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Abstract
We consider a Plurality-voting scenario, where the
candidates are split between parties, and each party
nominates exactly one candidate for the final elec-
tion. We study the computational complexity of de-
ciding if there is a set of nominees such that a candi-
date from a given party wins in the final election. In
our second problem, the goal is to decide if a can-
didate from a given party always wins, irrespective
who is nominated. We show that these problems
are computationally hard, but are polynomial-time
solvable for restricted settings.

1 Introduction
The Computer Science Department of the University of
Antarctica has to elect its new chair. Each of the three teams
can present exactly one of two candidates: a or a′ for group
A(rtificial Intelligence), b or b′ for B(usiness Informatics) and
c or c′ for C(omputer Networks). The preferences of the
members of the department split into four equal-size groups:

Group 1 : b � a � c′ � a′ � b′ � c
Group 2 : b′ � a � c′ � a′ � c � b
Group 3 : a′ � c � a � b � b′ � c′

Group 4 : c′ � a � c � a′ � b′ � b
meaning that, for instance, group 1 finds b to be the best can-
didate, a to be the second best, then c′, and so on. Each team
has to decide whom of its two candidates to nominate. The
voting rule used is Plurality: The winner is the candidate with
the highest number of voters for whom it is most preferred
among the running candidates (ties do not occur in this exam-
ple). As there are two possible candidates for each team, there
are eight possibilities, listed below (omitting curly brackets,
i.e., abc stands for {a, b, c} etc.) with the associated winner:

abc 7→ a, abc′ 7→ a, ab′c 7→ a, ab′c′ 7→ a,
a′bc 7→ a′, a′bc′ 7→ c′, a′b′c 7→ a′, a′b′c′ 7→ c′.

For instance, if a, b and c run, then groups 1, 2, 3 and 4 vote
respectively for b, a, c and a, and a wins. Team A has an easy
strategy if it wants someone from the team to become the
chair: They should nominate a, who will win against the can-
didates of B and C irrespective of who they nominate. What

about team C? It might well be the case that team A nomi-
nates a′ (maybe because the choice is made by the chair and
she has a secret incentive for the candidate of her group not to
win, or because members of the team vote for choosing their
candidate and a majority of them doesn’t trust a); therefore,
even if they clearly cannot ensure their candidate’s victory,
they can choose a candidate that at least might win under fa-
vorable circumstances: They should nominate c′, who wins
provided that A nominate a′. Finally, there is not even a hope
that the winner comes from team B.

Reasoning about outcomes of elections with uncertainty
and/or with strategic behaviour from some agents that are part
of the process has received a lot of attention in computational
social choice and, more generally, in Artificial Intelligence
due to the increasing frequency of common decision making
processes allowed by online tools (DoodleTM being one typi-
cal example), that take place within societies of agents (e.g.,
in social networks, or in more classical groups that share a
working place or a living place). Being able to predict possi-
ble outcomes of such elections is often an important issue,
and sometimes needs the resolution of hard combinatorial
problems. Previous work has focused on strategic behaviour
from the voters (manipulation), from the chair (control), from
the candidates (strategic candidacy, cloning), from anyone in-
cluding outsiders (bribery), as well as computing outcomes
of elections under incomplete information. For recent sur-
veys see the works of Conitzer and Walsh [2016] (manipula-
tion), Faliszewski and Rothe [2016] (control and bribery) and
Boutilier and Rosenschein [2016] (incomplete information).

Beyond low-stake voting in small-scale communities or so-
cial networks, the problem of choosing a candidate to run for
a party is also highly relevant in political science, as it arises
in most countries using uninominal voting systems (consider,
for example, presidential elections where parties nominate
their candidates). It is a well-known fact that the decisions
made by parties (sometimes made by the party’s governing
body, sometimes by a popular vote) have a tremendous im-
pact on the final outcome, and that parties don’t always make
the “right” choice.1

Exploring the implications of choosing who the runner

1An example: the designation of Bob Dole as the candidate of
the Republican party in the 1996 US presidential election led to a
quasi-certainty of victory for Bill Clinton.



should be for parties, or more generally for well-defined
groups such as in our introductory example, is a highly in-
teresting topic that can be studied from various angles. The
task of computing which party can possibly win seems to be
among the most obvious problems to study and this is the very
topic of this paper. Although this problem is new (as far as
we know), related problems have been studied.

