Linear time algorithms for weighted offensive and

powerful alliances in trees

Ararat Harutyunyan
Laboratoire de I'Informatique du Parallélisme

Ecole Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 7, France.
email: ararat.harutyunyan@ens-lyon.fr

Sylvain Legay
Laboratoire de Recherche en Informatique
Université Paris-Sud
91405 Orsay, France
email: legay@lri.fr

February 26, 2015

Abstract

Given a graph G = (V, E) with a positive weight function w on the
vertices of G, a global powerful alliance of G is a subset S of V' such
that for every vertex v at least half of the total weight in the closed
neighborhood of v is contributed by the vertices of S. A global offensive
alliance is a subset S of V' such that the above condition holds for every
vertex v not in S. Finding the smallest such set in general graphs is
NP-complete for both of these problems, even when the weights are all
the same. In this paper, we give linear time algorithms that find the
smallest global offensive and global powerful alliance of any weighted
tree T = (V, E).

Keywords: Global weighted alliances, offensive alliance, powerful al-

liance, trees, algorithm.

1

Introduction

The study of alliances in graphs was first introduced by Hedetniemi, Hedet-
niemi and Kristiansen [11]. They introduced the concepts of defensive and



offensive alliances, global offensive and global defensive alliances and stud-
ied alliance numbers of a class of graphs such as cycles, wheels, grids and
complete graphs. The concept of alliances is similar to that of unfriendly
partitions, where the problem is to partition V(G) into classes such that
each vertex has at least as many neighbors outside its class than its own
(see for example [1] and [12]). Haynes et al. [9] studied the global de-
fensive alliance numbers of different classes of graphs. They gave lower
bounds for general graphs, bipartite graphs and trees, and upper bounds for
general graphs and trees. Rodriquez-Velazquez and Sigarreta [17] studied
the defensive alliance number and the global defensive alliance number of
line graphs. A characterization of trees with equal domination and global
strong defensive alliance numbers was given by Haynes, Hedetniemi and
Henning [10]. Some bounds for the alliance numbers in trees are given in
[6]. Rodriguez-Velazquez and Sigarreta [14] gave bounds for the defensive,
offensive, global defensive, global offensive alliance numbers in terms of the
algebraic connectivity, the spectral radius, and the Laplacian spectral radius
of a graph. They also gave bounds on the global offensive alliance number
of cubic graphs in [15] and the global offensive alliance number for general
graphs in [16] and [13]. The concept of powerful alliances was introduced
recently in [3].

Given a simple graph G = (V, E) and a vertex v € V, the open neigh-
borhood of v, N(v), is defined as N(v) = {u : (u,v) € E}. The closed
neighborhood of v, denoted by NJv], is N[v] = N(v) U {v}. Given a set
X C V, the boundary of X, denoted by §(X), is the set of vertices in V' — X
that are adjacent to at least one member of X.

Definition 1.1. A set S C V is a defensive alliance if for every v € S,
IN[v] N S| > |N[v] N (V = S)|. For a weighted graph G, where each vertex
v has a non-negative weight w(v), a set S C V is called a weighted de-
fensive alliance if for every v € S, 3= cNpns (W) = X uenpinv—s) w(w).
A (weighted) defensive alliance S is called a global (weighted) defensive
alliance if S is also a dominating set.

Definition 1.2. A set S C V is an offensive alliance if for every v € 6(S),
IN[v] N S| > |N[v]n(V = S)|. For a weighted graph G, where each vertex v
has a non-negative weight w(v), a set S C V is called a weighted offensive
alliance if for every v € 6(5), X enpins W) = X enpnv—s) w(u). A
(weighted) offensive alliance S is called a global (weighted) offensive alliance
if S is also a dominating set.

Definition 1.3. A global (weighted) powerful alliance is a set S C V such



that S is both a global (weighted) offensive alliance and a global (weighted)
defensive alliance.

Definition 1.4. The global powerful alliance number of G s the cardinality
of a minimum size global (weighted) powerful alliance in G, and is denoted
by vp(G). A minimum size global powerful alliance is called a v,(G)-set.

Definition 1.5. The global offensive alliance number of G is the cardinality
of a minimum size global (weighted) offensive alliance in G, and is denoted
by vo(G). A minimum size global offensive alliance is called a v,(G)-set.

There are many applications of alliances. One is military defence. In a
network, alliances can be used to protect important nodes. An alliance is
also a model of suppliers and clients, where each supplier needs to have as
many reserves as clients to be able to support them. More examples can be
found in [11].

Balakrishnan et al. [2] studied the complexity of global alliances. They
showed that the decision problems for global defensive and global offen-
sive alliances are both NP-complete for general graphs. It is clear that the
decision problems to find global defensive and global offensive alliances in
weighted graphs are also NP-complete for general graphs.

