krom one nor a Blake one.� (a _ :b) ^ (b _ :
 _ :d) is a Horn CNF formula but neither a DNNF onenor a Krom one nor a Blake one.� (a _ b) ^ (:b _ 
) is a Krom formula but neither a DNNF one nor a HornCNF one nor a Blake one.For ea
h of the propositional fragments listed in this se
tion, the re
ognitionproblem is tra
table (i.e., there exists a (deterministi
) polynomial time al-gorithm for determining whether any given propositional formula belongs tothe fragment). This is obvious for most of those fragments, ex
ept qHornCNF(and its subset 
onsisting of all renamable Horn CNF formulas) and to a lesserextent, IP. For qHornCNF, see [6,17℄; for IP, this 
omes from the 
orre
tnessof any resolution-based prime impli
ates algorithm (like Tison's one [18℄): aCNF formula � is Blake if and only if whenever two 
lauses of it have a resol-vent, there exists a 
lause in � whi
h implies it, and no 
lause of � is impliedby another 
lause of �.Unlike PROPPS and some of its subsets (as the set of all CNF formulas),qHornCNF, DNNF and IP are known as tra
table for the satis�ability problemsat; this means that for ea
h of these fragments, there exists a (deterministi
)polynomial time algorithm for determining whether any given formula fromthe fragment is satis�able. For instan
e, in order to determine whether a Blake6



formula is satis�able, it is enough to 
he
k that it does not redu
e to false (theempty 
lause) (this is a dire
t 
onsequen
e of the de�nition of a Blake formula).For the qHornCNF and DNNF fragments, see respe
tively [6℄ and [7,9℄.
2.2 Computational 
omplexityWe assume that the reader is familiar with some basi
 notions of 
omputational
omplexity, espe
ially the 
omplexity 
lasses P, NP, and 
oNP, as well asthe basi
 de
ision problems sat and unsat (and their restri
tions to CNFformulas, noted CNF-sat and CNF-unsat) and the 
lasses �pk, �pk and �pkof the polynomial hierar
hy PH = Sk�0�pk = Sk�0�pk = Sk�0�pk (see [19℄ fordetails).Let us re
all that a de
ision problem is said to be at the kth level of PH if andonly if if it belongs to �pk+1, and is either �pk-hard or �pk-hard.It is well-known that if there exists i > 0 su
h that �pi = �pi then for everyj > i, we have �pj = �pj = �pi : PH is said to 
ollapse to level i. It is stronglybelieved that PH does not 
ollapse (to any level), i.e., it is a truly in�nitehierar
hy (for every integer k, PH 6= �pk).BH2 (also known as DP) is the 
lass of all languages L su
h that L = L1 \L2,for some L1 in NP and L2 in 
oNP.The 
anoni
al BH2-
omplete problem is sat-unsat: a pair of formulas h';  iis in sat-unsat if and only if ' is satis�able and  is not. This 
lass belongsto the Boolean hierar
hy; unless NP = 
oNP, BH2 stri
tly 
ontains both NPand 
oNP.An advi
e-taking Turing ma
hine is a Turing ma
hine that has asso
iated withit a spe
ial \advi
e ora
le" A, whi
h 
an be any fun
tion (not ne
essarily are
ursive one). On input s, a spe
ial \advi
e tape" is automati
ally loadedwith A(jsj) and from then on the 
omputation pro
eeds as normal, based onthe two inputs, s and A(jsj).An advi
e-taking Turing ma
hine uses polynomial advi
e if its advi
e ora
leA satis�es jA(n)j � p(n) for some �xed polynomial p and all non-negativeintegers n; �nally, P/poly is the 
lass of all languages whi
h 
an be de
ided inpolynomial time by deterministi
 Turing ma
hines augmented by polynomialadvi
e. It is believed that NP \ 
oNP is not in
luded in P/poly.7



3 De�nability: De�nitions, Properties and Chara
terizations3.1 Impli
it and expli
it de�nabilityDe�nability is a strong form of dependen
e: while dependent propositionalsymbols intera
t in some situations, de�nability imposes that some proposi-tional symbols are �xed whenever some other propositional symbols are �xedas well.De�nition 2 ((impli
it) de�nability) Let � 2 PROPPS, X; Y � PS andy 2 PS.� � de�nes y in terms of X (denoted by X v� y) if and only if 8~x 2
X ; ~x ^ � j= y or ~x ^ � j= :y.� X v� Y if and only if X v� y for every y 2 Y .Note that requiring ~x ^ � to be satis�able would be useless sin
e ~x ^ � j= yholds whenever ~x^� is unsatis�able. When no X-world 
onsistent with � 
anbe found, � is unsatis�able. In this 
ase, de�nability trivializes, i.e., X v� yholds for every X and y.Example 3 Let l stand for \leap year", and d4 (resp. d25, d100, d400) for\divisible by 4" (resp. by 25, 100, 400). Let � = fd400) l; (d100^:d400)):l; (d4 ^ :d100) ) l;:d4 ) :l; d100 , (d4 ^ d25); d400 ) d100g a set offormulas making pre
ise some 
onne
tions between those symbols.We have fd4; d25g v� d100; fd4; d100; d400g v� l; fd4; d25; d400g v� l;� does not de�ne l in terms of fd25; d100; d400g, be
ause the joint falsity ofthese three propositional symbols does not enable telling whether l is true orfalse, sin
e we do not know whether d4 holds or not.Other de�nability relations hold; in parti
ular, fl; d100; d400g v� d4;fl; d100g v� d4; fl; d100g v� fd4; d100; d400g.WhenX v� y holds, one 
an state equivalently that the fun
tional dependen
yX ! y holds in �. This notion of fun
tional dependen
y is the well-known onefrom the relational database theory restri
ted to binary domains (see [20,21℄).De�nability satis�es the following easy properties (whi
h we give withoutproofs):(1) v� is transitive.(2) If X 0 � X, then X v� X 0. In parti
ular, v� is re
exive.(3) If X v� Y and X v� Y 0, then X v� Y [ Y 0.(4) If X v� Y and �0 j= �, then X v�0 Y .(5) If X v� Y and X 0 v� Y 0, then X [X 0 v� Y [ Y 0.8



(1), (2) and (3) 
orrespond to the famous Armstrong's rules of inferen
e (andknown respe
tively as the transitivity rule, the in
lusion rule and the aug-mentation rule) [20℄. (4) is a monotoni
ity property; (5) is a derived rule ofinferen
e in Armstrong's system (and is known as the addition rule or the
omposition rule).It is also easy to show that if � is satis�able and y 62 Var(�) [ X, thenX 6v� y. Similarly, if � is valid then X v� Y holds if and only if Y � X. 2Other properties that 
an be shown when fxg v� Y are reported in Lemma2.3 from [22℄.Now, another notion of de�nability 
an be easily de�ned, relating a set ofpropositional symbols X to a propositional symbol y given a formula �; itrequires the existen
e of an expli
it de�nition of y in � using propositionalsymbols ofX, only. While the previous form of de�nability is typi
ally referredto as impli
it de�nability, the latter one is 
alled expli
it de�nability.De�nition 4 (expli
it de�nability; de�nition of a propositional symbol)Let � 2 PROPPS, X � PS and y 2 PS. � expli
itly de�nes y in terms ofX if and only if there exists a formula �X 2 PROPX s.t. � j= �X , y. Insu
h a 
ase, �X is 
alled a de�nition of y on X in �.As a 
orollary of Craig's interpolation theorem [3℄ (stated in the more generalframework of �rst-order logi
), the equivalen
e between the impli
it form ofde�nability (as given above) and the expli
it form 
an be stated. This result isknown as the proje
tive Beth's theorem in propositional logi
. We give a prooffor this basi
 result sin
e it enables for pointing out a �rst, simple (expli
it)de�nition.Theorem 5 (propositional proje
tive Beth's theorem) Let � 2 PROPPS,X � PS and y 2 PS. � expli
itly de�nes y in terms of X if and only if X v� y.Proof: The ()) dire
tion is obvious. As to the (() dire
tion, suppose �impli
itly de�nes y in terms of X. For ea
h world ~x satisfying �, let '~x be the
onjun
tion of all literals over X true in ~x. Sin
e the truth value of y in a worldsatisfying � depends only on the truth value of X, we have that � ^ '~x j= y.It follows that the disjun
tion � of all '~x's for ~x a world satisfying � ) y isan expli
it de�nition of y on X. Similarly, the negation of the disjun
tion 	of all '~x's for ~x a world satisfying �) :y is an expli
it de�nition of y on X(indeed, we have � j= �, :	). 2In Lemma 5.1 from [15℄, one 
an �nd representations, based on the primeimpli
ates of �, of the two expli
it de�nitions � and :	 given in the proof2 This shows the system of rules above 
omplete when � is valid sin
e every de�n-ability relation is an instan
e of axiom s
hema (3).9



of Theorem 5. The �rst one is noted f(X;y) and the se
ond one is noted �f(X;�y).Clearly enough, su
h representations are not always the more su

in
t onefrom the spatial eÆ
ien
y point of view (both of them 
an be exponential inthe size of �), and sin
e any formula �-equivalent to � (resp. 	) is an expli
itde�nition of y on X in �, there is no spe
i�
 need to fo
us on prime impli
atesrepresentations.Example 3 (
ontinued) The following expli
it de�nitions hold:� j= (d4 ^ (:d100 _ d400)), l;� j= (d4 ^ (:d25 _ d400)), l;� j= (l _ d100), d4;� j= (d100 ^ l), d400;� j= ((l ^ :d25) _ d100), d4.Theorem 5 shows that � de�nes y in terms of X if and only if there exists ade�nition �X of y in � su
h that X = Var(�X). Now, what about the uni
ityof the de�nition of y on X in �, when � de�nes y in terms of X? As suggestedin the proof of Theorem 5, there are several possible de�nitions of y on X in�, whi
h are generally not logi
ally equivalent, but whi
h are nevertheless �-equivalent: if � and 	 are both de�nitions of y in �, we have � j= �, 	, andadditionally, �_	 and �^	 are also de�nitions of y in �; thus, the set of allde�nitions of y on X in �, quotiented by logi
al equivalen
e, is a �nite latti
e.The least (resp. uppest) element of this latti
e is 
alled the strongest (resp.weakest) de�nition of y in �, and is denoted by DefX;l� (y) (resp. DefX;u� (y)).Note that DefX;l� (y) and DefX;u� (y) are de�ned only when X v� y holds.Now, the previous notion of de�nability of a propositional symbol 
an be easilyturned into a more general notion of formula de�nability. Formally:De�nition 6 (formula de�nability) Let �;	 2 PROPPS and X � PS. �de�nes 	 in terms of X (noted X v� 	) if and only if 8~x 2 
X ; ~x ^� j= 	or ~x ^ � j= :	.While formula de�nability extends propositional symbol de�nability (sin
eevery propositional symbol y 
an be also viewed as the formula y), it 
an bere
overed from it easily:Lemma 7 Let �;	 2 PROPPS and X � PS. Let z be a (fresh) propositionalsymbol of PS n (X [Var(�) [Var(	)). X v� 	 if and only if X v�^(	,z) z.Proof: The proof 
omes straightforwardly from the following equivalen
e: forany ~x, ~x ^ � j= 	 or ~x ^ � j= :	 is equivalent to ~x ^ � ^ (	 , z) j= z or~x ^ � ^ (	, z) j= :z. 2Thus, there is no gap of generality between propositional symbol de�nabilityand formula de�nability; also, in the rest of the paper, for the sake of simpli
ity10