Related Work. Ding and Lin [2014] consider a party-list
voting system where parties have to choose which of their
candidates should run, given voters’ preferences over candi-
dates. They define a game-theoretic model for the two-party
case, and show that pure Nash equilibria are guaranteed to
exist but are hard to compute. Another problem occurring in
a (real-life) party-list system is studied by Ricca et al. [2011]:
A candidate may run (and be elected) in several regions, and
parties have to find a ‘giving up’ strategy for choosing which
candidate must give up in which region, a problem for which
the authors give polynomial-time algorithms.

In strategic candidacy games, initiated by Dutta et
al. [2001], candidates have preferences over the set of all
potential candidates and choose to run or not (while in our
model, candidates have neither preferences nor any power
to decide to run or not). In candidate control, initiated by
Bartholdi et al. [1992], the chair may add or remove candi-
dates, and the problem is to decide whether the chair can act
so as to make a particular candidate win. A common point be-
tween our work and that on strategic candidacy and candidate
control lies in reasoning about who will run for an election.
However, the notion of a party, which is central to our work,
is absent from the latter two classes of problems. (However,
see, e.g., the work of Guo et al. [2015] for an example of a
complexity study of an election problem with parties.)

A series of works, initiated by Konczak and Lang [2005],
deals with determining the candidates that can possibly or
necessarily win in an election where voters’ preferences are
incompletely known or specified. We also consider, in some
sense, possible and necessary winners in incompletely speci-
fied elections, but the incompleteness does not lie in the vot-
ers’ preferences but on the set of running candidates.

Our Results. We focus on the Plurality rule and the follow-
ing two problems (for the Plurality rule only). In both we are
given an election, i.e., a set of candidates split into parties, a
collection of voters (each with his or her ranking of the candi-
dates), and a party P . In the POSSIBLE PRESIDENT problem,
we ask if it is possible to choose nominees of all the parties
so that the nominee of party P wins (i.e., we ask if there are
some circumstances where the nominee of P wins). In the
NECESSARY PRESIDENT problem we ask if it is the case that
party P has a nominee who wins irrespectively of which can-
didates other parties nominate.

We obtain the following main results, all for the Plurality
rule:

1. The POSSIBLE PRESIDENT problem is NP-complete
and the NECESSARY PRESIDENT problem is coNP-
complete (for the case of unrestricted elections).

2. The POSSIBLE PRESIDENT problem remains NP-
complete even if the voters’ preferences are single-

peaked2, and even 1D-Euclidean single-peaked. How-
ever, it is in P if the candidates belonging to each given
party form a consecutive block on the societal axis.

3. The NECESSARY PRESIDENT problem is polynomial-
time solvable for single-peaked elections.

That is, our problems are computationally hard, but as soon
as we assume a more natural model (even if still not com-
pletely realistic), we obtain polynomial-time algorithms.

2 Preliminaries
An election consists of a set of candidates C = {c1, . . . , cm}
and a collection of voters V = (v1, . . . , vn). Each voter vi
has a preference order �i, i.e., a ranking of the candidates
from the most to the least desirable one. We refer to the se-
quence (�1, . . . ,�n) as a preference profile.

If in a description of a preference order we put some set A
of candidates, this means listing them in some arbitrary, but
fixed, order. Similarly, putting

←−
A in a preference order means

listing the candidates in the reverse of this order.
A voting rule R is a function that given an election E =

(C, V ) outputs a set W , W ⊆ C, of the candidates that tie
as election winners. We focus on the Plurality rule, where
given an election E = (C, V ) the winners are the candidates
that are ranked on the first place by the largest number of
candidates. We refer to the number of voters in election E
that rank some candidate c first as the score of c in E and
denote it as scoreE(c).