The problem of finding global defensive, global offensive and global pow-
erful alliances is only solved for trees. In [5], an O(|V|*) dynamic program-
ming algorithm is given that finds the global defensive, global offensive and
global powerful alliances of any weighted tree T'= (V, E).

In this paper, we give linear time algorithms that find the smallest global
offensive and global powerful alliances of any weighted tree T = (V| E).
The algorithm for the global powerful alliances (with a proof sketch) first
appeared in the conference article [8]. In this paper, we give a complete
proof as well as provide an algorithm for global offensive alliances.

The paper is organized as follows. In Section 2, we present a linear
algorithm for the global offensive alliance problem in an arbitrary weighted
tree. In Section 3, we present a linear algorithm for minimum cardinality
powerful alliance in weighted tree.

2 Weighted Offensive Alliances in Trees

Let G = (V, E) be a graph and w : V — R™ a weight function. The weighted
global offensive alliance number of G is the cardinality of the minimum



dominating set S with the property that for every v ¢ 5,

Yo oww < Y w(u) (1)

u€N[v]-S ueN[v]NS

The above condition is called the alliance condition of v. In this section
we present a linear time algorithm which finds the weighted global offensive
alliance number of a tree.

First, we need some notation. We denote the set of all leaves of T' by
L(T) and the set of all children of a vertex x which are leaves by L(z).
The parent of a leaf is called a support vertex. We denote the set of support
vertices of T by S(T'). The root of the tree is denoted by r(7T"). We denote by
p(v) the parent of vertex v. Also, for aset S C V define w(S) := 3 ,cqw(u).

2.1 The Algorithm

We root the tree T" at any vertex. Denote by d the depth of T. We build
a minimum cardinality global offensive alliance set S. Throughout the al-
gorithm we will label some of the vertices by “ —”. These vertices will not
be included in the global offensive alliance (i.e., no vertex labelled “—" will
ever be put in S.)



Algorithm 1 Algorithm Weighted Offensive Alliance

1: for v € S(T') do
2:  forle L(v) do

3: if w(l) > w(v) then

4: Put [in S.

5: else

6: Label [ with «“—7

7 if there exists | € L(v) such that w(l) < w(v) then

8: Put v in S.

9: for vertices v at depth d — i, i =1 to d do

10:  if v ¢ S and v is not labelled “—" and all of v’s children are labelled “—” then
11: if w(p(v)) > w({N[v] —p(v)}) then

12: put p(v) in S (if it already is not) and label v with “—".

13: else

14: put v in S.

15: else if v ¢ S and v is not labelled “—” and v has at least one neighbor u already

in S then

16: if w(N(v)NS) > w({N[v] — S}) then

17: label v with “—".

18: else if w(N(v)NSU{p(v)}) > w(N[v] — S — {p(v)}) then

19: put p(v) in S and label v with “—" .
20: else
21: put v in S.

The correctness of the algorithm hinges on the following theorem.

Theorem 2.1. After each iteration of the algorithm, the set S is contained
in some minimum cardinality weighted global offensive alliance R, which
also does not contain any of the vertices marked by “—".

Proof. The proof is by induction on the number of iterations. First, suppose
we are carrying out the first two nested FOR loops of the algorithm, so that
a support vertex v is considered. Note that for every [ € L(v), every ~v,(T')-
set must contain v or [. If some vertex | € L(v) satisfies w(l) > w(v), then
clearly [ must be put in S for otherwise the alliance condition for | would
not be satisfied. Now, suppose there exists a vertex [ € L(v) such that
w(l) < w(v). This implies that putting v in S satisfies the alliance condition
of [. Since at least one of v or [ must be put in S, it is safe to put v in S
since this can only help to satisfy the alliance conditions of the necessary
vertices in N (v). Thus, the vertices added to S in the first two nested FOR
loops of the algorithm are safe.

Now, assume we are considering a vertex v in the third FOR loop of the
algorithm. By induction, all the vertices in .S thus far are contained in some
Yo(T')-set. We first claim that every child u of v that has label “ —" has its



alliance condition already satisfied. This is clear if u is a support vertex or
a leaf by the first two nested for loops. Now, suppose that u got labelled
“—7 in a previous iteration of the third FOR loop of the algorithm. If u
got labelled “—7” in line 10, then clearly its alliance condition was satisfied.
It is similarly seen that if u gets labelled “ —” in line 15, then its alliance
condition is satisfied as well. This establishes the claim.