we restri
t to propositional symbol de�nability without any loss of generality.3.2 Chara
terizations of de�nabilityThe proof of Theorem 5 gives a �rst, semanti
al, expression of a de�nition ofy on X in � (when it makes sense, i.e., when X v� y holds), namely, anyformula from PROPX whose set of models is f~xj~x^� j= yg. The next resultsaim at giving more synta
ti
al 
hara
terizations, whi
h will provide us withsome prati
al ways of 
omputing de�nitions.Before presenting them, we need to re
all a few basi
 notions and results aboutindependen
e and forgetting (see [2℄ for more details). Let X be a subset ofPS. A formula � 2 PROPPS is independent of X if and only if there existsa formula � s.t. � � � holds and Var(�) \ X = ;. When X = fxg, we saythat � is independent of x. It 
an be easily shown ([2℄) that � is independentof X if and only if � is independent of ea
h propositional symbol of X. Theset of propositional symbols on whi
h a formula � depends is denoted byDepVar(�). For instan
e, if � = a ^ (b _ :b) then DepVar(�) = fag.Let � 2 PROPPS and X � PS. The forgetting of X in �, denoted 9X:�, isthe formula from PROPPS indu
tively de�ned as follows [10℄:� 9;:� = �,� 9fxg:� = �x 1 _ �x 0,� 9fxg [ Y:� = 9Y:(9fxg:�).For instan
e, with � = (:a _ b) ^ (a _ 
), we have 9fag:� � b _ 
.Clearly enough, 9X:� 
orresponds to a quanti�ed Boolean formula, usuallywith free variables (9 is se
ond-order quanti�
ation, i.e., it bears on proposi-tional atoms).It 
an be shown [2℄ that 9X:� is the logi
ally strongest 
onsequen
e of � thatis independent of X (up to logi
al equivalen
e). Thus, if ' is independent ofX, then � j= ' if and only if 9X:� j= '. A

ordingly, � is independent of Xif and only if � � 9X:� holds.Now, the proje
tion of a formula � on a set of propositional symbols X is theresult of forgetting everything in � ex
ept X:Proj(�; X) = 9(Var(�) nX):�:Taking advantage of the notion of proje
tion, the following result gives a
hara
terization of the de�nitions of a propositional symbol y de�nable in11



terms of a set of propositional symbols X in a formula �.Theorem 8 Let � 2 PROPPS and X � PS. Let �X 2 PROPX and y 2 PS.�X is a de�nition of y on X in � if and only ifProj(� ^ y;X) j= �X j= :Proj(� ^ :y;X):Proof: We have � j= �X , y if and only if � j= �X ( y and � j= �X ) y ifand only if �^:y j= :�X and �^y j= �X if and only if 9(PSnX):(�^:y) j=:�X and 9(PS n X):(� ^ y) j= �X (sin
e �X is independent of PS n X) ifand only if Proj(� ^ y;X) j= �X j= :Proj(� ^ :y;X). 2As a dire
t 
orollary, we obtain the following 
hara
terizations of the strongestand weakest de�nitions of y, as well as a further 
hara
terization of de�nabil-ity:Corollary 9 Let � 2 PROPPS, X � PS and y 2 PS.� If X v� y then DefX;l� (y) � Proj(� ^ y;X).� If X v� y then DefX;u� (y) � :Proj(� ^ :y;X).� X v� y if and only if Proj(� ^ y;X) j= :Proj(� ^ :y;X).Example 3 (
ontinued) Here are the weakest and the strongest de�nitions(up to logi
al equivalen
e) of d4 on fl; d25; d100g in �:� Deffl;d25;d100g;l� (d4) � (l _ d100).� Deffl;d25;d100g;u� (d4) � (d25 ^ d100) _ (l ^ :d25 _ :d100).Theorem 8 shows that de�nability is related to the notions of weakest suÆ
ient
ondition and strongest ne
essary 
ondition from [11℄. Indeed, let X � PS andy 2 PS. A formula � of PROPX is a strongest ne
essary 
ondition (SNC) of yon X given � if � j= y ) � holds (i.e., � is a ne
essary 
ondition (NC) of yon X given �), and for any formula 	 of PROPX , if � j= y ) 	 holds, then� j= �) 	 holds. � 2 PROPX is a weakest suÆ
ient 
ondition (WSC) of yon X given � if � j= � ) y holds (i.e., � is a suÆ
ient 
ondition (SC) of yon X given �), and for any formula 	 of PROPX , if � j= 	) y holds, then� j= 	 ) � holds. Note that both the strongest ne
essary and the weakestsuÆ
ient 
onditions of y on X are unique up to �-equivalen
e [11℄ (but notup to logi
al equivalen
e in the general 
ase).The following theorem shows how SNC and WSC 
an be 
hara
terized usingthe notion of proje
tion. It extends Theorem 2 from [11℄ by relaxing the as-sumption that y 2 Var(�) and y 62 X, and fo
us on the logi
ally strongest(resp. weakest) SNC (resp. WSC) of y on X w.r.t. �, up to logi
al equivalen
e:Theorem 10 Let � 2 PROPPS, X � PS and y 2 PS.12



� Proj(� ^ y;X) is (up to logi
al equivalen
e) the logi
ally strongest SNC ofy on X given �.� :Proj(� ^ :y;X) is (up to logi
al equivalen
e) the logi
ally weakest WSCof y on X given �.Proof: We just prove the �rst point (the se
ond one is similar by dualitybetween SNC and WSC). Let �X be an SNC of y on X given �. By de�nition,we have � j= y ) �X . This is equivalent to �^y j= �X , and equivalent againto Proj(� ^ y;X) j= �X sin
e Var(�X) � X. Hen
e every SNC of y on Xgiven � is a logi
al 
onsequen
e of Proj(� ^ y;X). It remains to show thatProj(�^y;X) is an NC of y on X given �, whi
h is easy sin
e by de�nition offorgetting, �^y j= Proj(�^y;X) for any X and Proj(�^y;X) is independentof every symbol whi
h does not belong to X. 2From this theorem, one 
an show that Theorem 8 generalizes Proposition 2from [11℄ by providing not only a 
hara
terization of de�nability in terms ofSNC and WSC, but also a 
hara
terization of all the de�nitions of y on Xw.r.t. � in terms of SNC and WSC.Finally, the following lemma shows that, when 
he
king whether X v� Y ,every propositional symbol 
an be forgotten from � ex
ept the de�niens Xand the de�niendum Y :Lemma 11 Let � 2 PROPPS and X; Y � PS. X v� Y if and only ifX vProj(�;X[Y ) Y .Proof:()) Let y 2 Y . We have X v� y if and only if there exists a formula 	 s.t.Var(	) � X and � j= (	 , y). Clearly enough, (	 , y) is independentof every propositional symbol whi
h does not o

ur in X [ fyg. Espe
ially,(	 , y) is independent of Var(�) n (X [ fyg). Sin
e Proj(�; X [ fyg) =9(Var(�) n (X [ fyg)):� is the most general 
onsequen
e of � that is in-dependent of Var(�) n (X [ fyg), we have � j= (	 , y) if and only ifProj(�; X [ fyg) j= (	, y). Hen
e, X vProj(�;(X[fyg) fyg. This is true forany y 2 Y , hen
e we have X vProj(�;X[Y ) Y .(() As explained in Se
tion 3.1, v� is monotoni
 in � in the sense that, forevery X; Y;�;�0, if X v� Y and �0 j= �, then X v�0 Y . The fa
t that9(Var(�) n (X [ Y )):� is a logi
al 
onsequen
e of � 
ompletes the proof. 2A pra
ti
al interest of this lemma lies in the fa
t that Proj(�; X [Y ) may be-long to a fragment whi
h is 
omputationally easier than � for the de�nabilityissues. For instan
e, 
onsider � = (a_(:b^
))^(a^(:a_d)), X = fb; 
g andY = fdg. While � belongs to the NNF fragment for whi
h definability is13



not tra
table (unless P = NP) (see Theorem 22), Proj(�; X[Y ) = 9fag:� be-longs to the DNNF fragment for whi
h definability is tra
table (see Lemma27).3.3 Minimal de�nabilityIn many AI appli
ations (some of them will be presented in Se
tions 6 and7), one is interested in pointing out a set of propositional symbols X in termsof whi
h � de�nes every symbol of a given formula �. Indeed, it is enough toassign truth values to the symbols from su
h a set X to determine the truthvalue of �. Thus, one is espe
ially interested in the minimal sets X:De�nition 12 (base) Let � 2 PROPPS and X; Y � PS. X is a minimalde�ning family, or for short a base, for Y w.r.t. �, if and only if X v� Yholds and there is no proper subset X 0 of X su
h that X 0 v� Y . The set of allbases for Y w.r.t. � is denoted by BS�(Y ).Example 3 (
ontinued) � = fd400 ) l; (d100 ^ :d400) ) :l; (d4 ^:d100)) l;:d4) :l; d100, (d4 ^ d25)g.fd4; d25g is a base for d100; the two sets fd4; d100; d400g and fd4; d25; d400gare bases for l;� de�nes d4 in terms of fl; d100; d400g, but not minimally, sin
e fl; d100g isa base for d4; the latter also is a base for fd4; d100; d400g.The following results 
an be derived easily (we give them without proofs):(1) 9Y 2 BS�(X) su
h that Y � X (and, a fortiori, we have BS�(X) 6= ;);(2) BS� is antimonotoni
, i.e., 8X; Y � PS, if X � Y then BS�(X) �BS�(Y ), where � is the partial order de�ned by S1 � S2 if and only if8A 2 S2 9B 2 S1 su
h that B � A.(3) BS�(X) = f;g if and only if for all x 2 X we have � j= x or � j= :x.(4) 8B 2 BS�(X), we have B � Var(�) [X.As to de�ning a set of propositional symbols, not only we know (from thede�nition) that X v� Y if and only if 8y 2 Y;X v� y, but the followingtheorem shows that the set of all bases for a set of propositional symbols
an be 
omputed from the set of all bases for propositional symbols takenindividually by performing pointwise unions and then minimizing the obtainedsets. 33 The operator � su
h that BS�(fx; yg) = BS�(fxg) � BS�(fyg) is sometimes
alled \unionist produ
t" [23℄; it is 
ommutative, asso
iative and idempotent {and as a 
onsequen
e, it makes sense to write BS�(X) = �x2XBS�(fxg) =min(f[x2XBxjBx 2 BS�(fxg)g;�). 14