Note that we assume the nonunique-winner model, that is,
if there are several highest-scoring candidates, we consider all
of them winners. In practice, one has to use some tie-breaking
mechanism (and its choice may affect the complexity of an
election problem [Obraztsova and Elkind, 2011; Obraztsova
et al., 2011]) but for the sake of simplicity, we disregard this
issue.

3 The Problems
We study the following setting. A society is going to have
an election to make some choice (presidential elections are
one example that may particularly appeal to one’s intuition).
There is a set of parties, P = {P1, . . . , Pt}, that can nomi-
nate candidates for the election. Indeed, we view each party
Pi as the set of candidates from which this party can choose
its nominee.3 We assume that each party picks exactly one
candidate and submits him or her to the final election (for
the Plurality rule, on which we focus, nominating more than
one candidate can only reduce the chances that the winner
belongs to the party) and that no candidate belongs to more
than one party. Finally, we also assume that there is a collec-
tion of voters V with preference orders over the whole set of

2Single-peaked preferences are a natural model of voter behavior
for the case where the voters are polarized over a single issue; e.g.,
the standard political left-right spectrum can be seen as leading to
single-peaked preferences.

3While the term “party” is associated with political elections, in
our problem it may mean any group of people capable of nominating
a candidate from some predetermined set.



possible candidates,
⋃t
i=1 Pi (such data, albeit approximate,

is typically available from election polls or from experience).

Definition 1. Let R be a voting rule, P = {P1, . . . , Pt} a
set of parties, where each party is a set of candidates disjoint
from all the other parties, and V a collection of voters, each
with a preference order over the candidates from

⋃t
i=1 Pi.

1. Party Pw is said to have a possible president if there is a
set of candidates C such that: (a) for each i, 1 ≤ i ≤ t,
C contains exactly one candidate from Pi (the nominee
of party Pi), and (b)R(C, V ) contains a member of Pw.

2. Party Pw is said to have a necessary president if there
is a candidate c of Pw such that for each candidate set
C−w that contains one candidate from each party except
Pw,R(C−w ∪ {c}, V ) contains c.

Informally put, party Pw has a possible president if there
is a choice of nominees for all the parties so that the nominee
of Pw wins, and party Pw has a necessary president if it can
nominate a candidate who wins irrespectively of whom the
other parties nominate.

We are interested in the complexity of determining whether
a party has a possible (respectively, a necessary) president.
We define the following two problems.

Definition 2. Let R be a voting rule. In the R-
POSSIBLE PRESIDENT (respectively, R-NECESSARY PRES-
IDENT) problem, we are given a set of parties P =
{P1, . . . , Pt}, a collection of voters V , and an integer w,
1 ≤ w ≤ t, and we ask if Pw has a possible (respectively,
a necessary) president.

The above two problems present two extreme cases: Test-
ing if a party has a chance of winning an election and testing
if the party has a candidate who is certain to win the elec-
tion. In practice, it might be interesting to study some sort
of middle-ground approach (e.g., computing the probability
that a given party wins, given some probability for each of
the candidates being nominated, somewhat along the lines of
the research of Hazon et al. [2012], Betzler et al. [2010], and
Wojtas et al. [2012]). Still, our problems can be quite practi-
cal. For example, using the POSSIBLE PRESIDENT problem,
a party can compute which of its candidates have any chance
of winning, and limit the nomination process to only these.

4 Results
We now present our results. We first present a simple, but im-
portant, setting where our problems are trivial. Then we move
on to studying them for the case of the Plurality rule, both for
unrestricted and restricted voter preferences (see discussion
below).

4.1 Parties as Clone Sets
If each party forms a clone set in the given election, then our
problems turn out to be trivial (the study of clone sets was
initiated by Tideman [1987] and Zavist and Tideman [1989];
in the computational social choice literature, it was picked up
by Elkind et al. [2011; 2012] and Cornaz et al. [2012; 2013]).

Definition 3. A subset A of candidates from election E =
(C, V ) is a clone set for this election if every voter in V ranks
the candidates from A in a consecutive block (but, possibly,
in different order for each of the voters).