If v is already in S or v is labelled with “ —”, no further vertices get
labelled and the theorem holds. Now, assume we are in line 10. This implies
that we must pick at least one vertex to be in the set S from N[v] to satisfy
the domination condition for v. If putting p(v) in S is already sufficient to
satisfy the alliance condition of v, then this is certainly safe to do so because
choosing p(v) can only help to satisfy the alliance conditions of vertices in
N[p(v)]. Clearly, in this case, we do not take v to be in S. If putting p(v)
in S is not sufficient to satisfy the alliance condition of v, then at least one
vertex from v and its children must be put in S. Now, it is clear that it
is safe to put v in S for in that case we do not have to satisfy the alliance
condition of v, and v € S can only help to satisfy alliance condition of p(v),
if necessary.

Now, assume we satisfy line 15 of the algorithm. In this case, v is clearly
already dominated. First, we check whether v’s alliance condition is already
satisfied. If this is the case then we claim it is safe to label v with “— 7.
Since the alliance conditions of v and all its children are satisfied we only
need to consider the effect on p(v). However, when we come to consider
p(v), given a choice to satisfy p(v)’s alliance condition by picking v, it would
still be better to pick p(v).

Second, we check whether putting p(v) in S is sufficient to satisfy the
alliance condition of v. As in the case of line 10, it is safe to put p(v) in S.
If putting p(v) in S is not sufficient, then we put v in S. By an identical
argument as in case of line 10, this is again a safe operation. This completes
the proof. ]

It is easy to check that the alliance condition of every vertex is satisfied
at the end of the algorithm. This fact, combined with Theorem 2.1 proves
that the algorithm finds an optimal global offensive alliance.

2.2 Complexity of the Algorithm

Now we consider the running time of the algorithm. Clearly, the first two
nested FOR loops take at most O(n) time. In the third FOR loop, at
each vertex v, we take at most O(deg(v)) time in each of the three cases.



Therefore, in total we take

O(n) + ) O(deg(v)) = O(n)

veV

time. Hence, the algorithm runs in O(n) time.

3 Powerful Alliances

In this section, we give a linear time algorithm that finds the weighted global
powerful alliance number of any tree. We assume all the weights are positive
- the algorithm can be easily modified for the case where the weights are
non-negative.

As before, for a set S C V define w(S) := >, cqw(u).

It is clear that when the weight function is positive, the global powerful
alliance problem can be formulated as follows.

Observation 1. Let G = (V, E) be a graph, and w : V — RT\{0} a weight
function. Then a global powerful alliance in G is a set S C 'V such that for
allvevV,

Z w(u) > M

2
ueNINS

Note that the condition that S is a dominating set is automatically
guaranteed because all the weights are positive. We will use the above for-
mulation in our algorithm. The following definition will be used throughout
the algorithm.

Definition 3.1. For v € V, the alliance condition for v s the condition
that w(N[v] N S) > M

3.1 An overview of the algorithm

Now, we give a brief intuition behind the algorithm. As noted above, when
all the weights are positive, the global powerful alliance problem is sim-
ply finding the smallest set S C V such that for every vertex v € V,
w(Nv]NS) > M Our algorithm is essentially a greedy algorithm.
We root the tree at a vertex, and start exploring the neighborhoods of ver-
tices starting from the bottom level of the tree. The vertices which have
already been chosen to be included in the alliance set S are labelled with
“+7”. For each vertex v, we find the smallest number of vertices in its closed



neighborhood that need to be added to the vertices labelled “4” in v’s closed
neighborhood to satisfy the alliance condition for v. We do this using the
algorithm FindMinSubset. In some cases we may get more than one optimal
solution and it will matter which solution we pick (for example, if there is
an optimal solution containing both v and p(v) then this solution is prefer-
able when we consider the neighborhood of p(v)). The complication arises
when there is an optimal solution containing v, but not p(v), and there is
an optimal solution containing p(v). If w(v) > w(p(v)), then it is not clear
which solution is to be preferred because v is at least as good as p(v) for
satisfying the alliance condition for p(v), but choosing p(v) is preferable for
satisfying the alliance condition for parent of p(v), p(p(v)). In general, when
we have to choose between a solution that contains v and one that contains
p(v) we give preference to the solution containing p(v) unless: (i) we can
immediately gain by choosing the solution with v due to choices made in
previous iterations (ii) when satisfying the alliance condition for p(v), it
might theoretically be better to have chosen v.

3.2 Labels

In the algorithm, we use five labels for vertices: “+7, “7=", “72£7  “7&="
and “?&#£". At each step of the algorithm, the set of vertices labelled “+”
is a subset of a minimum cardinality powerful alliance. We assign a vertex
v a label “4+” when we can claim that it preserves this property. At the
end of the algorithm, the set of vertices labelled “+” will be the vertices
of a minimum cardinality global powerful alliance. Generally, we assign a
vertex v a label “?7#” when we have a choice of taking v or p(v) to satisfy
the alliance condition for v (but we cannot choose both v and p(v)) and
w(v) > w(p(v)). For a vertex u, we define D(u) to be the set of all children
of w that are labelled “?#£”. We will argue that for every vertex u, we
eventually must take u or D(u) in our alliance.