Theorem 13 Let � 2 PROPPS and Y = fy1; : : : ; ypg � PS.BS�(Y ) = min f p[i=1Bi j Bi 2 BS�(fyig)g;�! :Proof: Let X � PS; we prove that X v� Y if and only if 9X1; : : : ; Xp � PSs.t. X = X1[ : : :[Xp and Xi v� yi for every i 2 f1; : : : ; pg. Then the theoremfollows immediately.()) X v� fy1; : : : ; ypg means that X v� yi for every i 2 f1; : : : ; pg. There-fore, taking Xi = X for every i proves the result.(() Assume that 9X1; : : : ; Xp su
h that X = X1 [ : : : [ Xp and Xi v� yifor every i 2 f1; : : : ; pg. Sin
e Xi v� yi and Xi � X, we have X v� yi forevery i 2 f1; : : : ; pg. Therefore X v� fy1; : : : ; ypg. 2Consequently, it will be enough to 
ompute sets of bases for single propo-sitional symbols only. Note however that a similar result does not hold forshortest bases (in terms of 
ardinality), i.e., a shortest base for fx; yg 
annotalways be written as the union of a shortest base for fxg and a shortest basefor fyg.Note also that it is not the 
ase in general that Var(DefVar(�)[fyg;l� (y)) (orVar(DefVar(�)[fyg;u� (y))) belongs to BS�(fyg); su
h sets are de�ning sets butthey are not ne
essarily minimal w.r.t. � (just 
onsider � = a , b andy = b as a 
ounter-example). The 
on
lusion still holds if we 
onsider only thevariables � is not independent of them (i.e., if we repla
e Var by DepVar inthe previous statement) (the same 
ounter-example works).Note �nally that there is no guarantee in the general 
ase that the numberof bases for fyg w.r.t. � is polynomial in j�j; for instan
e, for the followingformula � (equivalent to a Horn CNF formula), fyg has 2n + 1 bases: � =((Vni=1 xi), y) ^ Vni=1(xi , x0i).3.4 Unde�nable propositional symbolsBe
ause X v� X trivially holds, su
h instan
es of the de�nability relationare typi
ally of little interest. In the theory of relational databases, fun
tionaldependen
ies of the form X ! X are said to be trivial. In the following, apropositional symbol for whi
h every de�nition in � is trivial as su
h is saidto be unde�nable. 15



De�nition 14 (unde�nable propositional symbols) Let � 2 PROPPSand y 2 PS. y is unde�nable in � if and only if Var(�) n fyg 6v� y. Other-wise, y is said to be de�nable in �.We have the following easy 
onne
tion between unde�nable symbols and bases:Lemma 15 Let � 2 PROPPS and y 2 PS. y is unde�nable in � if and onlyif BS�(fyg) = ffygg.Proof:(1 ) 2) If y is unde�nable in �, then Var(�) n fyg 6v� y. As a 
onsequen
e,; 6v� y. Hen
e, fyg is a base for y w.r.t. �. Now, let B 2 BS�(fyg). We haveB � Var(�)[fyg. If y 62 B, then B � Var(�)nfyg, but this 
ontradi
ts thefa
t that Var(�)nfyg 6v� y. Hen
e, y 2 B, and therefore BS�(fyg) = ffygg.(2 ) 1) If BS�(fyg) = ffygg, then for every X � PS, we have X v� y ifand only if y 2 X, whi
h 
on
ludes the proof. 23.5 Ne
essary and relevant propositional symbolsGiven a formula � and a set Y of propositional symbols, all propositionalsymbols in Var(�) 
an be 
lassi�ed a

ording to their usefulness for de�ningY . The most (resp. the least) important ones are the propositional symbolswhi
h are ne
essary (resp. irrelevant) for de�ning Y , de�ned as those symbolswhi
h belong to all bases for Y (resp. to none of the bases for Y ). Computingne
essary propositional symbols in a preliminary step 
an also prove valuablefor improving the 
omputation of the set of all bases for Y w.r.t. �.De�nition 16 (ne
essary and relevant propositional symbols) Let � 2PROPPS, Y � PS and x 2 PS.� x is a ne
essary propositional symbol for Y w.r.t. � if and only if xbelongs to all bases for Y w.r.t. �.� x is a relevant propositional symbol for Y w.r.t. � if and only if xbelongs to at least one base for Y w.r.t. � (otherwise, x is an irrelevantsymbol for Y w.r.t. �).Sin
e both Y and � are �nite, the set of all bases for Y w.r.t. � is never empty(Y v� Y always holds). As a 
onsequen
e, any ne
essary propositional symbolfor Y is a relevant propositional symbol for Y . Moreover, it is obvious thatany propositional symbol x is relevant to itself whenever � 6j= x and � 6j= :x.The following results are simple 
hara
terizations of ne
essary and relevant16



propositional symbols:Lemma 17 Let � 2 PROPPS, Y � PS and x 2 PS.(1) x is ne
essary for Y w.r.t. � if and only if x 2 Y and x is unde�nable in�.(2) x is relevant for Y w.r.t. � if and only if it is relevant for some y 2 Yw.r.t. �.(3) x is ne
essary for Y w.r.t. � if and only if it is ne
essary for some y 2 Yw.r.t. �.Proof:(1, )) Assume that x is ne
essary for Y w.r.t. �. Sin
e Y v� Y , thereexists a B 2 BS�(Y ) su
h that B � Y . Therefore, sin
e x 2 B, we havex 2 Y . Now, suppose that x is de�nable in �, whi
h means that thereexists Z � Var(�) su
h that x 62 Z and Z v� x. Let B 2 BS�(Y ) andB0 = (B n fxg)[Z. From what pre
edes, we have B0 v� Y , therefore thereis a B00 2 BS�(Y ) su
h that B00 � B0, and sin
e x does not belong to B00, it
annot be ne
essary for Y w.r.t. �.(1, () Assume that x 2 Y and x is unde�nable in �. x being unde�nablein � is equivalent to BS�(fxg) = ffxgg, therefore, as a 
onsequen
e ofTheorem 13 and the fa
t that x 2 Y , any B 2 BS�(Y ) 
ontains x, whi
hmeans that x is ne
essary for Y w.r.t. �.(2, )) If x is relevant for Y w.r.t. � then there is a B 2 BS�(Y ) 
ontainingx, and by Theorem 13, there is a y 2 Y and a B0 2 BS�(fyg) su
h thaty 2 B0; hen
e x is relevant for y w.r.t. �.(2, () Immediate 
onsequen
e of Theorem 13.(3) Comes easily from point (1): x is ne
essary for Y = fy1; : : : ; ypg w.r.t. �if and only if 9i 2 1 : : : p, x = yi and x is unde�nable in � if and only if9i 2 1 : : : p, (x = yi and x is unde�nable in �) if and only if 9i 2 1 : : : p, xis ne
essary for yi w.r.t. �. 2Point (1) expresses that the propositional symbols ne
essary for Var(�) {hen
e the \key propositional symbols", by analogy with data bases, are allthose that 
annot be de�ned otherwise. Point (2) expresses that it is enoughto 
onsider the relation \being relevant for" between propositional symbolsinstead of sets of propositional symbols. Point (3) expresses the same resultfor the relation \being ne
essary for".As a dire
t 
orollary, we obtain the following easy 
onne
tion between ne
es-sary symbols and unde�nable ones:Corollary 18 Let � 2 PROPPS and y 2 PS. y is unde�nable in � if and17



only if y is ne
essary for fyg w.r.t. �.Example 3 (
ontinued)� BS�(Var(�)) = ffd4; d25; d400g; fl; d25; d100g; fl; d4; d25gg; therefore, onlyd25 is ne
essary for Var(�) w.r.t. �; furthermore, BS�(fd25g) = ffd25ggand d25 is unde�nable in �.� BS�(fl; d4; d100; d400g) = ffd4; d100; d400g, fd4; d25; d400g, fl; d100; d400g,fl; d4; d25g, fl; d4; d100gg; therefore, no propositional symbol is ne
essaryfor fl; d4; d100; d400g w.r.t. �, and all propositional symbols of Var(�) arerelevant for fl; d4; d100; d400g w.r.t. �.Note that the relation \being relevant for" between single propositional sym-bols is not symmetri
. For instan
e, let � = (
, (a _ b)). a is relevant for 
,but 
 is not relevant for a. 43.6 Unambiguous de�nabilityIn the beginning of this se
tion we wrote that de�nability imposes that somepropositional symbols are �xed whenever some other propositional symbolsare �xed as well, or in other terms, that the value of y is a fun
tion of thevalues of the variables in X. Formally, this is not entirely true, as we 
an seeon the following example: let � = (a ) b) ^ ((a , b) , 
), X = fa; bg,and y = 
. Clearly, X v� y. Is the value of 
 unambiguously de�ned from thevalues of a and b? No, be
ause of the situation ~x where a is true and b false.This situation being in
onsistent with �, it trivially holds that � ^ ~x j= yand � ^ ~x j= :y, thus in this situation the value of y is not unambiguouslyde�ned, and we 
annot formally say that the value of y is a fun
tion of thevalues of a and b. However, in pra
ti
e, this makes little di�eren
e providedthat � is interpreted as a hard 
onstraint (that is, any 
ountermodel of � isan impossible world that does not need to be 
onsidered): in this 
ase, we
an safely negle
t those ~x-worlds that are in
onsistent with �, and say thatin every possible situation, the value of y is a fun
tion of the values of a andb. Still, in some 
ontexts (espe
ially reasoning about a
tion and 
hange { seeSe
tion 6), it is important to know whether su
h in
onsistent X-assignmentsexist or not.De�nition 19 Let � 2 PROPPS and X � PS. We say that � is stronglyX-
onsistent if and only if for every ~x 2 
X , ~x ^ � is 
onsistent. We say4 The relation \being ne
essary for" between single propositional symbols is of nointerest sin
e y 6= x is never ne
essary for x, and x is ne
essary for x if and only ifx is unde�nable. 18



that � unambiguously de�nes Y in terms of X if and only if � is stronglyX-
onsistent and X v� Y .Requiring � to be strongly X-
onsistent has a strong impa
t on the 
hara
-terization of expli
it de�nitions. Indeed, the strong X-
onsisten
y of � is ane
essary and suÆ
ient 
ondition for the uni
ity (up to logi
al equivalen
e) ofexpli
it de�nitions on X in �:Theorem 20 Let � 2 PROPPS, X � PS and y 2 PS su
h that X v� y.Then � is strongly X-
onsistent if and only if for any two de�nitions ',  ofy on X in �, we have ' �  .Proof:()) Assume there exist two non-equivalent formulas ' and  of PROPX su
hthat (a) � j= y , ' and (b) � j= y ,  . (a) and (b) imply (
) � j= ',  .Sin
e ' and  are not logi
ally equivalent, there exists a ~x 2 
X su
h that~x j= :(',  ), whi
h, together with (
), implies that ~x^� is in
onsistent,therefore � is not strongly X-
onsistent.(() Assume � is not strongly X-
onsistent. Let then be ~x 2 
X su
h that~x ^ � is in
onsistent. Let ' be a de�nition of y on X in �. If ~x j= '(respe
tively, ~x j= :'), then let  be the formula of PROPX , unique up tologi
al equivalen
e, whose set of models are exa
tly the models of ' ex
ept~x (respe
tively, the models of ' plus ~x).  is also a de�nition of y on X in�, and  is not logi
ally equivalent to '. 24 Computational Aspe
ts4.1 De�nabilityThe following result is the restri
tion to propositional logi
 of a property, whi
hholds in �rst-order logi
, and is due to Padoa [24℄. It 
onsists of an entailment-based 
hara
terization of (impli
it) de�nability and is useful for identifyingtra
table restri
tions of de�nability in the propositional 
ase. We give a simpleproof whi
h holds for propositional logi
: for any � and any X � PS, letrename(�; X) be the formula obtained by repla
ing in � in a uniform wayevery propositional symbol z from Var(�) nX by a new propositional symbolz0. We have:Theorem 21 (Padoa's method) [24℄If y 62 X, then X v� y if and only if (� ^ rename(�; X)) j= y ) y0.19