We use the following notation. If E = (C, V ) is an elec-
tion and {A1, . . . , At} is a partition of C into clone sets for
E, then by E(a1 ← A1, . . . , at ← At) we mean an elec-
tion E′ = ({a1, . . . , at}, V ′), where we obtain V ′ from V by
replacing each group of consecutive candidatesAi with a sin-
gle candidate ai (this process is known as decloning [Elkind
et al., 2012]).

Proposition 1. Consider an instance ofR-POSSIBLE PRES-
IDENT (R-NECESSARY PRESIDENT) problem with parties
P1, . . . , Pt, voters V , and integer w, such that for each j,
1 ≤ j ≤ t, Pj is a clone set in election E = (

⋃t
i=1 Pi, V ).

This is a yes instance if and only if candidate pw is a winner
of the election E(p1 ← P1, . . . , pt ← Pt).

Proof. Irrespective of which candidates the parties nominate,
always the candidate from the same party wins.

Proposition 1 has a very natural interpretation. It says that
if the parties’ candidates form clone sets, i.e., if the voters
have a clear view of each party and can easily distinguish
between them, then the choice of parties’ nominees does not
matter and the election is settled based on how the voters rank
the parties. Yet, it is quite likely that in practice the parties’
candidates would not form clone sets because, typically, each
party (political or not) has some odd member who stands out
from the rest, and who is difficult to rank.

4.2 Plurality and Unrestricted Preferences
We now show that when the parties’ candidates are not re-
stricted to be clone sets, then our problems are computation-
ally hard, even if the parties are very small.

Theorem 1. Plurality-POSSIBLE PRESIDENT and Plurality-
NECESSARY PRESIDENT are NP-complete and coNP-
complete, respectively, even if sizes of parties are at most two.

Proof. It is clear that Plurality-POSSIBLE PRESIDENT is in
NP and that Plurality-NECESSARY PRESIDENT is in coNP.

We now show NP-hardness of the former problem by a re-
duction from the standard 3-SAT problem. An instance of 3-
SAT consists of a set of Boolean variablesX = {x1, . . . , xs}
and a set of clauses C = {C1, . . . , Ck}, with at most three lit-
erals per clause. We ask if it is possible to set the values of
the variables so that the formula C1 ∧ · · · ∧ Ck evaluates to
true.

Consider an instance of 3-SAT as described above. We
form an instance of the Plurality-POSSIBLE PRESIDENT as
follows:

1. We form two parties, P = {p} and P ′ = {p′} (we want
to see if it is possible that P has a possible president, that
is, it is possible that p is a winner ).

2. For each variable xi ∈ X , we form a party Pi =
{pi, p̄i}. Intuitively, nominating candidate pi corre-
sponds to assigning variable xi to true.



We introduce the following voters. For each voter, we list
only the prefix of his or her preference order, until the first
candidate that comes from a size-1 party, who certainly par-
ticipates in the election. The remaining part of the preference
order is completed arbitrarily.

1. There are k voters with preference order p � . . ..
2. There are k voters with preference order p′ � . . ..
3. For each clause Ci ∈ C, we introduce one voter (re-

ferred to as the Ci-voter) with preference order `1 �
`2 � `3 � p′ � . . ., where the top three candidates cor-
respond to the literals of Ci (e.g., for literals xj and ¬xr
we would have candidates pj and p̄r).

We claim that there is a satisfying truth assignment for the
input formula if and only if there is a way for the parties to
nominate candidates so that p is a Plurality winner. To this
end, note that p wins if and only if for each clause C one of
the parties nominates a candidate ranked ahead of p′. One can
verify that each such set of nominated candidates corresponds
to a satisfying truth assignment for the variables in X .

For the case of NECESSARY PRESIDENT, we give a re-
duction from the complement of 3-SAT. We use the same
construction, with the following two changes: There are only
k− 1 voters that rank p′ on top, and we ask if P ′ has a neces-
sary president (i.e., if p′ is a winner irrespective which candi-
dates are nominated by their parties).