Another special case is when we see no optimal solution containing p(v)
or v that would satisfy v’s alliance condition, but if p(v) were later labelled
“4+7 for other reasons, then there would be an optimal solution containing
v that would satisfy v’s alliance condition. This solution is preferable since
it can decrease the number of vertices required to satisfy p(v)’s alliance
condition. In the aforementioned special case, we assign v a label “7=", and
for every child u of v a label “?&#” if u is in the optimal solution containing
neither v nor p(v), a label “?&="if u is in the optimal solution containing
both v and p(v) and a label “+” if u is in both.

In the algorithm, we might want to label a vertex already labelled, in



which case the new label would replace the old.

3.3 Satisfying the alliance condition for a vertex

Throughout the algorithm, for every vertex v we need to find the small-
est number of vertices necessary in the closed neighborhood of v to satisfy
the alliance condition for v. To solve this problem, we use the following
algorithm.

Given positive numbers a1, ag, ..., an, FindMinSubset(a, as..., ay) is the
problem of finding the minimum & such that there is a k-subset of {a1, ag, ..., an }
the elements of which sum up to at least %Z?:l a;. We give an algorithm
that solves this problem in time O(n). The algorithm also finds an instance
of such a k-subset. Furthermore, out of all the optimal solutions it outputs
a set with a maximum sum.

Algorithm FindMinSubset[A,n,T].

Input: An array A of size n of positive integers; a target value 7.
Output: The least integer k such that some k elements of A add up to at
least T

1. If n =1, return 1.

2. Set i = [5].

3. Find the set A’ of the i largest elements of A and compute their sum M.
4. If M > T return FindMinSubset[A’ i, T]; if M = T return i; else return
i+ FindMinSubset|A — A',n — i, T — M].

Lemma 3.2. The above algorithm solves the problem FindMinSubset(ay, az, ..., ay)
in time O(n). Furthermore, if the solution is k, the algorithm finds the k
largest elements.

Proof. Let S = 31", a;. It is clear that FindMinSubset[A,n, T = 5] where
A is the array of the elements (ay, as, ..., a,) will solve the desired problem.
The analysis of the running time is as follows. Note that finding the largest
k elements in an array of size n can be done in linear time for any k (see
[4]). Therefore, in each iteration of FindMinSubset, Step 2 and Step 3 take
linear time, say C'n. Since the input size is always going down by a factor
of 2, we have that the running time 7'(n) satisfies T'(n) < T'(n/2) + Cn. By
induction, it is easily seen that T'(n) = O(n). It is clear that out of all the
possible solutions, the algorithm picks the one with the largest weight. [

As mentioned before, sometimes it will be useful to see the smallest
number of vertices in N[v] that need to be added to the alliance for v’s



alliance condition under the condition that we force v or p(v) (or both) to
be taken. We will need the following algorithm.

Algorithm 2 FindMin|u, take_u, take_p(u); Num, list_children].

Input: A vertex u in the tree T'; two boolean take_u and take_p(u) that
indicate if we force u or p(u) to be taken.
Output: The least integer Num such that some Num neighbours of u not
already taken by the algorithm add up to at least w(N[u])/2; list_children,
the set of children of u counted by Num.

— = =
w0 R

15:
16:
17:
18:
19:

20:
21:
22:
23:
24
25:

26:
27:
28:

: w_total <+ w(Nu])
: Num + 0

w_ally < 0

: list_children <0
: if take_u then

Num < Num +1
w-ally < w_ally + w(u)

. if take_p(u) then

Num < Num + 1
w-ally < w_ally + w(p(u))

: set_children < set of children of u
: for each v in set_children labelled “4+” do

w-ally < w_ally + w(v)
remove v from set_children
/*We don’t need to change Num because v was already taken for another vertex.
Taking it for u is free*/
if take_u then
for each v in set_children labelled “7=" do
w_ally < w-ally + w(v)
remove v from set_children
add v to list_children
/*We take u, so we can take v, for free, because it allows us to not take children
of v labelled “?&#"*/
else
for each v in set_children labelled “7&+#" do
w_ally + w_ally + w(v)
Num < Num + 1
remove v from set_children
add v to list_children
/* We do not take u, so we have to take all its children labelled “?&#"*/
/* We have taken every vertex which we are forced or free to take, now, we simply
take enough of the other vertices to satisfy the alliance condition of u */
k <+ FindMinSubset(set_children, sizeof(set_children), w_total — w_ally)
Num < Num + k
add the set obtained by FindMinSubset to list_children

We now describe the algorithm for weighted powerful alliances in trees.

10



3.4 The Algorithm

We assume the tree T is rooted and has depth d. For each k, we order the
vertices of depth k from left to right. By C(v) we denote the set of children
of v. We define p(v) to be the parent of v.