Proof: From Theorem 8, we get that X v� y if and only if Proj(�^ y;X) j=:Proj(� ^ :y;X): Equivalently, X v� y if and only if 9(PS nX):(� ^ y) ^9(PSnX):(�^:y) is unsatis�able. Sin
e quanti�ed variables are dummy ones,when y 62 X, 9(PS nX):(�^ y)^9(PS nX):(�^:y) is equivalent to 9(PS nX):(�^y)^9(PS 0nX 0):(rename(�; X)^:y0) where for any subset Z of PS wehave Z 0 = fx0 j x 2 Zg. This quanti�ed Boolean formula is also equivalent tothe following prenex one: 9(PS nX)[(PS 0nX 0):(�^y^rename(�; X)^:y0),whi
h is unsatis�able if and only if �^y^rename(�; X)^:y0 is unsatis�ableif and only if (� ^ rename(�; X)) j= y ) y0. 2A

ordingly, whenever y does not belong to X, 
he
king de�nability 
omesdown to a standard dedu
tion 
he
k. Sin
e X v� y trivially holds in theremaining 
ase (i.e., y 2 X), we 
an 
on
lude that a set-membership test plusa dedu
tion 
he
k are always suÆ
ient to de
ide de�nability.We now give the 
omplexity of de�nability in the general 
ase, as well as insome restri
ted 
ases:Theorem 22 definability is 
oNP-
omplete even under the restri
tion when� is a Blake formula.Proof:� Membership: Membership of definability to 
oNP 
omes dire
tly fromTheorem 21 whi
h gives a polynomial redu
tion from definability to un-sat, whi
h is in 
oNP and 
oNP is well-known as 
losed under su
h redu
-tions.� Hardness: As to hardness, let us exhibit a polynomial redu
tion from CNF-unsat to the restri
tion of definability to the Blake fragment: let ' =Vmi=1 
i be a CNF formula from PROPPS su
h that Var(') = fx1; : : : ; xng;w.l.o.g., we assume that ' does not 
ontain any 
lause implied by another
lause (if it is not the 
ase, we �rst remove every properly implied 
lausefrom it; this 
an be easily a
hieved in polynomial time). To ' we asso
iate inpolynomial time the formula � = Vmi=1(
i_new_y)^(
i_:new_:y) wherenew is a fresh variable from PS n (Var(')[ fyg). We take advantage of thefollowing property, whi
h results dire
tly from the 
orre
tness of resolution-based prime impli
ates algorithms (like Tison's one [18℄): a CNF formula �
ontains all its prime impli
ates if and only if whenever two 
lauses from ithave a resolvent Æ, there exists a 
lause � 2 � s.t. � j= Æ. By 
onstru
tion,every binary resolvent from 
lauses of � is tautologous, hen
e implied byany 
lause of �. As a 
onsequen
e, � 
ontains all its prime impli
ates, andsin
e it does not 
ontain properly implied 
lauses, it is a prime impli
atesformula. Now, from Theorem 8, we have that X v� y if and only if Proj(�^y;X) j= :Proj(� ^ :y;X) if and only if 9 �X:(� ^ y) ^ 9 �X:(� ^ :y) is20



unsatis�able. With X = Var(') [ fnewg, we have that X v� y if andonly if 9 �X:(Vmi=1(
i _ new _ y) ^ (
i _ :new _ :y) ^ y) ^ 9 �X:(Vmi=1(
i _new _ y) ^ (
i _ :new _ :y) ^ :y) is unsatis�able. The latter formula isequivalent to 9 �X:(Vmi=1((
i_:new)^y))^9 �X:(Vmi=1((
i_new)^:y)), whi
his itself equivalent to Vmi=1(
i _ :new) ^ Vmi=1(
i _ new) sin
e �X = fyg andy 62 Var(') [ fnewg. But this formula is also equivalent to ' (it is enoughto 
ompute all its resolvents over new and remove the implied 
lauses toget '). Hen
e ' is unsatis�able if and only if X v� y and this 
ompletesthe proof. 2This theorem generalizes Theorem 2.2 from [22℄: we relax here the (useless)assumption that � is a CNF formula for proving the membership to 
oNP and
onstrain � to belong to the Blake fragment for the hardness part.Interestingly, it shows that 
onstraining � to belong to a propositional frag-ment that is tra
table for sat (as it it the 
ase for IP) does not ne
essarilylead a tra
table restri
tion of definability.We also identi�ed the 
omplexity of the minimal de�nability problem:Theorem 23 Let � 2 PROPPS, X � PS and y 2 PS. Che
king whether Xis a minimal de�ning family for y (minimal defining family) w.r.t. � isBH2-
omplete.Proof:� Membership: X is a minimal de�ning family for y w.r.t. � if and only ifX v� y and 8X 0 � X, X 0 6v� y. Now, 8X 0 � X,X 0 6v� y holds if and only if8x 2 X, X nfxg 6v� y. Thus minimal defining family is the interse
tionof a language in 
oNP and of a language in NP (sin
e the interse
tion of alinear number of a languages in NP is in NP), whi
h proves membership toBH2.� Hardness: let ' and  be two propositional formulas; we asso
iate to themin polynomial time the tuple L(h';  i) = h�; X; yi where� � = ((: ^ x)) y) ^ ((: ^ :x)) :y) ^ ((:')) y);� X = fxg;� x and y are new propositional symbols, not appearing in ' or  .It is easy to 
he
k that fxg v� y if and only if  is unsatis�able or 'is unsatis�able. Now, ; v� y if and only if ' is unsatis�able. This meansthat fxg is a minimal de�ning family for y w.r.t. � if and only if  isunsatis�able and ' is satis�able, i.e., if and only if h';  i is an instan
e ofsat-unsat. Thus L is a polynomial (Karp) redu
tion from sat-unsat tominimal defining family. 21



2When � is su
h that de
iding whether X v� y holds for any X � PS andy 2 PS is tra
table, de
iding whether X is a minimal de�ning family for yw.r.t. � for any X � PS and y 2 PS is tra
table as well (sin
e X is a minimalde�ning family for y w.r.t. � if and only ifX v� y and 8x 2 X, Xnfxg 6v� y).On the other hand, as Theorem 23 suggests it, when X v� y is known tohold, de
iding whether X is a minimal de�ning family for y w.r.t. � remains
omputationally hard (unless P = NP):Theorem 24 Let � 2 PROPPS, X � PS and y 2 PS su
h that X v� y.Che
king whether X is a minimal de�ning family for y w.r.t. � is NP-
omplete.Proof:� Membership: Membership 
onsists in 
he
king that 8x 2 X, X n fxg 6v� y,whi
h requires to solve Card(X) (independent) instan
es of definability.Sin
e definability is in NP, this is also the 
ase of the problem under
onsideration.� Hardness: By redu
tion from sat. Let ' 2 PROPPS su
h that Var(') =fx1; : : : ; xng a non-empty set. To ' we asso
iate in polynomial time � =('^ Vni=1(xi , x0i)) , y (where x01; : : : ; x0n are fresh atoms from PS nfx1; : : : ; xn; yg) andX = fx1; : : : ; xn; x01; : : : ; x0ng. By 
onstru
tion '^Vni=1(xi ,x0i) is a de�nition of y on X in �, hen
e X v� y. Now, ' is satis�able if andonly if X is a minimal de�ning family for y w.r.t. �. Indeed if ' satis�ablethen depends on all its variables X (i.e., there does not exist a formula  su
h that  � ' ^ Vni=1(xi , x0i) and Var( ) � X). This means that theredoes not exist a de�nition of y on a proper subset of X in �, hen
e X isa minimal de�ning family for y w.r.t. �. If ' is unsatis�able, then � � :yand ; v� y, hen
e X does not minimally de�nes y w.r.t. �. 2Sin
e the transformation from formula de�nability to propositional symbolde�nability given by Lemma 7 
an be a
hieved in polynomial time and sin
epropositional symbol de�nability is a restri
tion of formula de�nability, these
omplexity results apply as well to formula de�nability.Now, some tra
table restri
tions for definability (hen
e forminimal defin-ing family) 
an be easily derived from Theorem 21. We �rst need to makepre
ise the 
onditions under whi
h su
h restri
tions are based:De�nition 25 (stability 
onditions) Let C be a propositional fragment, i.e.,a subset of PROPPS. 22



� C is stable by expansion for partial renaming if and only if for every� 2 C and for every X � PS, we have � ^ rename(�; X) 2 C.� C is stable by 
onditioning if and only if for every � 2 C and 
 is asatis�able 
onjun
tion of literals, then the 
onditioning �
 of � by 
 alsobelongs to C.Theorem 26 Let C be a propositional fragment satisfying the stability 
ondi-tions listed in De�nition 25. C is tra
table for sat if and only if the restri
tionof definability when � belongs to C is tra
table.Proof: Let us �rst show that if C is tra
table for sat then the restri
tionof definability is tra
table. The key is Theorem 21; there are two 
ases:if y 2 X (whi
h 
an be obviously de
ided in polynomial time), then any �de�nes y in terms of X; otherwise, Theorem 21 shows that X v� y if andonly if � ^ rename(�; X) j= y ) y0. This is equivalent to determine whether(�^rename(�; X))
 is in
onsistent where 
 is y^:y0. By 
onstru
tion, su
h aformula (� ^ rename(�; X))
 belongs to C whenever � belongs to C, be
auseC is stable by 
onditioning and expansion by partial renaming; hen
e thesatis�ability of it 
an be de
ided in polynomial time.Conversely, if the restri
tion of definability when � belongs to C is tra
tablethen de
iding whether ; v� new (with new 2 Ps n Var(�)) 
an be a
hievedin polynomial time. But ; v� new if and only if � is unsatis�able. Hen
e thesatis�ability of � 
an be de
ided in polynomial time. 2Note that stability by expansion with partial renaming is stri
tly less de-manding than stability by (bounded) 
onjun
tion; for instan
e, the 
lass ofrenamable Horn CNF formulas is stable by expansion for partial renaming,but it is not stable by bounded 
onjun
tion.Interestingly, some quite general propositional fragments satisfy the stabil-ity 
onditions given in De�nition 25. This is the 
ase for the 
lass of q-Hornformulas (whi
h in
ludes both Krom CNF formulas, Horn CNF formulas andrenamable Horn CNF formulas as spe
i�
 