4.3 Plurality and Single-Peaked Preferences
The settings considered in the previous two sections are quite
extreme. Effectively, in Section 4.1 we assume that the voters
have preferences over parties rather than over the candidates
(and the whole process of finding nominees is superfluous).
On the other hand, in Section 4.2 we—implicitly—assume
that members of a given party have nothing to do with each
other (since each voter can mix and match members of dif-
ferent parties arbitrarily in his or her preference order). It is
hardly realistic that completely unrelated candidates would
be in one party. In this section we seek some middle ground,
by considering electorates with single-peaked preferences.

On an intuitive level, an election is single-peaked if it is
possible to arrange the candidates on a line (e.g., according to
the standard political left-right axis) so that each voter picks
a position on this line and ranks the candidates in the order
of increasing distances from the voter’s position. The formal
definition is somewhat more general (but see the discussion
later) and instead of using distances on the line, uses a com-
binatorial approach (the notion is due to Black [1958]).
Definition 4. Let C be a set of candidates. A societal axis for
C is a linear order over C. We say that a preference order �
is consistent with respect to societal axis B if for each three
candidates a, b, c ∈ C it holds that:

((aB bB c) ∨ (cB bB a))⇒ (a � b⇒ b � c).

An election (C, V ) is single-peaked with respect to axis B
if each vote in v ∈ V is consistent with B. An election is
single-peaked if it is single-peaked with respect to some axis.

It is well-known that given an election E = (C, V ) it
is possible to check if it is single-peaked (and, if so, to

compute one of the axes with respect to which it is single-
peaked) in polynomial time [Bartholdi and Trick, 1986;
Doignon and Falmagne, 1994; Escoffier et al., 2008]. Thus,
whenever we consider single-peaked elections, we assume to
also have an axis available.

It turns out that Plurality-POSSIBLE PRESIDENT is in P
for the case of single-peaked elections, provided that the can-
didates from each party are ordered consecutively on the
societal axis. If party members are not required to form
consecutive groups, then the problem remains NP-complete.
On the other hand, for single-peaked elections Plurality-
NECESSARY PRESIDENT is in P irrespective how the can-
didates are arranged on the societal axis.

Example 1. Assuming that candidates from the same party
are ranked consecutively in the societal axis does not mean
that the voters necessarily rank all of them consecutively. Let
us consider four parties P1 = {a1, a2}, P2 = {b1, b2, b3},
P3 = {c1, c2}, and P4 = {d1, d2}. We have societal axis:

a1 B a2 B b1 B b2 B b3 B c1 B c2 B d1 B d2

The following voters have preference orders consistent with
the axis:

v1 : a2 � b1 � b2 � b3 � a1 � c1 � c2 � d1 � d2,
v2 : b2 � b1 � b3 � c1 � a2 � a1 � c2 � d1 � d2,
v3 : c1 � b3 � c2 � b2 � d1 � b1 � a2 � d2 � a1.

It is quite natural to require that candidates from the same
party are consecutive on the societal axis as, for example,
this justifies why they formed the party to begin with.

Let us move on to the technical discussion. In our algo-
rithms, we rely heavily on the following lemma, due to Fal-
iszewski et al. [2011].

Lemma 1 (Faliszewski et al. [2011]). Let (C, V ) be an elec-
tion where C = {c1, . . . , cm} is a set of candidates, V is a
collection of voters whose preferences are single-peaked with
respect to a societal axis B, and where c1 B c2 B · · ·B cm. If
m ≥ 2, then under the Plurality rule, the following holds:

1. score(C,V )(c1) = score({c1,c2},V )(c1),

2. for each i, 1 < i < m, score(C,V )(ci) =
score({ci−1,ci,ci+1},V )(ci),

3. score(C,V )(cm) = score({cm−1,cm},V )(cm).

Intuitively, Lemma 1 says that in a single-peaked Plurality
election, where the set of voters is fixed but the set of candi-
dates can change, the score of a candidate c depends only on
the identities of c’s direct neighbors on the societal axis.