Algorithm 3 Label(T).

1: for i =0 to d do
2: for vertices u at depth d — i do

3: if u is labelled “+” then
4: Findmin(u, True, True; minll, list_11)
5: Findmin(u, True, False; minl0, list_10)
6: min0l < oo
7 min00 < oo
8: else
9: Findmin(u, True, True; minll, list_11)
10: Findmin(u, True, False; minl0, list-10)
11: Findmin(u, False, True; min01, list_01)
12: Findmin(u, False, False; min00, list_00)
/*If u is already labelled “+”, there is no need to check if there is a smaller set
that avoids taking u */
13: min <+ minimum of {minll, minl0, min01, min00}
14: if minll = min then
15: label “+” every vertex in list_11
16: else
17: if minl0 = min or min0l = min then
18: if w(u) > w(p(u)) and minl0 = min01 then
19: label “+” every vertex in list_10 N list_01
20: label “?#” the vertex u and every vertex in list_01\list-10
21: label “?=" every vertex in list_10\list_01
22: else
23: if min = min01 then
24: label “+” every vertex in list_01
25: else
26: label “4+” every vertex in list_10
27: else
28: if min00 4+ 1 = minll then
29: label “4” every vertex in list_11 N list_00
30: label “?&+#” every vertex in list_00\list_11 not labelled “7#”
31: label “?&=" every vertex in list_11\list_00
/*Notice here that list_11 does not contain u and p(u) even when it is
counted in minll, so list_00 contains one more vertex than list_11. We
are labelling one more vertex “?&#” than “7&="%*/
32: label “?=" the vertex
33: else
34: label “+” every vertex in list_00

11



Algorithm 4 Algorithm for finding Minimum Cardinality Weighted Pow-
erful Alliance in a tree T.

1: Label(T)

2: for i =0 to d do

3: for vertices v at depth ¢ do

4: if v is labelled “?=" then

5: if p(v) is labelled “+” then

6: label “4” the vertex v

7 else

8: unlabel the vertex v

9: if v is labelled “7#” then

10: if p(v) is labelled “+” then

11: unlabel the vertex v

12: else

13: label “4” the vertex v

14: if v is labelled “?&=" then

15: if p(v) and p(p(v)) are labelled “+” then
16: label “4” the vertex v

17: else

18: unlabel the vertex v

19: if v is labelled “?&+#” then

20: if p(v) and p(p(v)) are labelled “+” then
21: unlabel the vertex v

22: else

23: label “4” the vertex v

12



3.5 Proof of Correctness

Let T be a weighted tree, rooted at a vertex r. It will be convenient to as-
sume that r actually has a parent p(r) of weight 0. We are going to prove by
induction the following lemma. Note that MCPA denotes Minimum cardi-
nality powerful alliance and for a vertex u, we will call a minimum cardinality
powerful alliance in the subtree rooted at u, and denote by MCPA(u), a
smallest subset of V(T satisfying the alliance condition for every vertex in
the subtree rooted at u. Note that this definition differs from the general
definition of minimum cardinality powerful alliance in that M CPA(u) can
contain p(u), yet p(u) is not in the subtree rooted at u.

Lemma 3.3. For each vertex u, let P(u) be the property that one of the four
conditions below hold. Let u be a vertex of T. Then, during the execution of
the algorithm, if we skip line 8 to 34 of Algorithm 2 every time the vertex
considered by the loop is not in the subtree rooted at u (meaning that we just
look at satisfying the alliance condition of vertices in the subtree rooted at
u), P(u) holds at the end of Algorithm 2.

1. (a) w is labelled “+7.
(b) The algorithm will yield a MCPA of the subtree rooted in w.
(c) If p(u) is unlabelled, then there is no MCPA of the subtree rooted
in u containing p(u).

2. (a) u is labelled “?7 ="
(b) The algorithm will yield a MCPA of the subtree rooted in .
(c) If we label p(u) or w or both with “+7”, then the algorithm will yield
a powerful alliance of the subtree rooted at u of cardinality |MCPA(u)|+
1

(d) There is no MCPA of the subtree rooted in u containing u or p(u)

3. (a) u is labelled “7 #”
(b) The algorithm will yield a MCPA of the subtree rooted in .
(¢) If we label p(u) with “+”, the algorithm will yield a MCPA of the
subtree rooted in u.
(d) If we label p(u) and w with “+7, the algorithm will yield a powerful
alliance of the subtree rooted at w of cardinality |MCPA(u)| + 1
(e) There is no MCPA of the subtree rooted in u containing both u and

p(u)