ases) [6℄ and the 
lass of De
ompos-able Negation Normal Form (DNNF) formulas (whi
h in
ludes several otherimportant fragments, namely the DNF formulas and the Ordered Binary De-
ision Diagrams, OBDD<) [7,9℄.Lemma 27 The restri
tions of definability for whi
h � is a q-Horn CNFformula or a DNNF formula are in P.Proof: It is known that the 
lass of q-Horn CNF formulas is tra
table forsat [6℄; and it is obvious that it is stable by 
onditioning; now, stability byexpansion with partial renaming 
omes from the fa
t that if V is a q-Hornrenaming for �, then the set of symbols V [ frename(x; ;) j x 2 V n Xg isa q-Horn renaming for � ^ rename(�; X). Finally, as to the DNNF 
lass, the23



result 
omes immediately from Propositions 4.1 and 5.1 from [25℄. 2Lemma 27 generalizes Theorem 3.1 and Corollary 3.2 from [22℄, whi
h 
on-
ern Horn CNF formulas, as well as Theorem 7.1 and Corollary 7.2 from [15℄,whi
h 
on
ern q-Horn CNF formulas. It does not generalize Theorem 3.5 andCorollary 3.6 from [22℄ (resp. Theorem 7.3 and Corollary 7.4 from [15℄), show-ing the tra
tability of the restri
tions of definability when � is equivalentto a Horn CNF formula (resp. a q-Horn CNF formula) but is given by its(disjun
tively interpreted) Horn (resp. q-Horn) envelope.Note that Theorem 21 
an prove helpful for de
iding in polynomial timewhether X v� y under restri
tions on � that are outside the s
ope of Lemma27. For instan
e, if � = (') y)^(y )  ) where ';  are Horn CNF formulassu
h that y 62 Var(') [ Var( ), then X v� y 
an be de
ided in polynomialtime sin
e it amounts to determining whether ' j=  holds. However, � isneither a q-Horn CNF formula, nor a DNNF one.It is interesting to observe that the stability 
onditions given in De�nition 25are not satis�ed by every propositional fragment that is tra
table for sat (forinstan
e the Blake fragment (formulas in prime impli
ates normal form) doesnot satisfy any of them).Now, what about the 
omplexity of unambiguous de�nability? Che
king that� is stronglyX-
onsistent being signi�
antly harder than 
he
king de�nability,this 
arries over to unambiguous de�nability:Theorem 28 Let � 2 PROPPS, X � PS and y 2 PS.� De
iding whether � is strongly X-
onsistent is �p2-
omplete.� De
iding whether � unambiguously de�nes y in terms of X is �p2-
omplete.Proof: Membership is easy in both 
ases. For de
iding whether � is stronglyX-
onsistent, hardness 
omes from this trivial redu
tion from qbf2;8: 9A8B�is a valid instan
e of qbf2;8 if and only if � is strongly A-
onsistent. Asfor de
iding whether � unambiguously de�nes y in terms of X, it suÆ
es toremark that � unambiguously de�nes X in terms of X if and only if � isstrongly X-
onsistent. 2Finally, knowing that � is strongly X-
onsistent does not 
hange the 
om-plexity of de�nability:Theorem 29 Let � 2 PROPPS, X � PS and y 2 PS. Given that � isstrongly X-
onsistent, de
iding whether X v� y is 
oNP-
omplete.Proof: Membership is obvious. Hardness 
omes from the following redu
tionfrom unsat: let ' be a propositional formula and z a fresh variable, not24



appearing in '; then ' 2 unsat if and only if ' _ z j= z, that is, if ; v'_z z,and 
learly, ' _ z is strongly ;-
onsistent, be
ause ' _ z is 
onsistent. 24.2 Unde�nability, ne
essity and relevan
eFrom Theorem 21, we 
an easily derive the following 
hara
terization of un-de�nable propositional symbols, whi
h is surprisingly simple:Lemma 30 Let � 2 PROPPS and y 2 PS. y is unde�nable in � if and onlyif �y 0 ^ �y 1 is satis�able.Proof: By de�nition, we have that y is unde�nable in � if and only if Var(�)nfyg 6v� y. Sin
e y 62 Var(�) n fyg, from Theorem 21, we get that y is unde�n-able in � if and only if (�^rename(�;Var(�)nfyg)) 6j= (y_:y0). This is equiv-alent to state that (�^rename(�;Var(�)nfyg))^:y^y0 is satis�able. This isagain equivalent to state that the 
onditioning of �^rename(�;Var(�)nfyg)by the satis�able 
onjun
tion of literals :y^y0 is satis�able. Now sin
e y0 (resp.y) does not o

ur in � (resp. rename(�;Var(�) n fyg)), this 
onditioning isequivalent to �:y^rename(�;Var(�)nfyg)y0. Sin
e rename(�;Var(�)nfyg)y0is equivalent to �y (sin
e y is the unique symbol that has been renamed), weobtain that y is unde�nable in � if and only if �:y ^ �y is satis�able. 2Ne
essary propositional symbols 
an be 
hara
terized by means of prime im-pli
ants in this simple and elegant way:Lemma 31 Let � 2 PROPPS and x 2 PS. x is de�nable in � if and only ifevery prime impli
ant of � 
ontains x or :x.Proof: The prime impli
ants of �, or equivalently of (:x^�x 0)_(x^�x 1),that 
ontain neither x nor :x, are the prime impli
ants of �x 0 ^ �x 1, seee.g., [8℄. Sin
e the latter formula is unsatis�able whenever x is de�nable in �(
f. Lemma 30), every prime impli
ant of � 
ontains x or :x in this situation(and only if x is de�nable in �). 2We have also derived the following 
omplexity results:Theorem 32 Let � 2 PROPPS, X; Y � PS, and x; y 2 PS.(1) De
iding whether y is unde�nable in � (undefinability) is NP-
omplete.(2) De
iding whether x is ne
essary for Y w.r.t. � (ne
essity) is NP-
omplete. Hardness still holds if Y is a singleton.(3) De
iding whether x is relevant to Y w.r.t. � (relevan
e) is in �p2 and25



both NP-hard and 
oNP-hard, hen
e not in NP [ 
oNP (unless the poly-nomial hierar
hy 
ollapses to the �rst level). Hardness still holds if Y isa singleton. 5Proof:(1) Membership is a 
orollary of Lemma 30. Hardness 
omes from the fol-lowing polynomial redu
tion from sat: for any propositional formula ',let � = ' _ y where y 62 Var('); now, ' is satis�able if and only if y isunde�nable in �.(2) Membership is a 
orollary of Point (1) above and Point (2) of Lemma17. Hardness is a 
onsequen
e of Point (1) above and the equivalen
ebetween (1) and (4) in Corollary 18.(3) Membership is easy: guess B � Var(�) [ Y and 
he
k using a linearnumber of 
alls to an NP ora
le that B is a minimal de�ning family forY w.r.t. �. NP-hardness 
omes from the following polynomial redu
tionfrom sat: for any propositional formula ', let � = '^y where y 62 Var(')and let Y = fyg; now, ' is satis�able if and only if y is relevant to Yw.r.t. �. 
oNP-hardness 
omes from the following polynomial redu
tionfrom unsat: for any propositional formula ' over X = fx1; : : : ; xng, let� = (z , y)^ (((z ^')_x), y); if ' is unsatis�able, then x is relevantto Y = fyg w.r.t. � sin
e fxg is a base for Y w.r.t. � in su
h a 
ase;if ' is satis�able, then x is not relevant to Y w.r.t. �; indeed, � doesnot de�ne Y in terms of X [ fxg: let ~x be any X-model of '; we have~x^ :x^� � (z , y) showing that instantiating z is ne
essary to derivethe truth value of y. Hen
e, every base for Y w.r.t. � must 
ontain z;sin
e, by 
onstru
tion, fzg is a base for Y w.r.t. �, we 
on
lude that fzgis the unique base for Y w.r.t. � when ' is satis�able, and this is enoughto 
on
lude the proof. 2From the de�nition of unde�nable symbols and Lemma 17, it immediatelyfollows that the restri
tions of undefinability and of ne
essity for whi
h� satis�es the stability 
onditions listed in De�nition 25 are also in P. Su
hrestri
tions also make the 
omplexity of relevan
e belonging to NP.4.3 Computing expli
it de�nitionsTheorem 8 and its 
orollary give us several ways of 
omputing expli
it de�-nitions. In parti
ular, they show that when X v� y, then the strongest def-inition of y on X in � is Proj(� ^ y;X), or equivalently in the 
ase y 62 X,5 We 
onje
ture that this problem is �p2-
omplete.26



Proj(�y 1; X).Su
h a 
hara
terization proves parti
ularly helpful when � is from a propo-sitional fragment allowing polytime forgetting and 
onditioning [26℄. As a
onsequen
e of Theorem 8, we get:Lemma 33 Let C be any propositional fragment, whi
h is stable by 
ondition-ing and enables polytime forgetting (i.e., there exists a polytime algorithm forderiving a formula from C equivalent to Proj(�; X) for any formula � 2 Cand a set of symbols X). Then for any � 2 C, X � PS and y 2 PS su
h thatX v� y, an expli
it de�nition �X of y on X in � 
an be 
omputed in timepolynomial in j�j+ jXj.Proof: If y 2 X then y , y is an expli
it de�nition of y onX in �. Otherwise,from Theorem 8, we have that Proj(�y 1; X) is an expli
it de�nition of y onXin �. Under the assumptions of the lemma, a propositional formula equivalentto Proj(�y 1; X) 
an be 
omputed in polynomial time. 2Among the in
uential propositional fragments enabling both operations inpolynomial time are the DNNF one [7,9℄ and the prime impli
ates one (see[26℄). For instan
e, Proj(� ^ y;X) 
an be 
omputed eÆ
iently by sele
tingfrom the set IP (�) of prime impli
ates of � ^ y those belonging to PROPX(see e.g., Lemma 8 from [27℄). On
e this formula has been 
omputed, the truthvalue of y for any ~x 2 
X 
an be 
omputed in linear time as the truth value ofProj(� ^ y;X)y 1. It is interesting to note that, while both fragments enablethe 
omputation of de�nitions of polynomial size when � is known to de�ney in terms of X, the restri
tions of definability they indu
e do not havethe same 
omplexity (unless P = NP). Thus determining whether X v� y istra
table when � is a DNNF formula and 
oNP-
omplete when � is a primeimpli
ates formula (see Lemma 27 and Theorem 22).The OBDD< fragment [28,29℄, a famous subset of DNNF, 
an also be 
onsid-ered, provided that the variables to be forgotten (i.e., all the variables ex
eptthose of X) are the �nal variables w.r.t. the total, stri
t ordering < on vari-ables, asso
iated to the fragment [30,31℄. A

ordingly, the previous 
orollary
ompletes some results reported in [22℄ (resp. in [15℄), showing that when �is a Horn CNF formula (resp. a q-Horn CNF formula), then every variable yhas an expli
it de�nition in � that is equivalent to a positive 
onjun
tion ofliterals (resp. a 
onjun
tion of literals or a 
lause) (hen
e, is of polynomial sizew.r.t. the input).While the possibility to 
ompute an expli
it de�nition �X of y on X in �in polynomial time in some restri
ted 
ases (and to determine in polynomialtime that no su
h de�nition exists otherwise), ensures that the size of thisde�nition is polynomially bounded, this 
annot be guaranteed in the general
ase, unless P = NP (this is a dire
t 
onsequen
e of Theorem 22).27