Theorem 2. Plurality-POSSIBLE PRESIDENT is in P pro-
vided that the input election is single-peaked and we are given
an axis where the candidates from each party are ranked con-
secutively.

Proof. Our algorithm is as follows. We are given a set of
parties P = {P1, . . . , Pt}, a collection of voters with prefer-
ences over

⋃t
i=1 Pi, an integer w, 1 ≤ w ≤ t, and societal

axis B. Without loss of generality, we assume that the axis
is of the form P1 B P2 B · · · B Pt (that is, it first lists all the



candidates from P1, then all the candidates from P2, and so
on). The goal is to test if it is possible that a candidate from
party Pw is a Plurality winner. We assume that Pw is neither
P1 nor Pt (including this possibility is straightforward, but
obfuscates the description).

First, we guess three candidates, cw−1 ∈ Pw−1, cw ∈ Pw,
and cw+1 ∈ Pw+1, and we take them to be the nominees
of their parties. By Lemma 1, we know that irrespective
which other candidates we choose, the score of cw will be
S = score({cw−1,cw,cw+1},V )(cw). Our goal is to test if it is
possible to pick the nominees of the other parties, so that no
candidate receives more than S points. We consider parties
to the left and to the right of Pw separately.

Let us consider the parties to the left of Pw (on the societal
axis). We define function f , so that for each i, 2 ≤ i ≤
w − 1, and for each pair of candidates ci−1 ∈ Pi−1, ci ∈
Pi, f(i, ci−1, ci) = 1 if it is possible to choose nominees
c1, . . . , ci−2 for parties P1, . . . , Pi−2, so that:

1. score({c1,c2},V )(c1) ≤ S, and

2. for each 1 < j ≤ i− 1, score({cj−1,cj ,cj+1,V )(cj) ≤ S.

Otherwise, f(i, ci−1, ci) = 0.
It is straightforward to compute the values of f for i = 2.

For larger values of i, we use the following recursive formu-
lation (we assume i to be a number greater or equal to 2, ci
and ci+1 to be candidates from Pi and Pi+1, respectively):

f(i + 1, ci, ci+1) = 1 if and only if there exists a can-
didate ci−1 ∈ Pi−1 such that f(i, ci−1, ci) = 1 and
score({ci−1,ci,ci+1,V )(ci) ≤ S.

Thus, using standard dynamic programming techniques, it is
possible to compute the values of f in polynomial time.

Clearly, it is possible to ensure that the nominees of
the parties to the left of Pw have scores at most S if
f(w, cw−1, cw) = 1. Handling parties to the right of Pw is
analogous and we omit it. If we can ensure that all the nomi-
nees have score at most S, then we accept. If we do not accept
after trying all choices of cw−1, cw, cw+1, we reject.

Without the assumption on the parties’ candidates being
consecutive in the societal axis, Plurality-POSSIBLE PRES-
IDENT is NP-complete. The result is based on a reduction
from VERTEX COVER, a standard NP-complete problem.
Definition 5. An instance of the VERTEX COVER problem
consists of an undirected graph G and a nonnegative integer
k. We ask if there exists a set of up to k vertices such that
every edge is incident to at least one vertex from the set.

Typically, we reserve symbols E and V to mean, respec-
tively, an election and a collection of voters. By a slight abuse
of notation, to denote the sets of vertices and edges of a graph
G we write V (G) and E(G), respectively.
Theorem 3. Plurality-POSSIBLE PRESIDENT is NP-
complete even if the voters’ preferences are single-peaked.

Proof. It is clear that the problem is in NP. To show that it is
NP-hard, we give a reduction from VERTEX COVER.

Let (G, k) be an input instance of the VERTEX COVER
problem, where G is an undirected graph and k is a posi-
tive integer. We write V (G) = {v1, . . . , vn} to denote the set

of G’s vertices. We form an instance of Plurality-POSSIBLE
PRESIDENT as follows. We introduce the following parties:

1. We form party P = {p}. Our goal will be to check if it
is possible to ensure that P has a possible president (i.e.,
if it is possible to ensure that p is a winner).