13



4. (a) u is unlabelled
(b) The algorithm will yield a MCPA of the subtree rooted in .
(c) If we label w with “+7, the algorithm will yield a powerful alliance
of the subtree rooted at u of cardinality |MCPA(u)|+ 1
(d) If p(u) is unlabelled, then

o If we label p(u) with “4+7, the algorithm will yield a powerful
alliance of the subtree rooted at u of cardinality |MCPA(u)| + 1

o [fwe label p(u) and u with “47, the algorithm will yield a powerful
alliance of the subtree rooted at u of cardinality |[MCPA(u)| 4 2

e There is no MCPA of the subtree rooted in u containing u or p(u)

o There is no powerful alliance of the subtree of u containing both
w and p(u) of cardinality |MCPA(u)| + 1

(e) If p(u) is labelled with "+7”, then w(u) < w(p(u)) or there is no
MCPA of the subtree rooted in u containing u.

Proof. The proof is by induction. The algorithm goes from child to parent.
We are trying to prove the lemma for the vertex v € T'. By induction, we
may assume the lemma to be true for every child v of u. It means that for
every child v of u if we apply step 3 to 34 of Algorithm 2 to every vertex
in the subtree rooted in v (from child to parent), P(v) holds. Notice that
doing so does not label any vertex outside of u or the subtree rooted in v.
We must check that if we apply step 3 to 34 of Algorithm 2 to every vertex
in the subtree rooted u, P(u) holds.

Let us first prove that if we apply step 3 to 34 of Algorithm 2 to every ver-
tex in the subtree rooted u except u itself, and then label “4” the set of ver-
tices returned by FindMin(u, true, true) (respectively, FindMin(u, true, false)),
and finally apply step 2 to 23 of Algorithm 3, then, the vertices labelled “+”
will satisfy the alliance condition of every vertex in the subtree rooted at
u and be of minimum cardinality with respect to the fact that v and p(u)
must be labelled “4” (respectively, that u must be labelled “4”, but not
p(u)). Let v be a child of w.

If v is labelled “+” before the execution of FindMin, we know that it
satisfies the first property of P(v). Thus, by part (c), if p(v) = v was not
labelled by step 3 to 34 of Algorithm 2 during the loop where v was consid-
ered, we know that there is no MCPA in the subtree rooted at v containing
u. But we are forced to take u, so the best we can hope for is to have a

14



powerful alliance of the subtree rooted in v of cardinality |[MCPA(v)| + 1.
Taking the MCPA of the subtree rooted in v containing v that we have and
adding u to it works and it ensure us that we will have both v and p(v) which
will allow us to take less vertex for overpowering u. There exist a minimum
cardinality powerful alliance of the subtree rooted w which contains v, so
Findmin(u, true, true) (respectively Findmin(u,true, false)) must take v.
It does take v because it is a child of u labelled “+4”.

If v is labelled “? =” before the execution of FindMin, we know that
it satisfies the second property of P(v). We know that there is no MCPA
of the subtree rooted at v containing p(v) = u. But we are forced to take
u, so the best we can hope is to have a powerful alliance of the subtree
rooted in v of cardinality |[MCPA(v)|+ 1. We know we can do this by hav-
ing v and u labelled with “+”, which will allow us to take less vertices for
the alliance condition of u. We want Findmin(u,true,true) (respectively,
Findmin(u,true, false)) to take v. It does take v because v is a child of u
labelled “? =”. Moreover, Findmin should consider v as free, as a vertex
labelled “+”, because there is no powerful alliance of the subtree rooted in v
of cardinality |MCPA(v)| containing u, so by taking both v and v, we only
augment the cardinality of the whole set by 1. Notice, that the algorithm
does consider v as free.

If v is labelled “? #£” before the execution of FindMin, we know that
it satisfies the third property of P(v). p(v) = u is already labelled “4”.
Applying step 2 to 23 of Algorithm 3 without changing the label of v gives
us a MCPA of the tree rooted at v. However, if we want to take p(v) = u
and v, we know that there is no MCPA of the tree rooted at v containing
both v and p(v) = wu, but labelling them both “+” then applying step 2
to 23 of Algorithm 3 gives us a powerful alliance of the tree rooted at v
of cardinality |[MCPA(v)| + 1. Thus, Findmin(u,true,true) (respectively,
Findmin(u,true, false)) return a set as claimed.

If v is unlabelled before the execution of FindMin, we know that it
satisfies the fourth property of P(v). Findmin(u,true,true) (respectively
Findmin(u,true, false)) can take v, but it will not help to take less vertices
elsewhere.

This proves that FindMin(u, true, true) (respectively, Findmin(u,true, false))
returns the set intended.