A
tually, the situation is even 
omputationally worse in the general 
ase, sin
ewe 
an prove that there is no way to 
ompute de�nitions in polynomial spa
ein the general 
ase (under the usual assumptions of 
omplexity theory).Theorem 34 Let � be a formula from PROPPS. Let X � PS and let y 2 PS.In the general 
ase, the size of any expli
it de�nition �X of y in � is notpolynomially bounded in j�j+ jXj unless NP \ 
oNP � P/poly.Proof: We exploit a 
lose 
onne
tion between the de�nability problem andthe interpolation one.Let ',  be two formulas from PROPPS. A formula � from PROPPS is aninterpolant of h';  i if and only if Var(�) � Var(') \ Var( ) and ' j= � and� j=  hold.Indeed, it is known that in the general 
ase the size of any interpolant � ofh';  i is not polynomially bounded in j'j + j j unless NP \ 
oNP � P/poly[32℄.To every pair h';  i, we 
an asso
iate in polynomial time the pair h�; newiwhere � = ( ) new) ^ (new ) '), new 2 PS n (Var(') [ Var( )). Thepoint is that ' j=  if and only if X v� new. Moreover, every interpolantof h';  i is a de�nition of new on Var(') \ Var( ) w.r.t. � and the 
onversealso holds. Indeed, from Craig's interpolation theorem in propositional logi
,' j=  holds if and only if there exists an interpolant of h';  i. Now:� If way. Let �X be any expli
it de�nition of new on X = Var(') \ Var( )w.r.t. �. We have � j= new , �X . This is equivalent to state that (1)( ) new) ^ (new ) ') j= new ) �X , and (2) ( ) new) ^ (new )') j= �X ) new. (1) is equivalent to ( ) new)^ (new ) ')^new^:�Xis unsatis�able, or equivalently to new ^ ' ^ :�X is unsatis�able. Sin
enew 62 Var( ) [ Var('), we have new 62 X. A

ordingly, (1) is equivalentto '^:�X is unsatis�able, i.e., ' j= �X . From (2), it is easy to derive in asimilar way that �X j=  . Hen
e, any �X is an interpolant of h';  i.� Only-if way. Let �X be any interpolant of h';  i. By de�nition, we havej= (' ) �X) ^ (�X )  ). Subsequently, � � ( ) new) ^ (new )') ^ (') �X) ^ (�X )  ). We immediately obtain that � j= new , �X .Thus, X v� new and every interpolant of h';  i is an expli
it de�nition ofnew on X = Var(') \ Var( ) w.r.t. �. 228



4.4 Computing a baseIn this se
tion, we present an algorithm for generating a base X for a proposi-tional symbol y w.r.t. a formula �, if any. X will be required to be 
ontainedin a �xed set of \a

eptable" propositional symbols V �. We 
alled su
h a basea V �- base. The role of V � is to fo
us on interesting bases, only; for instan
e,in a dis
riminability problem, V � will be the set of testable propositional sym-bols. In parti
ular, if one wants to know whether y is unde�nable or not in �,then V � is set to Var(�) n fyg.This algorithm (des
ribed by the fun
tion Find-A-Base below) is a greedyalgorithm whi
h 
onsiders all the propositional symbols of V � in any order(nevertheless the use of heuristi
s for determining this order may redu
e thesear
h time) and throw them away when they are not ne
essary for forming abase from the 
urrent set of a

eptable propositional symbols. The inputs ofFind-A-Base are V �, y and � and its output is a subset of V � or \failure".This algorithm 
alls a fun
tion Defines whi
h 
he
ks whether a given subsetof propositional symbols de�nes y w.r.t. �. How � is represented and how thefun
tion Defines is implemented will be dis
ussed separately.if not Defines(V �, y, �) thenreturn \failure"elseX  V �for x 2 V � doif Defines(X n fxg, y, �) thenX  X n fxgend ifend forreturn Xend ifThe following easy lemma states that the algorithm Find-A-Base is 
orre
t:Lemma 35 Provided that Defines(X; y;�) returns true if and only if X v�y, Find-A-Base returns a V �-base for y w.r.t. � if there exists su
h a base,\failure" otherwise.Proof: Straightforward. 2This algorithm 
an readily be extended to an algorithm for generating a baseX for a set Y of propositional symbols w.r.t. a formula �. It suÆ
es to repla
ey by Y within ea
h 
all to Defines, and to extend the latter fun
tion to su
hsets Y (this is obvious given the de�nition of impli
it de�nability).29



It 
an also be extended to an algorithm for deriving all V �-bases for a setY , through a judi
ious way to sear
h the whole set 2V � (see the set enu-meration tree algorithm in [33℄). This task is 
learly more 
omputationallyexpensive than 
omputing a single base, espe
ially due to the number of su
hbases (whi
h 
an be exponential, as explained before); however, as Theorem22 suggests it, its 
omputational 
ost is not solely due to the number of bases:Theorem 36 Unless P = NP, there exists no polynomial time algorithm for
omputing a V �-base for a propositional symbol y w.r.t. a CNF formula �.Proof: Let ' be a CNF formula and let y 62 Var('); let V � = Var(') [ fyg;let � = ' ^ y. If ' is unsatis�able (resp. satis�able), then ; (resp. fyg) is theunique V �-base for y w.r.t. �. If a polynomial time algorithm for 
omputinga V �-base for y would exist, then after running it on y and �, there are twopossibilities: either the 
omputed base is ; and in this 
ase, ' is unsatis�able,or it is fyg and in this 
ase ' is satis�able. But this would be a polynomialtime algorithm for de
iding whether a CNF formula ' is satis�able. Hen
e,sat would belong to P. 2Sin
e Theorem 36 also holds when y has a single V �-base w.r.t. �, it strength-ens Theorem 3.1 from [34℄ showing that there exists no polynomial total time(i.e., polynomial in the size of the input plus the size of the output) for 
om-puting all the minimal fun
tional dependen
ies whi
h hold in �, unless P =NP when � is a CNF formula. 6In pra
ti
e, the task of deriving all V �-bases for a set Y w.r.t. � 
an be im-proved in some situations by 
omputing �rst the set of all ne
essary variablesand the set of all relevant variables for Y w.r.t. �; all irrelevant variables 
anbe removed from V � before running the algorithm, and subsets of 2V � whi
hdo not 
ontain all ne
essary variables 
an be skipped during the sear
h.Clearly enough, the simple algorithm Find-A-Base above does not run inpolynomial time in the worst 
ase (sin
e this is not the 
ase for the fun
tionDefines, unless P = NP). This 
oheres with Theorem 36 showing that no su
halgorithm exists, unless P = NP.Now, there are several possible ways to implement the fun
tion Defines de-pending on the propositional fragment � belongs to. If � is a CNF formula,then one 
an easily implement Defines by taking advantage of a sat solver(and many su
h solvers with impressive performan
es are available nowadays).6 In the same paper, the authors also showed that, when � is given by the setof its models (over Var(�)) this task is polynomially equivalent to the problemof dualizing a positive theory (or, equivalently, of 
omputing the transversals ofa hypergraph), for whi
h no polynomial time algorithm is known but a pseudo-polynomial algorithm exists. 30



In the 
ase when the synta
ti
 restri
tions on � makes de�nability polynomial,then the sear
h for a V �-base is itself polynomial be
ause it 
onsists in jV �j+1de�nability tests. Additionally, when � belongs to a propositional fragmentsatisfying the 
onditions listed in De�nition 25, and X is a base for y w.r.t.�, the truth value of y of 
an be 
omputed in time polynomial in j�j+ jXj forevery X-world ~x. Indeed, 
he
king whether �~x;:y is satis�able 
an be done inpolynomial time and the truth value of this test gives the truth value of y.5 De�nability and Hypothesis Dis
riminabilityIn this se
tion, we investigate a notion whi
h is 
losely related to de�nabilityand whi
h also has many pra
ti
al appli
ations ranging from fault isolationin diagnosis to de
ision under partial observability. Intuitively, given a set ofpropositional formulas H = fh1 : : : hng, whi
h represent mutually ex
lusiveand exhaustive hypotheses w.r.t. a knowledge base � (i.e., 8h; h0 2 H, ifh 6= h0 then � j= :(h ^ h0) and � j= Wni=1 hi) and a set X of available binarytests (en
oded as propositional symbols), X dis
riminates H w.r.t. � if theknowledge of the truth values of propositional symbols of X helps �nding outwhi
h one of the hi is true.De�nition 37 (dis
rimination)� An input of a dis
rimination problem is a triple h�; X;Hi whi
h 
onsistsof a 
onsistent formula �, a set of test variables X s.t. X � Var(�) and aset H = fh1; : : : hng of formulas whi
h are mutually ex
lusive and exhaustivew.r.t. �.� X dis
riminates H w.r.t. � if and only if 8~x 2 
X 9h 2 H s.t. ~x^� j= h.� X dis
riminates minimally H w.r.t. � if and only if X dis
riminates Hw.r.t. � and no proper subset of X does it.There are many a
tivities (in
luding diagnosis and de
ision under un
ertainty)where one wishes to dis
riminate among a set of hypotheses hi; i = 1; : : : ; ngiven a set of available tests. Let us illustrate it, fo
using on the 
onsisten
y-based diagnosis setting [35℄ (things are similar in the abdu
tive diagnosis set-ting with respe
t to the dis
rimination issue).De�nition 38 (minimal diagnosis) [35℄ Let hSD;COMPS;OBSi be theinput of a diagnosis problem (SD is a 
onjun
tion of propositional formulasrepresenting the system des
ription, COMPS is a set of symbols denotingthe 
omponents of the system and OBS is a 
onjun
tion of literals repre-senting the initial observations). A minimal 
onsisten
y-based diagno-sis for hSD;COMPS;OBSi is a minimal subset � of COMPS su
h thatSD ^OBS ^AB(�) is 
onsistent, where AB(�) is the formula V
2�AB 
^31