2. For each vertex v` ∈ V (G), we form a party Pv` =

{v`, f1` , . . . , f
n−k
` }. Intuitively, choosing a candidate v`

for the party will correspond to accepting that v` is part
of the vertex cover.

3. For each vertex v`, we have two parties P ′v` = {a′`} and
P ′′v` = {a′′` }. We will use these candidates to ensure that
candidates that correspond to vertices not in the cover do
not have too many points.

4. For each edge e = {vi, vj} ∈ E(G), we introduce party
Pe = {eij , eji}. Intuitively, choosing eij as the nomi-
nee of the party corresponds to deciding that vertex vi
covers e, and choosing eji corresponds to deciding that
vj covers e.

5. For each j, 1 ≤ j ≤ n − k, we introduce party
Pj = {gj}. We will use the nominees of these parties
to ensure that the vertex cover that we simulate uses at
most k vertices.

For each vertex v` ∈ V (G), let δ(v`) mean the degree of
v`, and for each j, 1 ≤ j ≤ δ(v`), by f(`, j) we mean the
(index of the) j’th vertex connected by an edge to v` (in some
fixed, arbitrary order; e.g., if the j’th vertex connected to v`
is v7 then f(`, j) = 7).

We now define the societal axis B. For each vertex v` ∈
V (G), we set A` to be the following fragment of the axis:

a′` B v` B e` f(`,1) B · · ·B e` f(`,δ(v`)) B a′′` .

For each j, 1 ≤ j ≤ n− k, we define Gj to be the f j1 B · · ·B
f jn B gj fragment of the axis. The complete axis is:

pBA1 B · · ·BAn BG1 B · · ·BGn−k.

We introduce the following voters. As in the proof of The-
orem 1, for each voter we list only the prefix of his or her
preference order, until the first candidate that comes from a
size-1 party. We assume that the remaining part of the pref-
erence order is completed arbitrarily, but so that the vote is
single-peaked with respect to our axis.

1. There are two voters with preference order p � · · · .
2. For each vertex v` ∈ V (G), we introduce one voter with

preference order:

v` � e` f(`,1) � · · · � e` f(`,δ(v`)) � a
′
` � · · ·

and two voters with preference order:

e` f(`,1) � · · · � e` f(`,δ(v`)) � a
′′
` � · · ·

We refer to these voters as v`-voters.
3. For each j, 1 ≤ j ≤ n − k there are two voters with

preference order gj � · · · and one voter with preference
order f j1 � f j2 � · · · � f jn � gj � · · · . We refer to
these three voters as gj-voters.



We claim that there is a size-k vertex cover for G if and
only if it is possible to pick parties’ nominees so that p wins.

First, let us assume that there is a size-k vertex cover for
G and let us rename the vertices (and all the other entities in
our construction) so that v1, . . . , vk is a vertex cover for G.
We choose the following nominees for the parties (we only
mention those parties that have more than one candidate):

1. For each party Pv` , 1 ≤ ` ≤ k, we choose as the nomi-
nee candidate v`.

2. For each party Pv` , k + 1 ≤ ` ≤ n, we choose as the
nominee candidate f `−k` .

3. For each party Pe, where e ∈ E(G) and e = {vi, vj}
for some two vertices (i < j), we choose eij (note that
by renaming of the vertices, it must be that vi belongs to
the vertex cover).

In effect, p gets 2 points and every other candidate gets at
most 2 points. This is so for the following reasons: Every
group of gj-voters gives two points to gj and one point to
f jj+k. Every group of v`-voters, for 1 ≤ ` ≤ k, gives one
point to v` and two points to some candidate of the form
e` f(`,j) for some value of j. Every group of v`-voters, for
k + 1 ≤ ` ≤ n, gives one point to a′` and two points to a′′` .