15



Let us prove now that if we apply step 3 to 34 of Algorithm 2 to every
vertex in the subtree rooted u except u itself and w is not labelled, and then
label “+” the set of vertices returned by FindMin(u, false,true) (respec-
tively, FindMin(u, false, false)), and finally apply step 2 to 23 of Algo-
rithm 3, then, the vertices labelled “+” will satisfy the alliance condition of
every vertex in the subtree rooted at u and be of minimum cardinality with
respect to the fact that p(u) must be labelled “+”, but not u (respectively,
that both w and p(u) cannot be labelled “+7). Let v be a child of u.

If v is labelled “4” before the execution of FindMin, we know that it
satisfies the first property of P(v). As p(v) = u was not labelled previ-
ously, we know that there is no MCPA of the subtree rooted in v containing
p(v) = u. Line 2 to 23 of Algorithm 3 gives us a MCPA of the tree rooted
in v containing v. Taking v allows us to take less vertices for satisfying the
alliance condition of u. There exist a minimum cardinality powerful alliance
of the subtree rooted u which contains v, so Findmin(u, false,true) (re-
spectively Findmin(u, false, false)) must take v. It does take v because it
is a child of u labelled “+4”.

If v is labelled “? =" before the execution of FindMin, we know that it
satisfies the second property of P(v). We know that there is no MCPA of
the subtree rooted in v containing v. Step 2 to 23 of Algorithm 3 gives a
MCPA of the subtree rooted in v containing neither v nor p(v) = u. If we
label v with “4” step 2 to 23 of Algorithm 3 gives a powerful alliance of the
subtree rooted in v of cardinality [MCPA(v)| 4+ 1. Findmin(u, false,true)
(respectively Findmin(u, false, false)) can take v, but it will not help to
take less vertices somewhere else. Thus, Findmin(u,true,true) (respec-
tively, Findmin(u,true, false)) return a set as claimed.

If v is labelled “? #£” before the execution of FindMin, we know that
it satisfies the third property of P(v). p(v) = u is not taken by Findmin.
Applying step 2 to 23 of Algorithm 3 without changing the label of v gives
a MCPA of the tree rooted at v containing v. A minimum cardinality pow-
erful alliance not containing u must contain v, so Findmin(u, false,true)
(respectively Findmin(u, false, false)) must take v. It does take v because
v is a child of u labelled “? #”. However, contrary to other cases, the cost
of taking v must still be counted, because taking u costs less than taking all
of its children labelled “? #£”.

If v is unlabelled before the execution of FindMin, we know that it

16



satisfies the fourth property of P(v).

This proves that FindMin(u, false, true) (respectively, Findmin(u, false, false))
returns the set intended. Thus, Findmin take exactly as few vertices as it
can to satisfy the alliance condition of u, so it gives a set in N[u] such that
labelling this set with “4+” and applying step 2 to 23 of Algorithm 3 gives
a powerful alliance of the subtree rooted in u of minimal cardinality with
respect to the forced vertices.

We look at the minimum of the 4 instances of Findmin(u,.,.) and we
know that it is the size of an MCPA(u). If Label() does the case in line 19
of the Algorithm 2, then p(u) is labelled with “4+” and w must satisfy the
property 1, which it does. If Label() does the case in lines 23-24, then u
must satisfy the property 3, which it does. If Label() does the case in line
26, then p(u) is labelled with “+” and w must satisfy the property 4, which
it does. If Label() does the case in line 27, then p(u) is unlabelled and u
must satisfy the property 1, which it does. If Label() does the case in lines
30-35, then v must satisfy the property 2, which it does. If Label() does the
case in line 36, then p(u) is unlabelled and w must satisfy the property 4,
which it does.

By induction P(u) is true for every u € T'. O

If we apply this lemma with w = r the root, It means that P(r) is
satisfied after having apply the algorithm. Given item 1)b, 2)b, 3)b, and
4)b, of P(r), the algorithm yield a MCPA of the subtree rooted in r. This
MCPA does not contain p(r) because w(p(r)) = 0 and it would contradict
the minimality, so it is a MCPA of T.

3.6 Complexity of the Algorithm Powerful Alliances for Trees
Here we analyze the running time of the algorithm.

Lemma 3.4. Algorithm 1 runs in time O(deg(u)).

Proof. 1t is clear that FindMin will solve the desired problem. The analysis
of the running time is as follows. It is easily seen that everything until line
26 of the algorithm is done in O(deg(u)). The input size of FindMinSubset
is O(deg(u)) so the running time is O(deg(u)). O

Theorem 3.5. The running time of the algorithm Powerful Alliances for
Trees is O(n).