V
2COMPSn�:AB 
 (ea
h AB 
 is a propositional symbol meaning that thatthe 
orresponding 
omponent 
 is \abnormal", i.e., it does not work properly).De�nition 39 (fault isolation) Let hSD;COMPS;OBSi be the input of adiagnosis problem, and TB = ft1; : : : tng a test base over some of the propo-sitional symbols of the system (set of available measures); we have TB �Var(SD[OBS). The input hSD;COMPS;OBS; TBi of the fault isolationproblem is the input h�; TB;HY P i of the dis
rimination problem de�ned by� = SD ^ OBS, TB, and HY P = fAB(�) j � is a minimal 
onsisten
y-based diagnosis for hSD;COMPS;OBSig [ fV� :AB(�) j � is a minimal
onsisten
y-based diagnosis for hSD;COMPS;OBSig.By 
onstru
tion, HYP is a set of mutually ex
lusive and exhaustive hypothesesw.r.t. �.Interestingly, there is a dire
t link between hypothesis dis
riminability andde�nability:Theorem 40 Let h�; X;H = fh1; : : : ; hngi be a dis
rimination problem. Let�0 = � ^ Vni=1(hi , hinew), where ea
h hinew 2 PS n Var(f�g [ H) is a newsymbol. Then X dis
riminates H w.r.t. � if and only if �0 de�nes Hnew =fhinew j i 2 1 : : : ng in terms of X.Proof:()) If 8~x 2 
X 9h~x 2 H s.t. ~x^� j= h~x, then 8~x 2 
X (9h~x 2 H s.t. ~x^� j= h~xand 8h 2 H n fh~xg, we have ~x ^ � j= :h; indeed, � j= :h~x_ 6= h for everyh 2 H nfh~xg sin
e H 
ontains mutually ex
lusive hypotheses given �. Thus,8~x 2 
X 8h 2 H (~x ^ � j= h or ~x ^ � j= :h) holds. Hen
e �0 de�nes Hnewin terms of X.(() If �0 de�nes Hnew in terms of X then 8h 2 H 8~x 2 
X (~x ^ � j= hor ~x ^ � j= :h) holds. Equivalently, 8~x 2 
X 8h 2 H (~x ^ � j= h or~x ^ � j= :h) holds. Assume that 8~x 2 
X 8h 2 H ~x ^ � j= :h. Sin
e H isexhaustive given �, this is possible only if � is unsatis�able. In su
h a 
ase,X trivially dis
riminates H w.r.t. �. In the remaining 
ase, we have that8~x 2 
X 9h 2 H ~x ^ � j= h. Hen
e X trivially dis
riminates H w.r.t. �. 2Clearly enough, one 
an take advantage of this polynomial redu
tion and theresults reported in the previous se
tions to 
ompute dis
riminating sets andminimal dis
riminating sets. Thus, when dealing with mutually ex
lusive andexhaustive sets of hypotheses, bases 
an be used to design minimal test inputs([36℄ [37℄) in order to isolate faulty 
omponents in model-based diagnosis (inthis 
ase hypotheses 
orrespond to 
andidate diagnoses, and testable proposi-tional symbols 
orrespond most often to available measurements). Note that32



M
Ilraith's notions of relevant or ne
essary tests [37℄ have some 
ounterpartsin our framework (for instan
e, a ne
essary test 
orresponds to a propositionalsymbol without whi
h the hypothesis spa
e 
annot be dis
riminated). Lastly,the algorithm for 
omputing bases des
ribed before 
an be used to design 
on-ditional test poli
ies (where tests are performed sequentially and 
onditionedby the out
omes of previous tests { see [38℄ for the 
ase of mutually ex
lusivehypotheses).Conversely, the de�nability problem 
an be also redu
ed to the hypothesis dis-
riminability problem (in presen
e of mutually ex
lusive hypotheses). Indeed,a 
onsistent formula � de�nes y in terms of X if and only if X dis
riminatesH = fy;:yg w.r.t. �. Sin
e both redu
tions are polytime ones, this is enoughto show that de
iding whether X dis
riminates H w.r.t. � (hypothesis dis-
riminability) is a 
oNP-
omplete problem.6 Propositional De�nability and Reasoning about A
tion and Change6.1 Determinism, exe
utability, and su

essor state axiomsIn this se
tion, we show that de�nability is also 
losely related to several issuespertaining to reasoning about a
tion and 
hange.Let F be a �nite set of 
uents (i.e., a subset of PS). De�ne Ft = fft j f 2 Fgand Ft+1 = fft+1 j f 2 Fg, two sets of 
uents indexed by time points. Let�� be a propositional a
tion theory des
ribing a
tion �, that is, a formula ofPROPFt[Ft+1, su
h that (~ft; ~f 0t+1) j= �� holds if and only if ~f 0 is a possiblesu

essor state of ~f by �. The transition fun
tion for � is the binary relationR� on 
F de�ned by R�(~f; ~f 0) i� (~ft; ~f 0t+1) j= ��. Then:� � is deterministi
 if for every ~f 2 
F there is at most one ~f 0 2 
F su
hthat R�(~f; ~f 0).� � is fully exe
utable if for every ~f 2 
F there is a ~f 0 2 
F su
h thatR�(~f; ~f 0).Now, it is easy to 
he
k that determinism and full exe
utability are expressedsimply within the notions of de�nability and strong 
onsisten
y:Lemma 41� � is deterministi
 if and only if Ft v�� Ft+1.� � is fully exe
utable if and only if �� is strongly Ft-
onsistent.Proof: Straightforward. 233



Putting these two points together, � is deterministi
 and fully exe
utable ifand only if Ft+1 is unambiguously de�ned from Ft w.r.t. ��.Furthermore, even when an a
tion � is not \fully" deterministi
, it may bedeterministi
 for some 
uents. Let us say that � is deterministi
 for f if andonly if for any ~f 2 
F and any two states ~f 01; ~f 02 2 
F su
h that R�(~f; ~f 01) andR�(~f; ~f 02) then ~f 01 and ~f 02 give the same truth value to f . Clearly, de�nabilityallows for identifying the 
uents for whi
h � is deterministi
. Moreover, when� is deterministi
 for f , any de�nition of ft+1 on Ft in �� 
orresponds to asu

essor state axiom [39℄. (See also the �nal example of [11℄).Example 42 Let �, � and 
 be the a
tions de�ned by the following theories:�� = (at+1 , :at) ^ (at ) bt+1) ^ (bt ) bt+1) ^ ((:at ^ :bt)) :bt+1),�� = (at+1 , :at)^ (at ) bt+1)^ (bt ) (at+1^ bt+1))^ ((:at^:bt)) :bt+1),�
 = (at+1 , :at) ^ (at ) bt+1) ^ (bt ) bt+1).fat; btg v�� fat+1; bt+1g holds, therefore � is deterministi
, and �� is stronglyfat; btg-
onsistent, therefore � is fully exe
utable. The su

essor state axiomof q 
orresponds to the de�nition of q (it is unique up to logi
al equivalen
e,due to Theorem 20): bt+1 � (at _ bt).�� is not strongly fat; btg-
onsistent, be
ause at ^ bt ^ �� is in
onsistent.Therefore, � is not fully exe
utable (but it is deterministi
). There are twonon-equivalent de�nitions of 
uents at time t + 1, hen
e two su

essor stateaxioms: bt+1 � (at _ bt) and bt+1 � (at , :bt).fat; btg v�
 fat+1; bt+1g does not hold, therefore 
 is not deterministi
 (but itis fully exe
utable). However, it is deterministi
 as far as 
uent a is 
on
erned,sin
e fat; btg v�
 at+1 holds.Note that usually, we are given initially a set of 
ausal rules from whi
h, usingsome 
ompletion pro
ess (e.g., [40,41℄), we 
ompute su

essor state axiomsand then �nally ��. Computing su

essor state axioms as de�nitions is thereverse pro
ess of the latter 
ompletion pro
ess: from an a
tion theory already
ompiled in its propositional form ��, we �nd the su

essor state axioms (andthen possibly a 
ompa
t des
ription of the e�e
ts of � by 
ausal rules).Due to the 
onne
tions made pre
ise by Lemma 41, many notions and resultsof the paper apply to reasoning about a
tion.For instan
e, as a dire
t 
onsequen
e of Theorem 20 and Lemma 41, whenan a
tion is fully exe
utable and deterministi
 for f , there exists only onesu

essor state axiom for f (up to logi
al equivalen
e) { it is indeed the 
asefor �, but not for � in Example 42.De�nability proves also useful for 
hara
terizing regression. Given a proposi-tional formula  2 PROPPS, the (dedu
tive) regression of  by � is the for-mula reg( ; �) (unique up to logi
al equivalen
e) su
h that Mod(reg( ; �)) =34



S~f 0j= R�1� (~f 0). The abdu
tive regression of  by � is the formula Reg( ; �)(unique up to logi
al equivalen
e) su
h that Mod(Reg( ; �)) = f~f j R�(~f) �Mod( )g. While we have Reg( ; �) j= reg( ; �) in the general 
ase, reg( ; �)and Reg( ; �) are equivalent when � is deterministi
 [41℄.For any formula ' from PROPF , let us note 't the formula from PROPFtobtained by substituting in a uniform way in ' every symbol a by at; we have:Theorem 43 Let � be a deterministi
 and fully exe
utable a
tion. For any
uent f 2 F and any formula  2 PROPF , reg( ; �)t (or equivalently Reg( ; �)t)is equivalent to any de�nition of zt+1 on Ft in �� ^ ( t+1 , zt+1), where z isa fresh symbol (not in F ).Proof: First observe that from Theorem 20 and Lemma 41, it makes senseto 
onsider any de�nition (sin
e all of them are equivalent). Now, we havereg( ; �)t � Proj(��^ t+1; Ft) (see Proposition 5 in [41℄). The latter formulais also equivalent to Proj(�� ^ ( t+1 , zt+1) ^ zt+1; Ft). Finally, Theorem 8
on
ludes the proof. 2This result 
an be generalized to a
tions that are not fully exe
utable. We omitit for the sake of brevity, as well as appli
ations of de�nability to progressionand planning.6.2 Rami�
ationAnother role of de�nability in reasoning about 
hange is in the handling oframi�
ation, or indire
t a
tion e�e
ts. A way to address the well-known prob-lem 
onsists in �nding out 
uents that 
an be derived from primitive ones(
alled a frame) within the knowledge base, and to apply 
hange on redu
edworld des
riptions (
omposed of primitive 
uents, only) [42℄. Many formalismsfor reasoning about 
hange, adhere to this approa
h that has been imple-mented in various planning systems (e.g., in the early system build [43℄).Let us des
ribe more formally the role of de�nability for dealing with therami�
ation problem. Let F be a set of 
uents, and � be a propositionalformula expressing some 
onstraints on the values that 
uents may take (atany time point). Finding a partition of F between a set FP of primary 
uentsand a set FD of derived 
uents 
omes down to �nd a base for F with respe
tto �. Clearly, several 
hoi
es are generally possible, sin
e BS�(F ) is generallynot a singleton. The goal being to 
ome up with a
tion des
riptions that areas 
on
ise as possible, a good heuristi
s 
onsists in 
hoosing a base of F ofminimum 
ardinality. 35