For the other direction, let us assume that it is possible to
pick the nominees for the parties so that p is a winner. This
means that in the final election every candidate receives at
most two points. In particular, this means that at least n − k
of the parties Pv1 , . . . , Pvn have nominees that do not corre-
spond to the vertices (otherwise, some gj-voters would give
three points to gj). Indeed, without loss of generality, we can
assume that there are exactly k parties among Pv1 , . . . , Pvn
whose nominees correspond to the candidates, and we can
assume (by appropriate renaming of all the candidates) that
these nominees are v1, . . . vk.

For every edge e = {vi, vj} ∈ E(G), party Pe picks either
eij or eji as the nominee. Let us consider what happens if
it chooses eij (the other situation is analogous). If vi is not a
nominee of his or her party, then—by the choice of the prefer-
ence orders of the vi-voters—either eij receives three points
or some other candidate of the form eik, 1 ≤ k ≤ n, receives
three points. Since this is impossible, we know that vi is a
nominee of his or her party. However, this means that for ev-
ery edge e = {vi, vj} ∈ E(G), one of vi, vj is in v1, . . . , vk.
This means that v1, . . . , vk is a vertex cover for G.

It turns out that the above proof is much stronger than
it may initially appear. In fact, it shows that Plurality-
POSSIBLE PRESIDENT is NP-complete even when the vot-
ers’ preferences are 1D-Euclidean single-peaked:
Definition 6. We say than election E = (C, V ) is 1D-
Euclidean single-peaked if there exists a function f : C ∪
V → R such that for each voter vt ∈ V and each two
candidates ci, cj ∈ C it holds that ci �t cj if and only if
|f(vt)− f(ci)| < |f(vt)− f(cj)|.

Intuitively, 1D-Euclidean single-peakedness means that we
can put voters and candidates on a line, and each voter forms
his or her preference order by sorting the candidates with re-
spect to the increasing distances from him or herself.

All 1D-Euclidean single-peaked elections are also single-
peaked in the classic sense. It is also known that all 1D-
Euclidean single-peaked elections satisfy the single-crossing
property4 (not discussed here in much detail, it was intro-
duced by Mirrlees [1971] and Roberts [1977]). As shown
independently by Elkind et al. [2014] and Chen et al. [2015],
there are elections that are both single-peaked and single-
crossing, but not 1D-Euclidean.

The preference orders used in the proof of Theorem 3
are so simple that our election can be implemented as 1D-
Euclidean (details omitted) and we get the next corollary
Corollary 1. Plurality-POSSIBLE PRESIDENT is NP-
complete even if the voters’ preferences are 1D-Euclidean
single-peaked (so, also if the preferences are single-crossing).

Finally, we show that for single-peaked elections Plurality-
NECESSARY-PRESIDENT is in P.
Theorem 4. Plurality-NECESSARY PRESIDENT is in P pro-
vided that the input election is single-peaked.

Proof sketch. Consider an input for Plurality-NECESSARY
PRESIDENT (using notation as in the definition). First, we
guess a candidate p from party Pw, for whom we will check
if p is a necessary president. To conduct this test, we check
if there is some candidate d from some other party and a way
for yet other parties to nominate candidates so that d has more
points than p. By Lemma 1, the scores of p and d depend only
on the identities of their direct (nominated) neighbors on the
societal axis. We check if it is possible to fix d and these (at
most four) candidates so the score of d is higher than the score
of p. If so, we drop the guess of p and try another candidate
from Pw (if there are no other candidates to try, we reject). If
not, we try another candidate d, and we accept after we run
out of all choices for d without rejecting. Altogether, we have
to try at mostm6 6-tuples of candidates, so the algorithm runs
in polynomial time.

5 Conclusions
Our problems model the setting where parties can nominate
candidates in some (Plurality) election and want to make sure
they win or, at least, want to make sure if they have a chance
of winning. We have shown that in general our problems are
computationally hard, but become polynomial-time solvable
under appropriate (fairly natural) restrictions.

There is a number of possibilities for future research. For
example, one might study more voting rules or, perhaps more
interestingly, one may consider our setting from a game-
theoretic perspective. Indeed, we do follow-up on this latter
idea in our ongoing research.
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