17



An illustration of the algorithm by an example (Fig. 1).

v1 18 9y 20 w3 30

v 18 9y 20 w3 30 After vertices v1,v2,v3 have been considered (¢ = 0 in the first loop)

v; 18 9y 20 v3 30 v118 gy 20 w3 30

After vertices vy,v5,v6,07,08 have been considered (i = 1) After vertices vg,v10,v11,v12 have been considered (i = 2)

v1 18 5 20 w3 30 v1 18 9y 20 w3 30

After vertices v13,014,V15,v16 have been considered After vertices v16 to vg have been unlabelled (i = 2 in the second loop)

v; 18 9y 20 v3 30

After vertices vg to vy have been unlabelled (i = 3)

18



Proof. At each step of Label(T), we compute Findmin(u) four times, then
label all the neighbours of u accordingly. Findmin(u) has a running time
in O(deg(u)) so each iteration of the loop has a running time in O(deg(u)).
That loop visit each vertex once and has a running time of ) |, O(deg(v)) =
O(n). Algorithm 3 visits each vertex again once and relabels it. It also have
a running time of O(n).

The running time of the algorithm is O(n). O

4 Concluding Remarks

In the paper we gave a linear time algorithm that finds global offensive and
global powerful alliances of any weighted tree 7' = (V, E). Combining our
results with the obvious lower bounds we actually show that the problems
of finding global offensive and global powerful alliances of any weighted tree
T = (V,E) are ©(]V]). The problem of finding the global defensive alliance
number of a tree quickly seems to be more difficult. The difficulty is in
the fact that not all vertices have to satisfy the same condition (as in the
powerful alliance), and more importantly, we cannot claim that adding a
vertex to a global defensive alliance will preserve the defensive alliance (in
contrast to offensive alliances).

4.0.1 Acknowledgements

We wish to thank Leonid Chindelevitch for indicating Lemma 3.2. We would
also like to thank an anonymous referee whose comments improved the pre-
sentation of this paper.

References

[1] R. Aharoni, E. C. Milner, K. Prikry, Unfriendly partitions of a graph.
J. Combin. Theory Ser. B 50 (1990), no. 1, 1-10.

[2] H. Balakrishnan, A. Cami, N. Deo, and R. D. Dutton, On the complex-
ity of finding optimal global alliances, J. Combinatorial Mathematics
and Combinatorial Computing, Volume 58 (2006), 23-31.

[3] R.C.Brigham, R. D. Dutton, T. W. Haynes, S. T. Hedetniemi, Powerful
alliances in graphs, Discrete Mathematics Volume 309 (2009), 2140-
2147.

19



[4]

[11]

[12]

[13]

[14]

[15]

T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein Introduction to
Algorithms, McGraw-Hill, 2002.

B.C. Dean, L. Jamieson, Weighted Alliances in Graphs, Congressus
Numerantium 187 (2007), 76-82.

A. Harutyunyan, Some bounds on alliances in trees, Cologne Twente
Workshop on Graphs and Combinatorial Optimization 2010: 83-86.

A. Harutyunyan, Some bounds on global alliances in trees, Discrete
Applied Mathematics 161 (12), 2013, 1739-1746.

A. Harutyunyan, A fast algorithm for powerful alliances in trees, 4th
International Conference on Combinatorial Optimization and Applica-

tions ( COCOA 2010 ), LNCS 6508 (1) 2010, 31-40.

T. W. Haynes, S. T. Hedetniemi, and M. A. Henning, Global defensive
allliances in graphs, Electronic Journal of Combinatorics 10 (2003), no.
1, R4T.

T. W. Haynes, S. T. Hedetniemi, and M. A. Henning, A characteriza-
tion of trees with equal domination and global strong alliance numbers,
Utilitas Mathematica, Volume 66 (2004), 105-119.

S. M. Hedetniemi, S. T. Hedetniemi, and P. Kristiansen, Alliances
in graphs, Journal of Combinatorial Mathematics and Combinatorial
Computing, Volume 48 (2004), 157-177.

E. C. Milner and S. Shelah, Graphs with no unfriendly partitions. A
tribute to Paul Erdos, 373-384, Cambridge Univ. Press, Cambridge,
1990

J. A. Rodriguez-Velazquez, J.M. Sigarreta, On the global offensive al-
liance number of a graph, Discrete Applied Mathematics, Volume 157
(2009), 219-226.

J. A. Rodriguez-Velazquez, J.M. Sigarreta, Spectal study of alliances in
graphs, Discussiones Mathematicae Graph Theory 27 (1) (2007), 143—
157.

J. A. Rodriquez-Velazquez and J. M. Sigarreta, Offensive alliances in
cubic graphs, International Mathematical Forum Volume 1 (2006), no.
36, 1773-1782.

20



[16] J. A. Rodriguez-Velazquez, J.M. Sigarreta, Global Offensive Alliances
in Graphs, Electronic Notes in Discrete Mathematics, Volume 25
(2006), 157-164.

[17] J. A. Rodriguez-Velazquez, J. M. Sigarreta, On defensive alliances and
line graphs. Applied Mathematics Letters, Volume 19 (12) (2006), 1345—
1350.

21