7 Yet Another Appli
ation to AI: Automated Reasoning
The notion of de�nability proves valuable in automated reasoning for severaltasks. For instan
e, identifying fun
tionally dependent propositional symbolsis a way for �nding out variable orderings that may prevent the OBDD rep-resentation of a formula from an exponential size blowup [44℄.
Identifying de�nability relations between variables 
an also prove useful forthe satis�ability issue. [45℄ have shown how de�nability 
an be exploited inlo
al sear
h for the satis�ability problem. The idea is to 
on
entrate the sear
hon unde�nable variables, and to handle the remaining ones by exploiting de�n-ability relations. They reported some empiri
al results showing their algorithmdagsat valuable. [46℄ 
onsidered the role of de�nability relations (what they
alled gates) to redu
e the sear
h spa
e explored by 
omplete DPLL-like al-gorithms for sat. In a nutshell, the idea is that a de�nable variable shouldnot be ele
ted by a bran
hing rule before the variables from a base for ithave been assigned. A

ordingly, the unde�nable variables of the input CNFformula � should be 
onsidered �rst. Sin
e de
iding de�nability relations isa 
oNP-
omplete problem, they 
onsidered only those relations that 
an bedis
overed through (linear time) unit propagation of literals (su
h relationsin
lude equivalent literals whi
h have been 
onsidered in several other papers,see e.g., [47℄); in [46℄, the expli
it de�nitions of variables whi
h are dis
ov-ered take the form of a 
onjun
tion of literals or a 
lause (depending on thesign of the propagated literal); interestingly, on
e the variables o

urring inan expli
it de�nition of y have been assigned, unit propagation in � provesenough to get y assigned as well. The resulting set of fun
tional dependen
iesindu
es a \relevan
e" graph whose set of verti
es is Var(�) and the set ofar
s 
ontains (x; z) whenever one of the found de�nitions of variable z bearson variable x. When no unde�nable variables o

ur in � (or the CNF for-mulas obtained by 
onditioning and simplifying � at subsequent steps of thealgorithm), the 
orresponding \relevan
e graph" 
ontains no sour
e (i.e., anode of in
oming degree 0); then polynomial time heuristi
s for approximat-ing a minimal 
y
le 
utset of the graph are used, and the variables from theresulting set (also known as a strong ba
kdoor) are assigned �rst. This ap-proa
h exhibited interesting performan
es on some ben
hmarks used duringthe SAT'02 and SAT'03 
ompetitions, and appeared as the best performeron hand-made instan
es at the SAT'03 
ompetition. [48℄ also reported on thepossible advantages and drawba
ks of taking advantage of su
h \independent(i.e., unde�nable) variable sele
tion" heuristi
s.36



8 Other Related WorkAs evoked previously, propositional de�nability is 
losely related to the notionsof strongest ne
essary and weakest suÆ
ient 
onditions and to the notion offun
tional dependen
ies in propositional logi
. In this se
tion, we make pre
isethe main di�eren
es between the 
ontribution of the present paper and the(
losest) related ones from the literature. Before 
on
luding the paper, wealso brie
y present some other related work, where de�nability is 
onsideredin more 
omplex logi
al settings than 
lassi
al propositional logi
.8.1 Fun
tional dependen
iesThe 
losest work to our own one is des
ribed in three papers by Ibaraki, Koganand Makino [22,15,34℄. In those papers, Ibaraki, Kogan and Makino presenteda number of results related to fun
tional dependen
ies.In [22,15℄, they reported many very interesting results about issues that wemainly ignored here. Among them is the 
ondensation issue: the basi
 idea
omes from the observation that when X v� y and y 62 X, then � 
an besimpli�ed by \removing" y (i.e., forgetting y in �), while keeping tra
k of anexpli
it de�nition of y onX in �; at the semanti
al level, no loss of informationresults from su
h a pro
ess; 
ondensing � 
onsists in repeating it in an iterativeway, unless rea
hing a formula without any non-trivial fun
tional dependen
y.While the result of the 
ondensing pro
edure is not unique in general (it de-pends on the fun
tional dependen
y 
hosen at ea
h step), Ibaraki, Kogan andMakino have shown that it is unique when � is a Horn CNF formula or moregenerally a q-Horn CNF formula (given as su
h or by its 
orresponding enve-lope), and that the 
ondensing pro
ess 
an be a
hieved in polynomial time insu
h a 
ase. In [34℄, the authors 
onsidered the problem of 
omputing all theminimal fun
tional dependen
ies whi
h hold in �. Among other things, theyshowed that there exists an in
rementally polynomial algorithm for a
hievingthis goal when � is a Horn CNF formula, or more generally, a q-Horn CNFformula, while the problem is equivalent to the problem of dualizing a posi-tive theory when � is equivalent to a Horn CNF formula (resp. q-Horn CNFformula) but is given by the Horn (resp. q-Horn) envelope of its models.A major di�eren
e with our present work is that Ibaraki, Kogan and Makinomainly fo
used on Horn and q-Horn formulas, while our results are mainlyabout (un
onstrained) propositional formulas. A
tually, the few results from[22,15,34℄ whi
h are related to un
onstrained propositional formulas have beenexhaustively listed in Se
tions 3.1, 4.1, and 4.3. Some of our results generalizetheir results (e.g., our Theorem 26 gives more tra
table 
lasses for the (mini-37



mal) de�nability problem than just the Horn or q-Horn one), and some otherresults 
omplete them (e.g., the results presented in Se
tion 4.3 { about the
omputation of expli
it de�nitions { address the general 
ase and, again, giveother tra
table 
lasses for this issue than just the Horn or q-Horn one).8.2 Strongest ne
essary and weakest suÆ
ient 
onditionsThe work by Lin [11℄ is 
on
erned with strongest ne
essary and weakest suf-�
ient 
onditions.In Se
tion 3.2, we have shown 
lose 
onne
tions between de�nability andstrongest ne
essary (SNC) / weakest suÆ
ient 
onditions (WSC). While Propo-sition 2 from [11℄ 
hara
terizes de�nability in terms of WSC and SNC, we haveshown how to 
hara
terize all the de�nitions of y on X in � in terms of SNCand WSC.First, Theorem 10 shows how SNC and WSC 
an be 
hara
terized using thenotion of proje
tion. It extends Theorem 2 from [11℄ by relaxing the assump-tion that y 2 Var(�) and y 62 X, and fo
us on the logi
ally strongest (resp.weakest) SNC Proj(�^ y;X) (resp. WSC) :Proj(�^:y;X) of y on X w.r.t.�, up to logi
al equivalen
e. Then Theorem 8 shows that �X is a de�nitionof y on X in � if and only if Proj(� ^ y;X) j= �X j= :Proj(� ^ :y;X).8.3 De�nability in other logi
al settingsSin
e Padoa and Beth, there has been a 
onsiderable amount of work on de-�nability and interpolation in various 
lasses of logi
s. A logi
 is said to hasthe proje
tive Beth de�nability property if and only if impli
it de�nabilityequals expli
it de�nability. As pointed out in [5℄, impli
it de�nability being asemanti
al (model-theoreti
) 
on
ept whereas expli
it de�nability is a synta
-ti
 (proof-theoreti
) 
on
ept, to say that both forms of de�nability 
oin
ide ina given logi
 is a good indi
ation that there is a good balan
e between syntaxand semanti
s in the logi
. There are two main streams of works: de�nabilityin fragments of �rst-order logi
, and de�nability in propositional modal log-i
s. We brie
y dis
uss these two streams of work, by pointing to some of themost relevant referen
es. A 
omprehensive review 
an be found in Chapter2 of [5℄. See also the ex
ellent book [49℄ for 
onne
tions with se
ond orderquanti�
ation in many propositional logi
s.De�nability in predi
ate logi
 starts with Padoa's work and, later on, Beth'stheorem. The latter [4℄ shows that �rst-order logi
 has the de�nability prop-erty. The question is now whether given fragments of �rst-order logi
 still have38



the property. For instan
e, the k-variable fragment of �rst-order logi
 fails tosatisfy it [?,?℄, as well as in a large number of �rst-order modal logi
s (e.g.,[?℄), while it holds in intuitionisti
 predi
ate logi
 [?,?℄. De�nability in frag-ments of �rst-order logi
 also has an impa
t on the database 
ommunity (e.g.,[50℄.)As for propositional logi
s, a large number thereof satisfy the de�nabilityproperty. For instan
e, Kreisel [?℄ proves that this is the 
ase for any logi
between 
lassi
al propositional logi
 and intuitionisti
 propositional logi
. Alarge number of works has 
on
entrated on modal logi
s (e.g. [?,51,52℄), andespe
ially (and more AI related) on des
ription logi
s [53,54℄ (the latter paperfo
uses on 
omputational issues; espe
ially, they give bounds on the size ofexpli
it de�nitions).Our work, fo
using on 
lassi
al propositional logi
, is not of the same natureas most of the abovementioned works (apart of the works about des
riptionlogi
s). Our fo
us is on the 
omputational issues of the problems related tode�nability, as well as on the appli
ations to arti�
ial intelligen
e problems.9 Con
lusionThis paper is 
entered on de�nability in standard propositional logi
 and re-ports a number of results issued from our 
omputation-oriented investigationof this notion. Espe
ially, we gave several 
hara
terization results, and 
om-plexity results for de�nability and related notions. We also presented a numberof appli
ations of su
h results in several AI problems, in
luding hypothesis dis-
rimination, reasoning about a
tions and automated reasoning.This work 
alls for a number of perspe
tives. First, an alternative way of
hara
terizing logi
al de�nability (and related notions) would 
onsist in ex-pressing it in epistemi
 logi
, remarking that for any propositional formula� 2 PROPPS, X � PS, and y 2 PS, we have X v� y holds if and only if(K�^Vx2X(Kx_K:x))) (Ky_K:y) is a theorem of S5. From this we 
anderive 
hara
terizations for other notions, su
h as minimal de�ning families,unde�nable variables, et
. The results stated in the paper would then be easilyreformulated (in di�erent terms) in this setting.Se
ond, the notion of de�nability studied in this paper is rather strong, andit would be worth to relaxing the notion of de�nability. Doing so is not easyif the ba
kground knowledge � is still expressed by a mere propositional for-mula; now, if instead of � we have a probability distribution over 
, expressedsu

in
tly for instan
e by a Bayesian network N whose indu
ed probabilitydistribution is pN , then de�nability be
omes itself a probabilisti
, de
ision-39



theoreti
 notion: de�ning Æ(N;X; y) = P~x2
X pN(~x):max(pN(yj~x); pN(:yj~x)),then Æ(N;X; y) 
an be interpreted as the prior probability of guessing the rightvalue of y after observing the values of variables in X, and is probably themost natural generalization of de�nability (obviously, � de�nes y in terms ofX in the usual way if and only if Æ(N;X; y) = 1). Thus, a natural de
isionproblem in this setting would be: given a Bayesian network N , a set X of vari-ables, a variable y and � 2 [0; 1℄, determine whether Æ(N;X; y) � �. Anothernotion of probabilisti
 de�nability arises when the probabilisti
 ba
kgroundknowledge is expressed by a set of 
onstraints in probabilisti
 logi
 [55℄ { inthis 
ase we do not have a single probability distribution but a set of prob-ability distributions, and the latter notion must be updated a

ordingly. A
omputational investigation of these probabilisti
 notions of de�nability is leftfor further resear
h.A
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